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Abstract Selective laser melting, an additive man-

ufacturing technique that allows 3D printing of metal

components, has recently gained great interest. De-

spite its growing popularity, this technology con-

tinues to suffer from deficiencies in standards and

qualifications, factors that limit wide industrial use.

Numerical modeling is currently a standard tool

in production engineering for both process opti-

mization and a more comprehensive understand-

ing of the process physics. However, inherent to

any model implementation and computation are

various sources of uncertainties and errors. It is

of major importance to identify them and assess

whether their influences on outputs is significant.

This can be accomplished using sensitivity anal-

ysis. To determine the parameters that most influ-

ence variability in the computational results, global

sensitivity analyses were performed using an in-

house developed nonlinear finite element model of

the selective laser melting process. The computa-

tional load was limited by utilizing a 2D model

for a single-layer simulation. The studies were per-

formed on 26 process parameters including ma-

terial properties, their dependencies on tempera-

ture, laser-related parameters, and boundary con-

ditions, among others. Computed maximal tem-
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peratures and melt pool widths and lengths were

obtained. Two sensitivity analyses were performed

using the elementary effect method: one included

process parameters and the other excluded them.

Among the 26 input parameters tested, 16 did not

show significant effects in either study. By includ-

ing process parameters, they were found to be the

most influential. By excluding them, the signifi-

cant influence of the emissivity coefficient on out-

put variability was revealed. These results evidence

the parameters that should be given higher priority

in modeling, the sources of error to be considered

during validation, and insights into which param-

eters should be prioritized for further studies, both

experimental and computational.

Keywords Selective laser melting · Finite

elements · Simulation · Global sensitivity analysis

Nomenclature

α Power absorption

ε Surface emittance

φ Nodal FEM powder fraction

φpow Powder porosity

ρl0 Constant of the liquid metal density model

[kgm−3]

ρl1 First order coefficient of the liquid metal

density model [kgm−3 K−1]
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2 Claire Bruna-Rosso et al.

ρs0
Constant of the solid metal density model

[kgm−3]

ρs1
First order coefficient of the solid metal

density model [kgm−3 K−1]

σ Stefan-Boltzmann constant

ϕ Nodal FEM phase fraction

afront Goldak heat source parameter [µm]

arear Goldak heat source parameter [µm]

c Goldak heat source parameter [µm]

c0 Constant of the heat capacity model [Jkg−1 K−1]

c1 First order coefficient of the heat capacity

model [Jkg−1 K−2]

c2 Second order coefficient of the heat ca-

pacity model [Jkg−1 K−3]

Dpow Powder diameter [ µm]

h Convection coefficient [Wm−2 K]

hPB Layer thickness [µm]

k0 Constant of the thermal conductivity model

[Wm−1 K−1]

k1 First order coefficient of the thermal con-

ductivity model [Wm−1 K−2]

kbulk Thermal conductivity of the bulk AISI316L

stainless steel [Wm−1 K−1]

kg Interstitial gas heat conductivity [ Wm−1 K−1]

kR Thermal conductivity of the powder bed

resulting from radiation [Wm−1 K−1]

L Latent heat of phase change [kJkg−1]

P Laser power [W]

Q Laser heat input density [Wm−3]

TL Liquidus temperature [K]

TS Solidus temperature [K]

Tamb Ambient temperature [K]

Tsint Sintering temperature [K]

v Laser displacement speed [mms−1]

µi Mean of EEi over the r starting points

σi Standard deviation of EEi over the r start-

ing points

EE
j
i Elementary effect of parameter i at start-

ing point j

r Number of starting point in the sensitivity

analyses

SEMi Standard error of the mean of parameter i

1 Introduction

Selective laser melting (SLM) is a layer-based ad-

ditive manufacturing processes. It allows building

functional products layer by layer to obtain a fi-

nal 3D geometry. Owing to the high energy input

provided by the laser, a variety of materials, in-

cluding metals, are eligible to this process. This

technique allows building a large range of geome-

tries, leading to a wide design freedom and flex-

ibility. This makes it especially appealing for ap-

plications in the aerospace and biomedical fields.

However, many unknowns continue to surround

this process. The laser processing of metal powder

layers is complex and involves numerous physical

phenomena of various types and time and space

scales. Figure 1 illustrates the process and summa-

rizes its major physical phenomena. Current knowl-

edge about SLM does not allow its complete and

stable management. The process is quite often not

qualified, few standards have been set, and those

that have are for a reduced range of applications,

limiting its industrial development [1]. To improve

knowledge about a process, design of experiment

techniques can be used ([2,3]). However charac-

terizing a process by the mean of experimental in-

vestigations could prove to be costly, and the ex-

perimental region where parameters can be cho-

sen is limited and difficult to extend. Developing

a realistic model of the process and gaining in-

sight through simulations could address the issue

of flexibility[4]. Nevertheless, because the process

is intrinsically multi-physic and multi-scale, real-

istic modeling from both the physic and geomet-

rical points of view is computationally heavy [5].

Consequently, characterizing the process and ex-

ploring its large input space can also prove to be

challenging from a computational point of view.

Moreover, numerical models are deterministic and

the large majority of the published models do not

account for the uncertainties surrounding all the

input parameters. This is why alternative approaches

involving statistical methods together with reduced

and simple models have been developed. A com-

prehensive list of uncertainty sources in the SLM

models can be found elsewhere [6] where the is-

sue of uncertainty quantification in SLM simula-

tion is tackled using a low-order model. Hu & Ma-

hadevan made an extensive discussion on the uti-

lization of uncertainty quantification and manage-

ment methods in additive manufacturing and illus-
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trated their application to laser nanoparticle sin-

tering [7]. Kamath [8] used an iterative procedure

that combine data mining with statistical inference

to couple results from simulations with those from

experiments. It allowed development of surrogate

models which were then used, among others, to

perform uncertainty quantification analyses. How-

ever the major sources of uncertainty remain un-

known, but perhaps can be identified by perform-

ing a sensitivity analysis as seen in Asserin et al.

[9] on a welding process Finite Element Model

(FEM). Indeed, as Saltelli et al [10] introduce it,

it is ”The study of how uncertainty in the output

of a model (numerical or otherwise) can be ap-

portioned to different sources of uncertainty in the

model input”. Performing such an analysis allows

to identify those ”sources of uncertainty” whose

better knowledge and management would improve

the most the accuracy of the FEM results. Those

authors also explained that ”law-driven models tend

to be overparametrized”, meaning that some vari-

ables included in the model because they appear in

the equations being solved do not have a relevant

effect on the outputs. A better understanding of the

influential variables on the FEM results would ori-

entate future studies toward an improved experi-

mental characterization and modeling of those pa-

rameters only. This allows to limit the effort spent

in experiments to accurately determine or measure

unknown input parameters to the ones that have a

significant impact on the model outputs. Together

with the definition of the parameters that are re-

sponsible of the main part of the output uncertainty,

the sensitivity analysis also helps to reduce sub-

sequent computational experiment campaigns by

limiting their variables only to the factors with sig-

nificant effects, all the others being fixed to their

mean. Criales et al. [11] performed a local sensi-

tivity analysis on a FEM of Inconel selective laser

melting. They used a perturbation method consist-

ing in varying of a small amount (10%) each pa-

rameter from their nominal value. While being com-

putationally cheap, this method has the disadvan-

tage of producing information only at a local level

[12]. However, some of the parameters entering

the SLM finite element model may vary signifi-

cantly. For instance the emissivity of stainless steels

may fluctuate between 0.1 and 0.8 depending on

the material state, temperature, oxidation level etc

[13], highlighting the need for a study on a wider

range of parameter values. Therefore, we propose

a global sensitivity analysis (GSA) based on a re-

duced SLM finite element model.

2 Finite Element Model

The model under study is an in-house developed

FEM implemented using the deal.ii library [14]. A

more comprehensive description of the model can

be found elsewhere [15]. The material used is the

316 stainless steel.

2.1 Mathematical Formulation

The current model aims to simulate layer-based

additive manufacturing of metal. The main features

that must be taken into account are :

– A moving heat source (provided by a laser beam)

– Convective cooling and radiation between the

free surfaces of the part and the building cham-

ber atmosphere

– Temperature- and phase-dependent material prop-

erties

Those characteristics translate into the following

partial differential equation system:



















cp(T )ρ(T )
∂T (x,t)

∂ t
−∇.k(T )∇T (x, t) = f (x, t) in Ω , t >0

T (x, t) = Tamb in Ω , t = 0

T (x, t) = Tamb on ΓD, t >0

k(T ) ∂T (x,t)
∂n

= α(T ) on ΓR, t >0

(1)

With :

ρ = ρ(T,Φ)
cp = cp(T,Φ)
k = k(T,Φ)
α(T ) = σε(T 4 −T 4

amb)+h(T −Tamb)

Where T is the temperature, Φ is the fraction

of powder/consolidated (solid or liquid) material,

ρ is the density, k is the thermal conductivity, cp

is the thermal capacity, Tamb is the ambient tem-

perature in the building chamber, h is the convec-

tion coefficient, ε is the material emissivity, σ is
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Fig. 1 The selective laser melting process and major physical phenomena

the Stefan-Boltzmann constant, ΓD is the contact

area with the substrate, ΓR is the contact area with

the environing gas and f (x, t) is the heat input pro-

vided by the laser (see subsection 2.2) and the phase

change.

2.2 Laser Modeling

The laser heat source has been implemented using

the Goldak [16] model, as previously done in SLM

modeling [17,18]

Q = 6
√

3Pα
afrontbcπ

√
π

exp[−( 3x2

a2
front

+ 3y2

b2 + 3z2

c2 )] if x>0

Q = 6
√

3Pα
arearbcπ

√
π

exp[−( 3x2

a2
rear

+ 3y2

b2 + 3z2

c2 )] if x<0
(2)

Where x, y and z are the coordinates of the center

of the moving laser (i.e. with the origin is at the

center of the beam) arear, afront, b and c are the ge-

ometric parameters of the rear and front quadrant,

respectively, of the double ellipsoid heat source, P

is total laser power and α is the absorption effi-

ciency.

2.3 Material Properties

2.3.1 Density ρ

The density ρ is computed according to the exper-

imentally based model of Mills [19]. It takes into

account the influence of three variables: the tem-

perature T , the powder fraction φ , and the phase

fraction ϕ .

φ = 1 if at the point considered, the material is all

powder, φ = 0 if it is all consolidated.

ϕ = 1 if at the point considered, the material is all

solid, ϕ = 0 if it is all liquid.

ρs = ρs0
−ρs1

(T − 298.15)

ρl = ρl0 −ρl1(T − 1723.15)

ρ = ρl(1−ϕ)(1−φ)+ρs

[

φpowφ +(1−φ)ϕ
]

(3)

Where :

ρs: solid temperature dependent density

ρl: liquid temperature dependent density

φpow : powder bed porosity (≃ 0.4 for a randomly

packed powder bed)

2.3.2 Emissivity ε

The model, whose full derivation can be found else-

where [20], account for the particle packing, size,

and the influence of interstitial spaces. It leads to

the following formulae:

εpow = AHεH +(1−AH)εS with: (4)

AH =
0.908φ2

pow

1.908φ2
pow− 2φpow + 1

εH =
εS[2+ 3.082(

1−φpow

φpow
)2]

εS[1+ 3.082(
1−φpow

φpow
)2]+ 1

Claire
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where εS is the emissivity of the solid and εH the

emissivity of the spaces.

2.3.3 Heat capacity cp

Heat capacity varies with temperature. The model

is a second order polynomial regression obtain from

experimental data [21].

cp(T ) =

{

c0 + c1 T − c2 T 2, for T ≤ Tsint

603.9, for T > Tsint

(5)

where Tsint is the sintering temperature of the ma-

terial.

2.3.4 Heat conductivity

Heat conductivity is dependent on both tempera-

ture and the powder fraction. One model is used

for the bulk material, and another for the powder.

The two are then combined using the law of mix-

tures:

k = φ kpow +(1−φ)kbulk (6)

Powder heat conductivity As derived by Sih & Bar-

low [20], powder heat conductivity is:Second anal-

ysis

kpow = kg

{

(1−
√

1−ϕ(1− φpowkR

kg

)

+
√

2−φpow

[ 2

(1− Bkg

ks
)2

log
ks

Bkg

−B+ 1

2
− B− 1

1− Bkg

ks

)+
kR

kg

]

}

(7)

Where kpow is the effective thermal conductiv-

ity of the powder bed, kg is the thermal conductiv-

ity of the gas phase, ks is the thermal conductivity

of the solid phase, and kR is the thermal conduc-

tivity of the powder bed resulting from radiation.

The last of these variables is represented by:

kR =
4εσT 3xR

1− 0.132ε

ε = powder bed emissivity calculated using equa-

tion 4, σ is the Stefan-Boltzmann constant and xR

is the powder particle diameter.

Bulk material heat conductivity The model is temperature-

dependent and is a regression computed from ex-

perimental data [21].

kbulk =

{

k0 + k1 T, for T ≤ Tsint

26.51, for T > Tsint

(8)

3 Global Sensitivity Analysis

The global sensitivity analysis was performed us-

ing the workflow recommended by Pianosi et al

[12] (see subsection 3.2). The sensitivity indices

computations and visualization were completed us-

ing the Matlab R©toolbox SAFE [22]. The study

was performed in two analyses. The first included

the process parameters (laser power, laser speed,

layer thickness) and the power absorption which

are experimentally known to be influential on the

process output. This analysis was used to evalu-

ate model adequacy to empirically observed re-

sults, and thus verify its physical consistency, and

to detect potential interactions between parame-

ters. The second analysis did not include these pa-

rameters. The main purpose of this step of the study

is to elucidate the effects of the variables that could

have been concealed by influences of the most sig-

nificant parameters in the first study.

3.1 Inputs and Outputs of the GSA

In the FEM, 26 variables were found to potentially

influence the computation and thus were used as

inputs to the initial GSA. Where possible, the range

of values was chosen based on physical consider-

ations, otherwise an interval of ±15% was chosen

(see Table 1).

The outputs considered for the GSA were the

maximal temperature and the melt pool length and

depth, each measured when deemed stable. An il-

lustration of those variables is provided in Fig. 2.

3.2 Sensitivity Analysis Method

After identifying and selecting the relevant inputs

and outputs, the right GSA method had to be cho-
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Symbol Description Variation range Nature

ε Surface emittance 0.1 - 0.9

Boundary Condition (BC) Datah Convection coefficient 5 - 25 Wm−2 K−1

Tamb Ambient temperature 288 - 298 K

L Latent heat of phase change 260 - 285 kJkg−1

Material properties

ρl0 Constant of the liquid metal density model 5849 - 7913 kgm−3

ρl1 First order coefficient of the liquid metal

density model

0.6545 - 0.8855 kgm−3 K−1

ρs0
Constant of the solid metal density model 6757.5 - 9142.5 kgm−3

ρs1
First order coefficient of the solid metal

density model

0.426 - 0.576 kgm−3 K−1

c0 Constant of the heat capacity model 310.6 - 420.2 Jkg−1 K−1

c1 First order coefficient of the heat capacity

model

0.346 - 0.468 Jkg−1 K−2

c2 Second order coefficient of the heat capac-

ity model

1.47e−4 - 1.99e−4 Jkg−1 K−3

k0 Constant of the thermal conductivity

model

7.66 - 10.36 Wm−1 K−1

k1 First order coefficient of the thermal con-

ductivity model

1.3e−2 - 1.76e−2 Wm−1 K−2

α Power absorption 0.1 - 0.9

TS Solidus temperature 1638 - 1658 K

TL Liquidus temperature 1663 - 1683 K

Tsint Sintering temperature 997 - 1349 K

φpow Powder porosity 0.2 - 0.8

Powder bed properties
Dpow Powder diameter 10 - 40 µm

kg Interstitial gaz heat conductivity 0.025 - 0.05 Wm−1 K−1

hPB Layer thickness 40 - 60 µm

afront Goldak heat source parameter 85 - 115 µm

Laser heat source properties

arear Goldak heat source parameter 340 - 460 µm

c Goldak heat source parameter 42.5 - 57.5 µm

P Laser power 50 - 250 W

v Laser displacement speed 50 - 500 mms−1

Table 1 Parameters included in the GSA and their domains of variation ([19,20,21]). Parameters in italic were removed for

the second study

sen. The objective of the present study was to de-

termine the most influential parameters on the out-

put variability, or how uncertainty in the output(s)

can be linked to the input ones. The model is being

used in a 2D and geometrically restricted (1.5mm

x 1.05mm) configuration to limit the computation

time. Each simulation performed on a 8 cores @

3.60GHz computer required 150s. With this in mind,

the goal of the study, and the number of parame-

ters, the most suitable method appeared to be the

elementary effect (EE) test. It is the global prolon-

gation of the local method proposed by Criales et

al. [11]. It consists in computing the local output

variations resulting from input perturbations from

various points mapping the entirety of the input

feasibility space, instead of just one point corre-

sponding to the nominal value of the parameters.

More specifically, this method considers for ev-

ery starting point x j of the analysis (see section

3.3), how much the output varies when the ith pa-

rameters is perturbed and all the others remain un-

changed. This variation is known as the elemen-

tary effect of the parameter xi. The statistic then

used as a sensitivity measure, EEi is the mean of

the elementary effects of the parameter i over the

r starting points of the study, and this is computed

as:

Claire
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Fig. 2 Output measurements. The white line represents the isothermal T = Tliquidus

EE
j
i =

g(x j
1, ...,x

j
i +∆

j
i , ...,x

j
M)−g(x j

1, ...,x
j
i , ...,x

j
M)

∆
j

i

(9)

µi =
1

r

r

∑
j=1

EE
j
i

µ∗
i =

1

r

r

∑
j=1

|EE
j
i |

The variable µ∗
i was preferred because the abso-

lute value prevents quantities from canceling each

other out due to their signs.

As explained by Pianosi et al [12], it is common to

compute on top of the elementary effect mean its

standard deviation (see equation 10). It provides a

measure of both the interaction between parame-

ter xi and other parameters, and its own non-linear

effects.

σ2
i =

1

r− 1

r

∑
j=1

(EE
j
i − µi)

2 (10)

3.3 Sample size and sampling strategy

Sample size N is function of the number of pa-

rameters, M, and the number of starting points r:

N = r(M + 1). M being imposed by the model,

only r remains to be fixed. No clear method could

be found in the literature, but rather suggestions

about how to set it. Increasing the number of start-

ing point reduces the confidence bound around the

sensitivity indices and thus increases the reliabil-

ity of the results. On the other hand, an exces-

sive number of starting points would lead to an

unaffordable amount of simulations. In the present

study 55 starting points were used leading to 1485

simulations in the first analysis and 1265 in the

second one. An a posteriori convergence study was

performed to check whether the results would have

been affected by increasing r.

The sampling strategy consisted in selecting the r

starting points inside the input space and the input

variations ∆i. The method called the radial-based

design was used here for efficiency purposes (see

[23] and the references therein for more details).

4 Results

The EE means and standard deviations are pre-

sented in Figs. 3 and 5. The criteria applied to sep-

arate the parameters with respect to their influence

is similar to the one used elsewhere [24] and are as

follows:

– if µ∗
i ≤ 0.1 : The parameter is not influential.

– if µ∗
i > 0.1 and σi ≤ SEM : The parameter is

influential in a linear way.



8 Claire Bruna-Rosso et al.

– if µ∗
i > 0.1 and σi > SEM : The parameter is

influential in a nonlinear way and/or includes

interactions.

The standard error of the mean is symbolized as

SEM and it is determined as: SEM = σ/
√

r

4.1 Analysis including process parameters

4.1.1 Elementary effects’ means and standard

deviations

The computed elementary effects’ means and stan-

dard deviations are displayed in Fig. 3. Each out-

put was affected similarly in that two parameters

(P and α) were very significant, and a few param-

eters influenced output variability at a lower level.

All other parameters cluster in the non significant

area. No parameters had linear effects on outputs;

all had either nonlinear effects or interacted with

other factors.

4.1.2 Convergence analysis

An a posteriori convergence analysis was performed

to ensure that the number of starting points was

sufficient to obtain stable results. In this study, the

EEs computation comprised fewer starting points,

and new results were gradually added to recom-

pute them. Above a certain threshold, adding start-

ing points did not significantly influence the EEs,

signifying that convergence was attained. The anal-

ysis showed that this threshold was reached at r =

49.

Figure 4 shows how µ∗ changes with r for max-

imal temperature in the first analysis. The curve

shows relative stability when r ≥ 49 which val-

idates a posteriori the number of starting points

chosen. For the other two outputs, similar behav-

iors were observed.

4.2 Analysis exclusing process parameters

Results for the second analysis are shown in Fig.

5. By removing the most influential parameters, it

is possible to better distinguish between the oth-

ers with respect to the first analysis. For the maxi-

mal temperature, emissivity was much more influ-

ential than all other parameters, which is in accor-

dance with the local sensitivity analysis performed

by Criales et al [11]. As in the first study, no pa-

rameters showed a linear effect, confirming that all

either had nonlinear effect or interacted with other

factors.

A summary of all influential parameters on the three

outputs after both sensitivity analyses can be found

in Table 2.

5 Discussion

The results of the first analysis confirmed one ex-

pected behavior of the model. Indeed the model

is very sensitive to the laser power and the ab-

sorption coefficient. Considering both are directly

proportional to the amount of heat provided to the

part, and they multiply one another, it is logical

that they significantly influence both the mean and

standard deviation of output variabilities. Another

noticeable result is that laser displacement speed is

an influential parameter. This agrees with experi-

mental observations [25]. The identification of the

process parameters as significant is also support-

ing the model physical consistency since it repro-

duces the action of experimentally identified influ-

ential parameters.

The second analysis allowed an additional step in

the screening process. In addition to the 4 primary

parameters identified in the first step, one was added

for the maximal temperature output, two for the

melt pool depth output and five for the melt pool

length output. In this analysis, the influence of the

emissivity coefficient appeared clearly. This is con-

sistent with the physics because it governs the most

important cooling phenomenon: radiation. It is also

in accordance with a previous study performed on

the surface cooling coefficient in additive manu-

facturing modeling [26]. With very high temper-

atures inside and around the melt pool, the dif-

ference between the atmospheric temperature and

that of the material is wide leading to significant

thermal transfers. ε is a very difficult parameter to

measure, and can vary widely with factors such as
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Fig. 3 Means and standard deviations for the elementary effects for three outputs, Analysis 1
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Fig. 4 Convergence study of EEs computation for maximal temperature. For clarity, only the most influential parameters

are plotted

Table 2 The influential parameters for the three outputs of interest.

Output Number of significant parameters Parameters

Maximal Temperature 5 P, α , v, hPB, ε
Melt pool depth 6 P, α , v, hPB, ε , arear

Melt pool length 9 P, α , v, hPB, ε , c1, arear, k0, ρs0

roughness or material state (solid - liquid- pow-

der) which makes it difficult to estimate as well.

However the study shows that uncertainty in emis-

sivity impacts outputs, suggesting that more effort

should be put in its characterization. Some mate-

rial property factors also influenced the melt pool

length. Because it is parallel to the laser displace-

ment, it is the direction in which thermal conduc-

tion is greatest. It is thus not surprising to see that

factors included in the conductivity, heat capacity

and density functions (see Eqs. 5, 4, 6) influenced

the melt pool length. Indeed those material proper-

ties directly affect the kinetics of thermal conduc-

tion.

Moreover, it was visible in both studies that, ex-

cept in a few cases, variability in a parameter had

a low level of influence on outputs. Thus, the cur-

rent model is robust with respect to most of the

non-controllable and non-measurable input vari-

abilities which will always exist in the properties

of elements such as materials or powders. Both

studies led to the conclusion that no parameter had

a linear influence; therefore, all parameters either

interacted or had nonlinear effects. This can be ex-

plained in several ways. First, the model is fully

nonlinear. The greatest nonlinearities were close

to the areas where thermal gradients were sharpest.

Because the outputs measured belonged to that area,

it is not surprising that elevated EE standard devi-

ations were found. Second, the various equations

that govern time and space evolution of tempera-

ture (Eq. 1), heat source (Eq. 2), or material prop-

erties (Eq. 5, 4, 6) clearly show how all factors in-

cluded in this study could not act independently.

They necessarily are connected to other variables,

leading to large standard deviations for elementary
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Fig. 5 Means and standard deviations for the elementary effects for the three outputs, Analysis 2
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effects.

The simulations comprised for the laser heat input

a model which was experimentally calibrated. This

model does not include laser beam diameter, al-

though it indirectly acts on parameters arear, afront,

b and c (Eq. 2). Consequently it was not possible to

include the laser beam diameter variability in this

GSA. However the second study proved that arear

was influential suggesting that laser radius would

play a role in output variability in SLM.

The simulations were performed using a single ma-

terial (AISI316L stainless steel). Considering the

large amount of materials processable using SLM,

and their discrepancies in terms of thermal behav-

ior [27,28], their sensitivity responses may be dif-

ferent and should be considered for further studies.

These analyses were performed on three specific

outputs, deemed to be among the most representa-

tive of the process. However they are limited with

respect to the amount of data computed. Other out-

put choices might have led to different sensitiv-

ity results. Measuring the output in a region close

to the laser might magnify laser-related properties,

thus minimizing the apparent effects of others. More-

over the model on which the simulations were per-

formed was confined, thus limiting the extension

of the results to actual applications. For example,

by having a restricted geometry, the effects of bound-

ary condition parameters (e.g, emissivity ε) can

be overestimated. Parameters such as the hatching

distance, which characterizes the displacements of

the laser in the unrepresented dimension, could not

be studied.

Up to now, most SLM process models, including

the one used in this study, account for power ab-

sorption as a simple coefficient which scales the

amount of heat actually absorbed by the material.

Considering its influence, the absorption phenomenon

should be more thoroughly modeled. King et al [5]

found that power absorption process was key in the

fusion process. Toward more accurate modeling,

some efforts should be placed in the characteriza-

tion of α .

As a screening method, the elementary effect test

does not allow parameters to be ranked. Quanti-

tative estimates of their influences on output vari-

ability are similarly impossible. Further studies us-

ing only the significant parameters identified in this

study will be conducted to obtain quantitative re-

sults using, for example, variance-based methods

[12]. Because of the computational load, those meth-

ods could not have been utilized without first re-

ducing the number of parameters by applying a

screening step.

6 Conclusion

A novel framework for the global sensitivity anal-

ysis of a reduced finite element model of the SLM

process of the AISI316L stainless steel was used.

The study was divided in two sub-analyses, one

including and one excluding the process param-

eters. Utilizing the elementary effect test, the in-

put parameters that most influence the melt-pool

geometry and peak temperature variabilities com-

puted with an in-house developed FEM were iden-

tified and analyzed. The first analysis confirmed

the physical consistency of the FEM by disclos-

ing the significance of the process parameters P, v

and hPB and the power absorptivity α , known as

influential. The second analysis, excluding those

prominent parameters, revealed the influence of sev-

eral other parameters (ε , c1, arear, k0 and ρs0 ) pre-

viously concealed. The limited amount of influen-

tial parameters showed the robustness of the present

model with respect of the majority of its input vari-

abilities. However, future studies should better-characterize

power absorption and emissivity. Indeed, they were

found to be highly influential on the FEM output

variabilities. A better knowledge and a improved

description of those variables would have a sig-

nificant effect on the deviation of FEM computa-

tion with respect to experimental results. Finally,

the reduced set of significant parameters obtained

from the present could be used in a subsequent

GSA using methods that lead to quantitative rather

than qualitative results.
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