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ABSTRACT

Throughput is one of the key performance indicators for manufacturing systems, and its im-

provement remains an interesting topic in both industrial and academic field. One way to

achieve improvement is reducing downtime of unreliable machines. Along this direction, it is

natural to pose questions about the optimal allocation of improvement effort to a set of ma-

chines and failure modes. This paper develops mixed integer linear programming models to

improve system throughput by reducing downtime in the case of multistage serial lines. The

models take samples of processing time, uptime and downtime as input, generated from random

distributions or collected from real system. To improve computational efficiency while guaran-

teeing the exact optimality of the solution, algorithms based on Benders Decomposition and

discrete event relationships of serial lines are proposed. Numerical cases show that the solution

approach can significantly improve efficiency. The proposed modeling and algorithm is applied

to throughput improvement of various systems, including a long line and a multi-failure sys-

tem, and also to the downtime bottleneck detection problem. Comparison with state-of-the-art

approaches shows the effectiveness of the approach. Supplementary materials are available for

this article. Go to the publisher’s online edition of IISE Transaction.
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1. Introduction

Throughput is one of the most important performance indicators for manufacturing systems,

since it is directly related to company’s profitability. Companies usually face with the problem of

how to improve the system throughput, which is affected by various factors in complicating way

and difficult to analyze. Among the relevant factors, machine unreliability plays an important

role. In a case study on a production line of Scania, the increment of throughput was up to



5.5% through repair time reduction (Colledani et al., 2010). Increasing time to failure (uptime)

and decreasing time to repair (downtime) are effective ways to achieve throughput improvement

through operation and management measures. Compared with high cost of machine upgrading

and production loss during system change, operation and management measures are at lower cost

and can be conducted more frequently than systems’ physical changes. For instance, preventive

maintenance can prolong time to failure, whereas developing standard procedures and training

operators can be helpful in downtime reduction. This work will focus on improving throughput

by downtime reduction in serial lines. Specifically, we will decide the downtime of which failure

modes of which machines should be reduced to achieve effective improvement at system level.

The throughput improvement problem is a mixed integer optimization problem. The real-

valued aspect is to decide how much each failure should be improved. Considering that the cost

may be not linear on the downtime reduction level, 0-1 variables can be introduced for modeling

reason. In literature, throughput improvement problems are usually solved by greedy algorithms,

including Continuous Improvement (CI) and Gradient Methods (GM). CI (Kang, Zhao, Li, &

Horst, 2016; J. Li, 2013) is a commonly applied approach, and the procedure is repeatedly

identifying and mitigating the bottleneck machine in the system. The bottleneck machine is

defined as the machine by improving whose performance can result in the largest increase of

system throughput (J. Li & Meerkov, 2008). Since the performance of an unreliable machine is

characterized by three independent variables, i.e., cycle time, downtime and uptime, bottleneck

identification methods may find different types of bottleneck accordingly (J. Li & Meerkov,

2008). To improve throughput by reducing downtime using CI, the Downtime Bottleneck (DT-

BN) machine is identified first. Many works of DT-BN identification can be found in literature,

for instance, the arrow method (Chiang, Kuo, & Meerkov, 2000) and the turning point method

(Li, 2009). Both methods are developed based on the observation that the bottleneck machine

causes the blockage of upstream machines and the starvation of downstream machines. They

use estimation of machine blockage and starvation probability to analyze the source of blockage

and starvation, then bottleneck indicators are calculated from a systematic point of view. After

identifying the DT-BN machine, downtime of the bottleneck is reduced by a certain amount. The

identification and mitigation of the DT-BN can be repeated for several iterations. CI is simple,

general and convenient to apply, but its shortages are not negligible. First, to the knowledge of

the authors, all bottleneck detection methods for multi-stage production systems are heuristic

methods, and in some cases the bottleneck cannot be correctly detected (Chiang et al., 2000;

Yu & Matta, 2016). Furthermore, the failure level DT-BN detection approach for systems with
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multiple failure modes does not exist. Second, CI is myopic, since an approach to determining

the appropriate amount of downtime reduction at each iteration has not been addressed. This

may lead to insignificant improvement and mitigation effort waste. Third, CI lacks of modeling

structure and has limited capability to answer questions such as what a plant manager can do

to achieve 10% of system throughput improvement with the lowest cost.

GM estimates the gradient of the system throughput over the downtime of each failure mode

of each machine, and moves along the gradient direction with a certain step length. Since serial

production lines are complex stochastic systems, and there is no closed form representation for

throughput evaluation, deriving stochastic gradient estimator is challenging (Fu et al., 2015).

Infinitesimal Perturbation Analysis (IPA) is an efficient approach for gradient estimation (Ho

& Cao, 2012). Using IPA, all the elements in the gradient vector can be derived from only

one simulation sample path. Using IPA estimator combined with GM, Ho and Cao (1983)

addressed the problem of maximizing throughput of serial lines by allocating mean service time

to each machine. However, IPA only accelerates the gradient estimation procedure and GM still

requires extensive number of iterations for finding the optimum. Moreover, GM is only suitable

for continuous functions, but not MILP.

This work contributes to literature in several ways. One is the definition of formal models.

More specifically, two problems are addressed, which are how to minimize the cost to achieve

a target throughput, and how to achieve the maximal throughput within a downtime reduc-

tion budget. Discrete Event Optimization (DEO) (Pedrielli, Matta, Alfieri, and Zhang (2018)),

an integrated simulation-optimization framework, is used to model and solve the above men-

tioned problems. DEO has been successfully applied to many production system optimization

problems (Matta (2008); Pedrielli, Matta, and Alfieri (2015); Tan (2015); Weiss and Stolletz

(2015); Zhang, Matta, Alfieri, and Pedrielli (2017); Zhang, Matta, and Pedrielli (2016)). Under

the DEO framework, throughput evaluation via discrete event dynamics and an optimization

problem can be included in a unique Mixed Integer Linear Programming (MILP) model. To deal

with the computation issue of MILP, this work proposes algorithms based on Benders Decom-

position (BD) and discrete event relationships of production systems. The developed approach

saves the computational time, and solution optimality is also guaranteed, which represents the

second contribution of this work. Another original contribution is that a model of downtime

bottleneck detection problem at failure mode level is formulated as a variation of the throughput

improvement model, and the proposed solution approach is still effective.

The remainder of this paper is organized as follows. The problems are defined and modeled
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in section 2 and section 3. The solution approach is described in section 4. The downtime

bottleneck detection problem is presented in section 5. The numerical analysis is applied to

several cases, and reported in section 6. Finally, the conclusion is addressed in section 7.

2. Problem definition

2.1. Serial production line with unreliable machines with multiple failure modes

The production system analyzed in this work is the serial line as shown in Figure 1, composed by

M unreliable machines and inter-machine buffers of finite capacity. All parts will be processed by

all the machines along the line, following the arrival sequence. There are always parts available

in front of the first machine, and parts can always leave the system after being processed by

the last machine.

Figure 1.: Serial line with M machines and M − 1 finite buffers.

The inter-machine buffers have finite capacities bj , with a vector notation b = [b1, ..., bM−1]T .

A full buffer causes the blockage of the upstream machine. An empty buffer causes the starva-

tion of the downstream machine. We consider the production system with block-after-service

behavior, which means that machine j may release a part to the downstream buffer j only if

there is at least one space available.

Failures may occur on unreliable machines. Unreliable machines have two types of state:

up and down. Machines produce parts in the up state with a specific cycle time, denoted by

vector p, and stop working in the down state because of failure. Failure is characterized by

uptime and downtime. Uptime refers to the period between the repair completion and the next

failure, denoted by vector Tup. Downtime refers to the time for repairing a failed machine,

denoted by vector Tdown. We assume that all the failures are operation-dependent, i.e., the

uptime will take into account the processing period only, and blocking and starvation periods

will be excluded. Multiple failure modes may exist at the same machine. For example, stuck of

component feeding equipment and tool failure have their own uptimes and downtimes. In the

remainder of this paper, we use the term “failure” to refer to a failure mode of a machine. We

assume cycle time, uptime and downtime are all random variate, and do not specify a particular

distribution. Since sample-based method is applied, it is important to distinguish distribution
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and samples by different terms for sake of clarity. Specifically, we use cycle time, uptime and

downtime to refer to the distributions, and processing time, time to failure and repair time to

refer to the samples.

2.2. Throughput improvement problems

Throughput of serial lines with unreliable machines is a function of buffer capacity b, cycle

time p, uptime Tup and downtime Tdown, denoted by TH(b,p,Tup,Tdown). To improve

throughput, one can reallocate buffer spaces, reduce cycle time by upgrading machines, increase

uptime by implementing preventive maintenance, or reduce downtime by improving maintenance

activity. This work only addresses throughput improvement by reducing downtime.

Implementing downtime reduction measures will need cost in general sense, measured in terms

of financial expense, human resource or time according to real situations. The cost is related to

the reduction amount and denoted by B(T
′

down), where T
′

down is the reduced new downtime.

It is difficult to achieve the maximal throughput improvement and minimal total cost at the

same time, so two optimization problems can be defined, which will be the identification of

failures whose downtime should be reduce and how much is the reduction amount, to achieve

the maximal throughput within budget (B∗) or to minimize the cost achieving target throughput

(TH∗), as formulated in (1) and (2). The two problems are named throughput maximization

problem denoted by MP1 and cost minimization problem denoted by MP2, respectively.

max{TH(b,p,Tup,T
′

down)|B(T
′

down) ≤ B∗} (1)

min{B(T
′

down)|TH(b,p,Tup,T
′

down) ≥ TH∗} (2)

3. Mathematical models

The DEO models for throughput improvement problems, i.e., MP1 and MP2, are presented

in this section, together with a note on modeling and application issues for practitioners. The

parameters used in the mathematical models are as follows:

Parameters
M Machine number.
j Machine indices, j = 1, ...,M .
N Total number of parts.
i Part indices, i = 1, ..., N .
Fj The set of failures of machine j.
k Failure indices, k = 1, ...,Fj .
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Parameters (continue)
q Index for failure occurrences, when several failures of the same mode occur when a

machine processes a single part.
ri,j,k,q Repair time of the q-th failure occurrence of type k that part i encounters at machine j,

if ri,j,k,q > 0; otherwise if the part encounters fewer than q failures, ri,j,k,q = 0.
Q The set of (i, j, k, q) such that ri,j,k,q > 0.
bj Buffer space between machine j and j + 1.
pi,j Processing time of part i at machine j.
B∗ Downtime reduction budget.
TH0 Original throughput.
∆TH∗ Target system throughput improvement ratio, and target throughput is equal to

TH0(1 + ∆TH∗).
Uj,k Upper bound of downtime reduction of failure mode k of machine j.

In DEO models, variables of event occurring times and optimization variables are both essen-

tial. Variables esi,j and edi,j represent the occurring time of starting events and departure events,

and variables xj,k reflect the optimization aspect, which is how much the downtime is reduced.

Variables, such as ti,j , r
′

i,j,k,q, z, B, are actually redundant and introduced for model clarity

reason, and they can be directly calculated given xj,k.

Variables
0 ≤ xj,k ≤ Uj,k Coefficient of downtime reduction amount at machine j of failure mode k.
x Vector representation of xj,k.
ti,j ≥ 0 The total delay time of part i at machine j, which is equal to the sum of

the processing time and the repair time.
r
′

i,j,k,q ≥ 0 Repair time after reduction of the q-th failure of type k that part i

encounters at machine j.
z Reciprocal of system throughput.
B Total cost of the downtime reduction.
esi,j ≥ 0 Starting time of part i at machine j.

edi,j ≥ 0 Departure time of part i at machine j.

The DEO model of throughput maximization problem (MP1) of serial production lines is

shown below. The model is denoted by MP1-O.

min{z}

s.t.

z =
edN,M
N

(3)

edi,j − esi,j ≥ ti,j ∀i = 1, ..., N, j = 1, ...,M (4)

esi,j − edi−1,j ≥ 0 ∀i = 1, ..., N, j = 1, ...,M (5)

esi,j − edi,j−1 ≥ 0 ∀i = 1, ..., N, j = 1, ...,M (6)

edi,j − esi−bj ,j+1 ≥ 0 ∀i = 1, ..., N, j = 1, ...,M (7)
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ti,j = pi,j +
∑

k,q: (i,j,k,q)∈Q

r
′

i,j,k,q ∀i = 1, ..., N, j = 1, ...,M (8)

r
′

i,j,k,q = fj,k(xj,k, ri,j,k,q) ∀(i, j, k, q) ∈ Q (9)

B ≤ B∗ (10)

B = B(x) (11)

0 ≤ xj,k ≤ Uj,k ∀j = 1, ...,M, k ∈ Fj (12)

esi,j , e
d
i,j , ti,j ≥ 0 ∀i = 1, ..., N, j = 1, ...,M (13)

r
′

i,j,k,q ≥ 0 ∀(i, j, k, q) ∈ Q (14)

The objective function is the minimization of z, the reciprocal of throughput, which is equiv-

alent to throughput maximization. Constraint (3) indicates system throughput equal to the

number of parts produced per unit time calculated between time 0 and edN,M . Constraints (4)

to (7) represent the event relationships in the simulation model of a serial production line. Each

object in the system, i.e., a part, a machine or a buffer, goes through a specific discrete event

flow, as in Figure 2. In the event flow of part i and machine j, there is a delay time ti,j , that the

part spends in the machine, as in constraints (4). A machine processes the parts sequentially, as

in constraints (5). A part enters and leaves the machines sequentially, as in constraints (6). Ma-

chine starvation can be observed if esi+1,j > edi,j , and blockage can be observed if edi,j > esi,j + ti,j .

A buffer j goes through an event flow composed by departure events from upstream machine j

and starting events of downstream machine j + 1. The buffer level should be between 0 and its

capacity bj . To avoid negative buffer level, as in the event flow of buffer (j − 1) and constraints

(6), the start of part (i+ 1) at the downstream machine j should be not earlier than it departs

from the upstream machine (j− 1). To keep buffer level within its capacity, as in the event flow

of buffer j and constraints (7), the departure of part i from the upstream machine j is enabled

only after the starting event of part (i− bj) at machine j+ 1, namely there is a space available.

Technically, the footnotes of esi,j and edi,j are defined as j ∈ {1, ...,M} and i ∈ {1, ..., N}, and in

cases i /∈ {1, ..., N} or j /∈ {1, ...,M}, the values of esi,j and edi,j are set to 0.

Constraints (8) calculate the delay time ti,j of part i at each machine j as sum of processing

time and repair time. Constraints (9) define the downtime reduction function fj,k. The samples

ri,j,k,q from the same machine j and failure k are reduced via the same function fj,k with

coefficient xj,k. (10) shows that the cost should be within the budget B∗, and (11) defines the
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Figure 2.: Event flow of serial lines.

total cost of the downtime reduction using a cost function B(x). The details of modeling the

downtime reduction function and the cost function based on real world settings are stated in

section 3.1.

The cost minimization problem is modeled as follows:

min{B}

s.t.

z ≤ 1

TH0(1 + ∆TH∗)
(15)

(3), (4), (5), (6), (7), (8), (9), (11), (12), (13), (14),

where the objective is to minimize the total cost, and that (15) indicates the resulting system

guaranteeing the target throughput. The model is denoted by MP2-O.

In both MP1-O and MP2-O, a transient period appears at the beginning of the simiulation,

but the initial bias will be mitigated, as the simulation length increases (Robinson, 1996).

3.1. A note for practitioners

Formulate the models, MP1-O and MP2-O, involves the following steps. First, the distributions

of cycle times, uptimes and downtimes should be obtained. They can be theoretical or empirical

distributions fitted from the real data. Second, the samples of processing time pi,j and repair

time ri,j,k,q are generated from the distributions, the system is simulated with original repair

times, and original throughput is fixed as a parameter. Finally, the downtime reduction function

(9) and the cost function (11) are defined. The details on modeling this two functions are shown
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in section 3.1.1 and 3.1.2, respectively.

3.1.1. Modeling the downtime reduction function

In function (9), the downtime reduction is realized through a coefficient xj,k, depicting how the

Cumulative Distribution Function (CDF) is changed. xj,k can be used in three alternative ways

as shift, scale or combination parameters.

With a shift parameter, the downtime reduction is defined as

fj,k(xj,k, ri,j,k,q) = ri,j,k,q − xj,k ∀(i, j, k, q) ∈ Q. (16)

The CDF is shifted to left by xj,k, i.e., ri,j,k,q are reduced by the same amount, so that the

mean of downtime is reduced but the variance remains unchanged. For instance, downtime

from uniform distribution on interval (2, 4) is reduced to uniform distribution on interval (1, 3)

by a shift xj,k = 1. In this case, Uj,k, the upper bound of xj,k, cannot be greater than the lower

limit of the distribution. In practice, this type of reduction can be realized by simplifying some

steps of the maintenance procedure, for instance, moving the device for maintenance to a more

convenient location or having spare parts available in warehouse.

With a scale parameter, the downtime reduction function is defined as

fj,k(xj,k, ri,j,k,q) = (ri,j,k,q − a)(1− xj,k) + a ∀(i, j, k, q) ∈ Q, (17)

where a is the lower limit of the distribution. The CDF is scaled by a ratio (1−xj,k) , i.e., both

mean and variance are decreased, but the lower limit is unchanged. For instance, downtime from

uniform distribution on interval (2, 4) is reduced to uniform distribution on interval (2, 3.5) by

a scale 0.75 with xj,k = 0.25. In this case, Uj,k cannot be greater than one. In practice, this

type of reduction can be realized by analyzing how the maintenance is done in the best case

and setting it as the standard operation procedure to reduce the uncertainty.

With a combination parameter, the downtime function is defined as

fj,k(xj,k, ri,j,k,q) = (ri,j,k,q − a)(1− xj,k) + a− a0xj,k ∀(i, j, k, q) ∈ Q, (18)

where a is the lower limit of the distribution and a0 is a shift parameter. The CDF is first

scaled by a ratio (1− xj,k) keeping the lower limit unchanged, and then it is shifted to left by
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a0xj,k. Obviously, it is a combination of scale and shift transformation. In this case, Uj,k can

be neither greater than one nor greater than a/a0. If a0 = a, (18) will be as fj,k(xj,k, ri,j,k,q) =

ri,j,k,q(1−xj,k), and xj,k can be interpreted as the percentage the downtime should be reduced.

In this case, the coefficient of variation does not change during the downtime reduction.

In (16), (17) and (18), the larger the value of xj,k, the more downtime is reduced, even though

xj,k does not represent the downtime reduction itself in the scale or combination cases.

3.1.2. Modeling the cost function

Similarly, the cost function have different structures according to the actual situation. Specif-

ically, cost B is considered as discrete or piecewise linear function over downtime reduction

coefficient x. 0-1 or real-valued auxiliary variables may be introduced for model linearization.

In a discrete cost function, xj,k is defined on a finite set of discrete values. It refers to the

situation in which some alternative downtime reduction proposals have been defined by the

manager, but only a subset can be selected for budget or cost saving reason.

In a piecewise linear cost function, xj,k is defined continuously on the interval [0, Uj,k], and

it can be used as an approximation of general functions. For instance, when a repair activity

involves an outsourcing supplier, the cost is positively related to the lead time which can be

assumed as continuous variable. It refers to the situation in which the manager does not have

specific proposals, but he/she would like to know which failures should be analyzed and which

level of reduction of the selected failures should be achieved.

Practically, discontinuity at xj,k = 0 may appear. If xj,k = 0, nothing should be done

with this failure, and cost will be equal to zero. Otherwise, the cost for any positive xj,k may

not be infinitely close to zero, even though xj,k may be infinitely close to zero in the case of

piecewise linear function. Thus, it is natural to introduce a fixed cost in case xj,k > 0, and it

can interpreted as a manager would not like to involve more failures if the same throughput

can be achieved by improving some already selected failures within a reasonable tolerance. For

instance, if improving one failure mode by x = 0.15 provides the same throughput as improving

two failures by 0.1 and 0.01 respectively, the manager may prefer the first plan. Fixed cost equal

to 10 and the slope for x > 0 equal to 100 can make the first plan preferable.

The formulation of discrete cost function and piecewise linear function with discontinuity at

xj,k = 0 can be found in Appendix I in the online supplementary material.
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4. Solution approach: simulation based Benders cut generation

The scale of the DEO models, MP1-O and MP2-O, increases as the number of parts N and

the number of machines M increase. Specifically, there are more than 2MN variables and more

than 5MN constraints. As a result, in computation aspect, it is difficult to solve directly MP1-O

and MP2-O of long serial lines or for long simulation. If 0-1 auxiliary variables are used in the

cost function, the models become MILP, which is even much harder to tackle.

This computation challenge in DEO has drawn great attention in literature. Weiss and Stolletz

(2015) solved the sample path based buffer allocation problem of serial lines exactly and effi-

ciently by applying the Benders Decomposition (BD) (Benders (1962)), a mathematical model

partitioning technique, to the DEO model. The idea of BD is to project the feasible set of the

original model onto a space of lower dimensions, and to solve the resulting low dimension model.

Projecting the entire feasible set brings high computational burden, so the hyperplanes are it-

eratively projected via generated cuts. The set of variables of the original model are partitioned

into two subsets, namely variables of the master problem and of the subproblem. The master

problem space is the low dimension space where the original feasible set is projected. The master

problem is firstly formulated by removing all the constraints containing subproblem variables,

and cuts generated from subproblem are iteratively added to it. The subproblem is formulated

by fixing values of master variables, which in standard BD procedure are the optimal solution

of the master problem, as in Figure 3(a). The subproblem should be LP, while there are no

specific requirements for the master problem. The iterative procedure stops until the optimum

of the original problem is found.

(a) Benders decomposition framework. (b) Model decomposition of the throughput

improvement problems.

Figure 3.: Model decomposition framework.

The DEO models in Section 3 will be decomposed based on BD framework in section 4.1, and

a simulation-based Benders cut generation algorithm is developed in section 4.2, which further

improves the computation efficiency. In section 4.3, the overall solution approach is summarized.
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4.1. Model decomposition

The DEO models of throughput improvement problems shown in the previous section are char-

acterized as fully integrating simulation with optimization in a unique model, which contains

huge number of real-valued simulation variables esi,j , e
d
i,j and much smaller number optimization

variables x, and possibly some auxiliary variables introduced in the cost function. Once the op-

timization variables are fixed, the remaining model is an LP with special structure, namely the

event trajectory of a simulation run. If the original DEO model is partitioned as shown in Figure

3(b), i.e., xj,k and B are master problem variables (auxiliary variables are implicitly included

in B), whereas esi,j , e
d
i,j and z are subproblem variables, the master problem will contain only

a few variables and the subproblem can be handled by simulation other than state-of-the-art

LP solvers. Thus, the computational complexity may be decreased. Since ti,j and r
′

i,j,k,q can be

calculated using equations (8) and (9), they are not involved in the decomposition framework.

For MP1, since the variable in the objective function of the original problem, namely z,

is included only in the subproblem, the feedback given by the subproblem will always be an

optimality cut. The subproblem denoted by MP1-S is formulated as follows:

min{z}

s.t.

z =
edN,M
N

: ϑ (19)

edi,j − esi,j ≥ ti,j : ui,j ∀i = 1, ..., N, j = 1, ...,M (20)

esi,j − edi−1,j ≥ 0 : vi,j ∀i = 1, ..., N, j = 1, ...,M (21)

esi,j − edi,j−1 ≥ 0 : si,j ∀i = 1, ..., N, j = 1, ...,M (22)

edi,j − esi−bj ,j+1 ≥ 0 : wi,j ∀i = 1, ..., N, j = 1, ...,M (23)

eξi,j ≥ 0 : αξi,j ∀ξ ∈ {s, d}i = 1, ..., N, j = 1, ...,M (24)

where ui,j , vi,j , si,j , wi,j , ϑ, α
ξ
i,j are dual variables. The master problem is as follows:

min{ψ}

s.t.

B(x) ≤ B∗

ψ ≥
M∑
j=1

∑
k∈Fj

∑
k,q: (i,j,k,q)∈Q

fj,k(xj,k, ri,j,k,q)ū
l
i,j +

N∑
i=1

M∑
j=1

pi,j ū
l
i,j ∀ l, (25)
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with optimality cuts (25) generated from each iteration l, and ψ representing the objective

function in the master problem.

For the cost minimization problem, since the variable in the objective function of the orig-

inal problem, namely B, is included only in the master problem, the feedback given by the

subproblem will always be a feasibility cut. The subproblem, more specifically the feasibility

subproblem, denoted by MP2-S is formulated as follows:

min{ε}

s.t.

z − ε ≤ 1

TH0(1 + ∆TH∗)
: ϑ

ε ≥ 0

(19), (20), (21), (22), (23), (24)

The master problem is:

min{B}

s.t.

B = B(x)

0 ≥
M∑
j=1

∑
k∈Fj

∑
k,q: (i,j,k,q)∈Q

fj,k(xj,k, ri,j,k,q)ū
l
i,j +

N∑
i=1

M∑
j=1

pi,j ū
l
i,j −

1

TH0(1 + ∆TH∗)
∀ l, (26)

with feasibility cuts (26) generated from each iteration l.

4.2. Simulation based cut generation

To formalize Benders cuts in (25) and (26), dual optimal solution of the subproblems MP1-S

and MP2-S should be obtained. A simulation-based approach is developed in this section. If we

replace variable ε by z − 1
TH0(1+∆TH∗) in MP2-S, MP2-S will be equivalent to MP1-S. Thus,

we can develop one approach to derive the dual optimal solution for both MP1-S and MP2-S.

Without loss of generality, we will deal with MP1-S. The dual of subproblem MP1-S denoted

by MP1-S-Dual is formulated as follows:

max{
N∑
i=1

M∑
j=1

ti,jui,j}
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s.t.

si,j + vi,j − ui,j − wi+bj−1,j−1 = 0 : esi,j j = 1, ...,M, i = 1, ..., N, (i, j) 6= (1, 1) (27)

ui,j + wi,j − si,j+1 − vi+1,j = 0 : edi,j j = 1, ...,M, i = 1, ..., N, (i, j) 6= (N,M) (28)

uN,M −
ϑ

N
= 0 : edN,M (29)

αs1,1 − u1,1 = 0 : es1,1 (30)

ϑ = 1 (31)

αs1,1, si,j , ui,j , vi,j , wi,j ≥ 0 j = 1, ...,M, i = 1, ..., N

αsi,j and αdi,j , except αs1,1, are not included, because es1,1 is the only event occurring at time

zero, and αs1,1 is the only one that can take non-zero value. Technically the dual variables

si,j , vi,j , ui,j , wi,j are defined with footnote i = 1, ..., N and j = 1, ...,M , and in cases i /∈

{1, ..., N} or j /∈ {1, ...,M}, the dual variables are equal to zero.

The explanation and proof of the proposed algorithms are based on the graph representation,

so the graphs of MP1-S and MP1-S-Dual are first introduced in section 4.2.1, and the algorithms

are explained accordingly in section 4.2.2.

4.2.1. Graph representation

MP1-S can also be modeled by an Event Relationship Graph (ERG), a general graphic repre-

sentation of discrete event simulation (Schruben, 1983). In an ERG, each node represents an

event, and each arc represents the triggering relationship between its origin and destination

nodes. Figure 4 presents one element in the ERG of a serial line, which takes the starting and

departure events of part i at machine j as examples. The starting event esi,j is able to be trig-

gered after events edi,j−1 and edi−1,j with zero delay, which are equivalent to constraints (21) and

(22) in MP1-S, respectively. The departure event edi,j is able to be triggered after events esi,j with

delay equal to ti,j and esi−bj ,j+1 with zero delay, which are equivalent to constraints (20) and

(23) in MP1-S, respectively. The entire ERG of serial production line can be found in Appendix

V in online supplementary material. Besides the nodes representing events esi,j and edi,j , there

is also a ‘start’ node representing launch of the simulation run at time zero and an ‘end’ node

representing the finish the simulation run.

MP1-S-Dual represents a weighted network flow maximization problem, whose graph is the

same as the ERG of MP1-S, as mentioned in Chan and Schruben (2008). Furthermore, we

introduce proposition 4.1 for detailed interpretation of MP1-S-Dual, and the proof can be found
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Figure 4.: Element in the ERG of serial production lines.

in Appendix IV in the online supplementary material.

Proposition 4.1. MP1-S-Dual is to find the maximum weighted flow in the graph of ERG.

The weights on arcs are equal to the time delays, and all the nodes esi,j and edi,j hold flows. The

’start’ node is a source, and the ’end’ node is a sink absorbing ϑ
N unit flow.

Therefore, the solution of MP1-S-Dual will be a path from the start node to the end node,

the flow of all the arcs on this path will be equal to ϑ
N , and the flow on other arcs will be equal

to zero. Since the simulation model and the network flow model share the same graph, a feasible

solution of MP1-S-dual can be derived from the ERG after a simulation run.

4.2.2. Cut generation

The algorithm to generate cuts is composed by two stages, i.e., simulation and dual solution

calculation. A toy example in Figure 5 is first used for explanation of the procedure, the general

algorithms are proposed in Algorithms 1 and 2.

First, during a simulation run, the event triggering relationships are checked, the arcs where

the triggering relationship is not verified are removed, and all the remaining arcs form a subgraph

of ERG, which we call the simulated ERG. Figure 5(a) is an example of simulated ERG of the sys-

tem with M = 2, b1 = 2, N = 5. Without simulation realization, the event ed5,1 may be triggered

by es5,1, or by es3,2. After simulation, the constraint ed5,1−es3,2 = 0 is verified with equality, which

means that ed5,1 is triggered by es3,2, not es5,1, and the arc between es5,1 and ed5,1 is removed. In case

one event is triggered by several events, one of them can be randomly chosen. In this way, each

node has one and only one input arc, and the simulated ERG forms a spanning tree whose root

is the start node. In Figure 5(b), arcs u1,1, s1,2, u1,2, v2,2, u2,2, v3,2, u3,2, v4,2, u4,2, v5,2, u5,2

construct a path from the start node to the end node, and a feasible solution of the dual sub-

problem is: u1,1 = s1,2 = u1,2 = v2,2 = u2,2 = v3,2 = u3,2 = v4,2 = u4,2 = v5,2 = u5,2 = ϑ
5 = 1

5 , all

the other variables take zero value, and constraints (27) to (31) are all satisfied.
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(a) Example of simulated ERG. (b) Example of dual solution.

Figure 5.: Examples for simulation based cut generation algorithms.

Given the system parameters M and bj , simulation parameters N and delay times ti,j , Al-

gorithm 1 is designed for simulating the system, and its output will be the event occurring

time esi,j and edi,j and 0-1 variables bui,j , bvi,j , bwi,j , bsi,j representing whether the arcs are

included or not in the simulated ERG. For instance, if bui,j is equal to 1, arc ui,j remains in the

simulated ERG, otherwise it is removed. Lines 5-9 of Algorithm 1 check the triggering event

of each start event esi,j , and lines 10-14 check the triggering event of each departure event edi,j .

If esi,j is triggered by edi,j−1, bsi,j will be equal to 1, and bvi,j will be equal to 0; otherwise, if

esi,j is triggered by esi−1,j , bvi,j will be equal to 1, and bsi,j will be equal to 0. Similarly, lines

10-14 show that if edi,j is triggered by esi,j , bui,j will be equal to 1, and bwi,j will be equal to 0;

otherwise, if edi,j is triggered by esi−bj ,j+1, bwi,j will be equal to 1, and bui,j will be equal to 0.

The complexity of Algorithm 1 is O(MN).

Given the simulated ERG, Algorithm 2 shows how to obtain the solution of MP1-S-Dual.

According to constraint (29) and (31), uN,M = 1
N , as in lines 1. From the last event edN,M to

the first event es1,1, the output flow and the input flow of each node are calculated sequentially.

According to (28), the input flow of node edi,j is equal to vi+1,j+si,j+1. If bui,j = 1, the input flow

is carried by ui,j , so ui,j = vi+1,j+si,j+1 and wi,j = 0; otherwise, if bwi,j = 1, wi,j = vi+1,j+si,j+1

and ui,j = 0. The input flow of events edi,j are calculated in lines 4–5. Similarly, the input flow

of events esi,j are calculated in lines 6–7. The complexity of Algorithm 2 is O(MN).

We introduce Proposition 4.2, and the proof can be found in Appendix IV in the online

supplementary material.

Proposition 4.2. The dual solution using Algorithm 1 and Algorithm 2 is optimal solution of
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Algorithm 1 Simulation of serial production lines.

Input:
M, N, bj , ti,j ;

Ensure:
Event triggering relationship bui,j , bvi,j , bwi,j , bsi,j , ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M .
Throughput TH

1: Set bui,j , bvi,j , bwi,j , bsi,j ← 0, ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M
2: es1,1 ← 0
3: for i = 1 to N do
4: for j = 1 to M do
5: if edi,j−1 > edi−1,j then

6: esi,j ← edi,j−1, bsi,j ← 1
7: else
8: esi,j ← edi−1,j , bvi,j ← 1
9: end if

10: if esi,j + ti,j > esi−bj ,j+1 then

11: edi,j ← esi,j + ti,j , bui,j ← 1
12: else
13: edi,j ← esi−bj ,j+1, bwi,j ← 1
14: end if
15: end for
16: end for
17: TH = N

edN,M

model MP1-S-Dual.

4.3. Solution procedure

Combining BD, Algorithm 1 and Algorithm 2, the procedure to solve MP1-O and MP2-O is

developed, as in Figure 6. The algorithm is initialized with the parameters and throughput of

the original system in step 0, and ψ is set to +∞. Step 1 calls the Algorithm 1 to simulate the

system, and the exit condition is checked in step 2. The exit conditions of MP1 and MP2 are

different. For MP1, the exit condition is that the solution of the master problem, i.e., ψ, in step

4 and the simulation result in step 1 converges with a tolerance ε1. For MP2, the exit condition

is that simulation result in step 4 satisfies the constraint (15) with a tolerance ε2. Step 3 calls

Algorithm 2 to get the dual optimal solution from simulation, and generates a feasibility cut

(26) or an optimality cut (25). In step 4 and 5, the master problem is solved, and if it is feasible,

the time to repair is updated with the master problem solution in step 6; otherwise, the original

problem is infeasible and the procedure stops.
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Algorithm 2 Dual optimal solution.

Input:
M, N, bj ;
Event triggering relationship bui,j , bvi,j , bwi,j , bsi,j , ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M .

Ensure:
Dual optimal solution: ui,j , vi,j , wi,j , si,j , ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M .

1: ϑ← 1, αs1,1 ← 1
N , uN,M ← 1

N
2: for i = N to 1 do
3: for j = M to 1 do
4: ui,j ← bui,j ∗ (si,j+1 + vi+1,j)
5: wi,j ← bwi,j ∗ (si,j+1 + vi+1,j)
6: si,j ← bsi,j ∗ (wi+bj−1,j−1 + ui,j)
7: vi,j ← bvi,j ∗ (wi+bj−1,j−1 + ui,j)
8: end for
9: end for

Figure 6.: The procedure to solve the throughput improvement problems.

5. Downtime bottleneck detection

5.1. Definition of downtime bottleneck on failure level

The DT-BN of the single failure mode system is defined in Chiang et al. (2000):

Definition5.1. Machine j0 is the DT-BN if and only if

| ∂TH

∂Tdown,j0
| ≥ | ∂TH

∂Tdown,j
|, ∀j 6= j0.

For systems with multiple failure modes, there are two ways to define the DT-BN. One is

to combine multiple failure modes of each machine into a single failure mode, and using the

definition above. The other way is to specify the DT-BN not only on machine level, but also on

failure mode level:

Definition5.2. Failure mode k0 of machine j0 is the DT-BN if and only if

| ∂TH

∂Tdown,j0,k0
| ≥ | ∂TH

∂Tdown,j,k
|, ∀j 6= j0 or k 6= k0.
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Notice that Definition 5.2 is a generalization of Definition 5.1. Using finite difference approach,

the DT-BN detection problem is changed to:

arg min
j,k
{∆Tdown,j,k|TH(∆Tdown,j,k) ≥ TH0(1 + ∆TH∗)},

where TH(∆Tdown,j,k) is the expected throughput of the system where the downtime of ma-

chine j failure k is decreased by ∆Tdown,j,k, and all the other machines keep the same parameters.

5.2. DEO model for DT-BN detection

The DEO model of DT-BN detection in finite difference form is:

min{B}

s.t.

Uj,kyj,k ≥ xj,k, ∀j = 1, ...,M, k ∈ Fj (32)

M∑
j=1

∑
k∈Fj

yj,k = 1 (33)

B =

M∑
j=1

∑
k∈Fj

∆Tdown,j,k =

M∑
j=1

Fj∑
k=1

(Tdown,j,k − E[fj,k(xj,k, ri,j,k,q)]) (34)

yj,k ∈ {0, 1}, ∀j = 1, ...,M, k ∈ Fj

(3), (4), (5), (6), (7), (8), (9), (12), (13), (14), (15)

Constraints (32) show that when the downtime of failure k of machine j is reduced, the related

binary variable yj,k should be equal to 1. Constraint (33) states that the downtime of only one

failure is allowed to be reduced. Constraint (34) is a variant of (11), where E[fj,k(ri,j,k,q, xj,k)]

is the expected value of the reduced downtime. The cost is a linear function proportional to the

expected value of the downtime reduction, while the fixed cost related to the binary variables

yj,k is equal to zero. Specifically, if the downtime reduction function is defined as (16), then

∆Tdown,j,k = xj,k. If the downtime reduction function is defined as (17), then ∆Tdown,j,k =

xj,k(Tdown,j,k − aj,k). If the downtime reduction function is defined as (18), then ∆Tdown,j,k =

xj,k(Tdown,j,k − aj,k + a0,j,k). aj,k and a0,j,k play the same role as a and a0 in (17) and (18).

It should be noticed that, for very small value of ∆TH∗, using the algorithms in Section 4 to

solve the model above is equivalent to conducting sensitivity analysis over its subproblem. Chan

and Schruben (2008) showed that the sensitivity estimator is an IPA estimator, as presented in
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Ho, Eyler, and Chien (1983).

6. Numerical analysis

Numerical studies are conducted to analyze the algorithm performance, the throughput im-

provement problem and the DT-BN detection problem. Parameters of systems can be found

in Appendix III in the online supplementary material. In Sections 6.1 and 6.2, the repair

time follows triangular distribution. Scale downtime reduction function is used and specified

as r
′

i,j,k,q = aj,k + (ri,j,k,q − aj,k)(1 − xj,k). The cost function is linear with discontinuity at

xj,k = 0, as follows:

B =

m∑
j=1

∑
k∈Fj

(Cxxj,k + Cyyj,k)

xj,k ≤ Uj,kyj,k ∀j, k

yj,k ∈ {0, 1} ∀j, k,

where Cy is the fixed cost, Cx is the cost of unit downtime coefficient changes, and yj,k is

the auxiliary 0-1 variables representing whether the failure is selected to improve. In Section

6.3, repair time follows exponential distribution. Scale downtime reduction function r
′

i,j,k,q =

(1 − xj,k)ri,j,k,q is used, and the cost function (34) is specified as
∑M

j=1

∑
k∈Fj

∆Tdown,j,k =∑M
j=1

∑
k∈Fj

xj,kTdown,j,k. Uj,k, upper bound of xj,k is equal to 0.8. Parameters Cx, Cy, N , B∗

and ∆TH∗ are specified in each section. Index k is not used in single failure cases.

All the algorithms are implemented in C++. Cplex 12.5 with default settings is used to solve

the master problem. Numerical study is performed on Intel(R) Xeon(R) CPU E5-2699 v4 @

2.20GHz processor and 256GB RAM.

6.1. Algorithm performance

6.1.1. Efficiency analysis

The decrease of computational time of BD and simulation based cut generation approach com-

pared with solving the original models MP1-O and MP2-O directly can be observed in this

section. We solve MP1 and MP2 of system A-5 with c − a = 1, B∗ = 90, ∆TH∗ = 3% and of

system C-9 with c−a = 2, B∗ = 180, ∆TH∗ = 4%. Three cost function structures are analyzed,

which are pure 0-1, linear and mixed integer. Pure 0-1 function is with Cx = 0 and Cy = 90,
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linear function is with Cx = 100 and Cy = 0, and mixed integer function is with Cx = 100

and Cy = 10. The simulation length N is also varied, and equal to 10, 000 and 100, 000. Each

system is solved with 10 sample paths and the mean computational time is reported in Table

1. The computational times for solving the problems by the proposed approach (denoted by

BD+sim), by BD with subproblem solved by Cplex (denoted by BD) and by Cplex to solve the

original models (denoted by Cplex) can be found in the table. In all the cases, the proposed so-

lution approach requires the shortest computational time. To solve system C-9 with N = 10, 000

and linear cost function, BD is slower than Cplex, implying that solving two reduced models

iteratively is not as efficient as solving the original model once. However, the proposed solu-

tion approach is much faster, implying that the simulation-based cut generation approach can

greatly reduce the computation burden.

N=10,000 N=100,000
System Problem Approach 0-1 Lin Mixed 0-1 Lin Mixed

A-5

MP1
BD+sim 0.10 5 0.28 63 96 42

BD 52 294 51 2607 2730 2154
Cplex 154 368 127 >10000 8671.614 >10000

MP2
BD+sim 0.05 0.39 0.23 31 1 26

BD 33 308 48 1559 2143 2222
Cplex 219 431 335 >10000 9071.14 >10000

C-9

MP1
BD+sim 28 30 123 113 441 464

BD 307 2226 2823 6697 >10000 >10000
Cplex 3778 733 6456 >10000 >10000 >10000

MP2
BD+sim 2 4 5 7 41 23

BD 194 1469 632 6174 >10000 >10000
Cplex 2475 585 2707 >10000 >10000 >10000

Table 1.: Mean computational time (s).

6.1.2. Convergence analysis

In this section, we show the convergence of the optimal solution as simulation length N increases.

In fact, the asymptotic property of the solution of DEO as the simulation length increases has

been proved theoretically within the sample path optimization framework (Robinson, 1996) in

Pedrielli et al. (2018). As for the solution approach, the classic BD converges to the optimum of

the original model (Benders, 1962), and the proposed simulation-based cut generation approach

is exact. Thus, the convergence of the optimal solution can be guaranteed.

The experiment is conducted with system A-5, B∗ = 180, ∆TH∗ = 5%, Cx = 100 and

Cy = 10. N ranges from 10, 000 to 200, 000, and each problem is replicated with 20 independent

sample paths. Figure 7 shows the convergence of the solutions to MP1 and MP2, respectively.
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Figure 7(a) and 7(c) include range plots and interval plots with confidence level 0.95 of the

optimum, i.e., the optimal throughput and cost respectively. The range and the width of intervals

become narrow as N increases. Figure 7(b) shows the variance of x2 in MP1, which is equal to

the variance of x4, and x1, x3, x5 are equal in all the replicates. Figure 7(d) shows the variance

of x3 in MP2, and x1, x2, x4, x5 in MP2 are equal in all the replicates. In these two plots,

the variance becomes smaller as N increases. The optimal solutions based on different sample

paths numerically converge as simulation length increases.

(a) Interval plots of objective function of MP1. (b) Variance of x2 in MP1.

(c) Interval plots of objective function of MP2. (d) Variance of x3 in MP2.

Figure 7.: Solution convergence of system A-5 (20 sample paths).

6.2. Throughput improvement problems

6.2.1. Comparison with continuous improvement

In this section, the comparison between the proposed approach and CI, the commonly used

approach for manufacturing system improvement, is conducted. A system with 9 identical ma-

chines and identical buffer spaces (denoted by E-9) is used. The problems are solved with varied
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unit costs Cx and Cy, while keeping the cost to improve one machine to its upper bound equal

to 90, i.e., Cy + Uj,kC
x = 90. MP1 and MP2 are solved with B∗ = 270 and ∆TH∗ = 2%

respectively. CI and DEO share the same sample path of simulation length N = 500, 000. A

parametric CI algorithm is developed in Appendix II in the online supplementary material.

With different parameters, 8 CIs are implemented as benchmark, denoted by CI-LLL, CI-LLH,

CI-LHL, CI-LHH, CI-HLL, CI-HLH, CI-HHL, CI-HHH, and their parameters can also be found

in Appendix II.

The solutions provided by the proposed method, denoted by DEO, and the 8 CIs are shown

in Figure 8. The gaps between DEO and CIs exist in most of the cases. For MP1 (Figure 8(a)),

the gap can be as small as zero with some values of Cx, but it becomes strictly positive for all

the CIs for Cx beyond 60. For MP2 (Figure 8(b)), the gap reaches zero with only two CIs at

Cx = 0. The results above show that the performance of CI depends on problem parameters

and algorithm parameters. Thus, the selection of suitable algorithm parameters for each specific

case is an important issue for CI. One advantage of the DEO approach is that there is no need

to decide the algorithm parameters to obtain the optimal solution, while the solution optimality

of CI cannot be guaranteed because it is a heuristic algorithm.

(a) MP1 (b) MP2

Figure 8.: Comparison with CIs.

6.2.2. Insights into throughput improvement

Five five-stage systems are analyzed in this section. System E-5 has five identical machines and

buffer spaces. System B-5-I and system B-5-II are with one slow machine at the end of the line,

but the buffer spaces are different. System C-5 has one slow machine in the middle and one at

the end of the line. System D-5 is with two slow adjacent machines in the middle.

For system E-5, the experiment is implemented with N = 200, 000, Cx = 30, Cy = 66 and
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10 replicates. MP1 and MP2 are solved varying the values of B∗ and ∆TH∗. The means of

the optimal solutions are shown with color maps in Figure 9. For B∗ = 90 and ∆TH∗ = 1%,

machine 3 is the only one improved. This is consistent with the bowl phenomenon of serial

production lines (Rao (1976)). As B∗ and ∆TH∗ increases, two machines are chosen, which are

machine 2 and 4, and the blockage and starvation of machine 3 are mitigated. If we further

increase the budget or target, three machines, i.e., machine 2, 3 and 4, will be involved. In this

case, machine 3 is improved the least, because it is relatively farther from the badly-performed

machines. Similarly for the cases with B∗ = 330 and ∆TH∗ = 5%, where four machines are

involved, the machine farthest from the badly-performed machine is improved the least. When

all the five machines are improved, the pattern is again consistent with the bowl phenomenon,

namely the downtime of the machines in the middle are reduced more.

Figure 9.: Color map of optimal solutions of system E-5.

For systems B-5-I, B-5-II, C-5 and D-5, with N = 100, 000, Cx = 100, Cy = 10, two MP1

problems and two MP2 problems are solved, denoted by MP1-L, MP1-H, MP2-L and MP2-H,

respectively. The insights are addressed below, the numerical results, i.e, the optimal solution xj ,

resulting throughput TH, improvement percentage ∆TH(%) and cost can be found in Appendix

VI in the online supplementary material.

In systems with one slow machine, i.e., system B-5-I and B-5-II, improving the slow machine

will lead to significant throughput improvement. After the slow machine is improved to the

upper bound, a secondary downtime reduction policy is reducing the downtime of its adjacent

machines, but the effectiveness is not very significant. Comparing the results of system B-5-I

and B-5-II, the buffer sizes affect optimal solution. System B-5-II has more buffer spaces in front

of the slow machine, so it is more decoupled from the upstream machines. Consequently, with

budget equal to 180, system B-5-II allocates budget only to the last two machines but system

B-5-I allocates budget to the last three machines. Furthermore, for system B-5-II, increasing
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budget from 90 to 180, the throughput improvement percentage is almost stable from 8.12% to

8.13%, but the percentage is increased from 7.76% to 8.34% for system B-5-I. Thus, changing

buffer allocation leads to different downtime reduction policies and their performance.

For systems with two slow machines, i.e., systems C-5 and D-5, the two slow machines are

improved simultaneously. However, the amount of downtime reduction, i.e., xj , are different for

the two systems. For system C-5, downtimes of the two slow machines are reduced with similar

amount, but in system D-5, the machine in the middle is improved more. Thus, for systems with

the same machine parameters and buffer allocation, the position of the slow machines affects

the optimal downtime reduction amount of each machine.

6.2.3. Long line case

We apply the proposed approach to a 23-stage line, which is a real life case introduced in

Tempelmeier (2003). For the long line, we solve the MP1 with different values of budget B∗,

ranging from 20 to 240, and each is solved with ten sample paths. The interval plot in Figure

10(a) shows how the throughput increment percentage varies as budget increases. For budget

from 20 to 80, ∆TH increases linearly, and reaches its limit 6.4% for B∗ ≥ 100. Similarly,

MP2 is solved with target ∆TH∗ ranging from 0.5% to 6%, and each is solved with ten sample

paths. The interval plot in Figure 10(b) shows that the cost increases linearly for ∆TH∗ ≤ 6%,

and the cost to achieve ∆TH∗ = 6% is equal to 84.9. The problem becomes infeasible for

∆TH∗ ≥ 6.5%. For both MP1 and MP2, throughput improvement is effective where the curves

show linear pattern, and the relevant solution is to improve the machine 21 only. After improving

machine 21 to the best, i.e., x21 reaching its upper bound, it will not be beneficial to improve

any other machines, since the system throughput is still highly limited by the performance of

machine 21. The experiment of MP2 with B = 240 requires the longest computational time,

which is less than 765 seconds with simulation length N = 5, 000, 000.

6.2.4. Multi-failure case

We consider a line where all machines are with 2 failure modes. Type 1 failure refers to less

frequent failure requiring long time to repair, and type 2 refers to frequent failure requiring short

time to repair. We solve MP1 with budget B∗ ranging from 50 to 600, and each is solved with

ten sample paths. With ∆TH∗ ≤ 2% and B∗ ≤ 100, the type 1 failure of machine 3 is improved

first, and the improvement of type 1 failure of machines 2 and 8 and type 2 failure of machine

2 become relevant when B∗ is increased to 400 and ∆TH∗ is increased to 5%. The interval plot
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(a) MP1. (b) MP2.

Figure 10.: Interval plots of solutions of the long line (10 sample paths).

(a) MP1. (b) MP2

Figure 11.: Interval plots of solutions with different budget or target of the multi-failure system
(10 sample paths).

in Figure 11(a) shows that the throughput increases significantly through the entire curve, but

the slope becomes flatter as B∗ increases. Similarly, MP2 are solved with different values of

target ∆TH∗, ranging from 0.5% to 6%, and each is solved with ten sample paths. The interval

plot in Figure 11(b) shows that cost increases faster as ∆TH∗ increases, since more failures are

involved.

6.3. DT-BN detection: comparison with the arrow method

In this section, the numerical results of the downtime bottleneck detection is presented. The

approach proposed in this work (denoted by DEO) is compared with the Arrow Method (AM).

Three systems, DT-BN 1, DT-BN 2 and DT-BN 3, are investigated. DT-BN 1 is used in Chiang

et al. (2000), where AM fails to detect the bottleneck, DT-BN 2 is used in Yu and Matta (2016)
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and Betterton and Silver (2012) as a troublesome case, and DT-BN 3 is a multi-failure line

adapted from DT-BN 2. For the DEO approach, the parameter ∆TH∗ is equal to 0.001. The

bottleneck of DT-BN 1 and DT-BN 2 is machine 5 and machine 3, respectively. The bottleneck

of DT-BN 3 at machine level and failure level is machine 3 and failure type 1 of machine 6,

respectively. The performance indicator is the correct detection probability, calculated as the

frequency of correct detection over 100 replicates.

The results of systems DT-BN 1 and DT-BN 2 are shown in Figure 12. Since both AM

and DEO take information from simulation, the correct detection probability is affected by

simulation length, and the correct detection probability will converge to one or zero as simulation

length increases. For system DT-BN 1, the correct detection probability of AM is down to 0 at

N = 50, 000, and the correct detection probability of DEO is up to 1 at N = 8, 000, 000. For

system DT-BN 2, AM correctly detects the bottleneck in all the replicates with N = 100, 000,

whereas DEO requires a much longer simulation with N = 5, 000, 000. System DT-BN 3 is a

multi-failure system in which the machine level bottleneck is different from the failure level. The

failure level bottleneck can be correctly detected by DEO in all the replicates with N = 100, 000.

However, AM can handle bottleneck detection only at machine level, and provides machine 3

as result.

Figure 12.: Correct detection probability of DEO and AM.

In conclusion, the correct detection probability of DEO numerically converges to one as

sample path length increases, but the convergence rate might be slow for difficult cases. The

solution of AM may converge faster but it may provide wrong results, since it is heuristic. DEO

is able to handle downtime bottleneck detection at failure level for multi-failure serial line.
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7. Conclusion

In this work, we propose MILP models for the throughput improvement problem of serial pro-

duction lines via downtime reduction. Two problems are defined and solved. One is to achieve

maximal throughput improvement within a given budget, and the other is to achieve a fixed

throughput improvement with the minimal cost. The solution of the problems includes a set

of failures to be improved and the amount of the downtime reduction of each failure. MILP

models are developed using the samples of processing time, uptime and downtime, and the data

can be either generated random variate or collected field data. An algorithm based on Benders

decomposition and discrete event relationships of serial production lines is proposed to solve the

MILP models. Numerical analysis shows that the proposed solution algorithm can significantly

save the computational time, and that solutions of a problem based on different sample paths

converge as sample size increases. In addition, the definition of downtime bottleneck is gener-

alized to failure level to deal with multi-failure systems. The proposed models and algorithms

are applied to several cases, including a 23-stage practical line and a multi-failure line, and

some management insights are also derived. Comparison with CI and AM, two state-of-the-art

heuristic approaches, shows that the proposed approach leads to solution with better objective

functions and higher level of bottleneck detection correctness. This shows a major contribution

of this work, which is the formal representation and sample path based exact solution approach

of the throughput improvement problem and the downtime bottleneck detection. Thus, it can

be used as a benchmark for other algorithms.

The simulation-based cut generation approach proposed in this work is a primary step for

using information in the simulation trajectory to solve optimization problems of discrete event

systems. How to generate cuts from simulation trajectory of generic discrete event systems, and

how to effectively embed the obtained information in various optimization methods are of future

research interest.
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