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Models and Algorithms for Throughput Improvement Problem of Serial

Production Lines via Downtime Reduction

Mengyi Zhang, Andrea Matta

Appendix I: Cost function formulation

The formulation of discrete cost function is as follows. For each of the proposal h on failure mode

k at machine j, the resulting downtime reduction coefficient U
′

j,k,h and the cost Chj,k is estimated.

Auxiliary 0-1 variables yhj,k are introduced to represent whether proposal h is selected. The cost

function will be as follows:

B =

M∑
j=1

∑
k∈Fj

∑
h∈Hj,k

Chj,ky
h
j,k

xj,k =
∑

h∈Hj,k

yhj,kU
′

j,k,h ∀j = 1, ...,M, k ∈ Fj∑
h∈Hj,k

yhj,k ≤ 1 ∀j = 1, ...,M, k ∈ Fj

yhj,k ∈ {0, 1} ∀j = 1, ...,M, k ∈ Fj , h ∈ Hj,k,

where Hj,k represent the set of proposals on failure mode k at machine j.

The piecewise linear cost function is formulated as follows. For a failure (j, k), its cost function

has Gj,k pieces, and the values of xj,k where the slope changes denoted by xgj,k and its related

cost C(xgj,k) are also provided as parameters. Specifically, x0j,k = 0, and C(x0j,k) is the fixed cost

for improving the failure. Since there is discontinuity at zero, for xj,k = 0, the cost is equal to

zero, and for any positive xj,k, the cost is at least C(x0j,k).



B =

M∑
j=1

∑
k∈Fj

Gj,k∑
g=0

λgj,kC(xgj,k)

xj,k =

Gj,k∑
g=1

λgj,kx
g
j,k ∀j = 1, ...,M, k ∈ Fj

xj,k ≤ y0j,kUj,k ∀j = 1, ...,M, k ∈ Fj
Gj,k∑
g=0

λgj,k = y0j,k ∀j = 1, ...,M, k ∈ Fj

Gj,k∑
g=1

ygj,k = y0j,k ∀j = 1, ...,M, k ∈ Fj

λ0j,k ≤ y1j,k ∀j = 1, ...,M, k ∈ Fj

λgj,k ≤ y
g
j,k + yg+1

j,k ∀j = 1, ...,M, k ∈ Fj , g = 1, ..., Gj,k − 1

λ
Gj,k

j,k ≤ y
Gj,k

j,k ∀j = 1, ...,M, k ∈ Fj

0 ≤ λgj,k ≤ 1 ∀j = 1, ...,M, k ∈ Fj , g = 0, ..., Gj,k

ygj,k ∈ {0, 1} ∀j = 1, ...,M, k ∈ Fj , g = 0, ..., Gj,k.

The binary variables ygj,k for g = 1, ..., Gj,k represent if xj,k ∈ (xg−1j,k , x
g
j,k], and y0j,k represents

if xj,k is positive. The real value variables λgj,k show the propotion of the distance between xj,k

and xgj,k over the length of the interval if xj,k ∈ (xg−1j,k , x
g
j,k] or xj,k ∈ (xgj,k, x

g+1
j,k ].
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Appendix II: Continuous improvement algorithm

CI is used for comparison in Section 6.2.1. The procedure is shown in Algorithm 3. The input

includes the budget B∗ and the stopping condition. For MP1, stopping condition is B = B∗. For

MP2, the budget B∗ is equal to +∞, and the stopping condition is TH ≥ TH0(1+∆TH∗). The

input parameters r, s0, smin are related to the step length of improvement, s, at each iteration.

The step length s is initially set to be equal to s0, and each time the selected machine shifted to

a different position from the last iteration, the step length is reduced to r(s−smin)+smin, where

r ≤ 1 and smin is the defined minimal value of s. The procedure includes simulating the system

(step 1), selecting the machine to be improved (Step 2), and improving the selected machine

with a certain amount s (step 3 and 4). Lines 18–19 assure that the budget can be fully used

in MP1. The procedure stops when the stopping condition is true, or no machine is selected to

improve at step 2. The machine to be improved is selected as the machine whose downtime is

with the highest sensitivity and whose reduction amount does not reach the upperbound Uj,k.

The way to calculate the sensitivity of each machine dj,k in line 5 is from Chan and Schruben

(2008), with the dual optimal solution from Algorithm 2.

In Section 6.2.1, CI algorithms with eight sets of different values of s0, smin, r are imple-

mented, and their values can be found in Table 2.

Label CI-HHH CI-HHL CI-HLH CI-HLL
(s0, smin, r) (0.8, 0.1, 0.8) (0.8, 0.1, 0.5) (0.8, 0.05, 0.8) (0.8, 0.05, 0.5)

Label CI-LHH CI-LHL CI-LLH CI-LLL
(s0, smin, r) (0.2, 0.1, 0.8) (0.2, 0.1, 0.5) (0.2, 0.05, 0.8) (0.2, 0.05, 0.5)

Table 2.: Parameters of CI algorithm.
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Algorithm 3 CI algorithm.

Input:
B∗, r, s0, smin, stopping condition.

Ensure:
Solution of MP1 or MP2: xj,k, yj,k.

1: l← 1, s← s0, B ← 0
2: Call Algorithm 1 in the article for simulation.
3: while stopping condition is false do
4: Get dual solution ūi,j with Algorithm 2 in the article.

5: (j, k)l ← arg max
(j,k)
{dj,k|xj,k < Uj,k}, where dj,k ← |

∑N
i=1

∂fj,k(xj,k,ri,j,k,q)
∂xj,k

ūi,j |.

6: if (j, k)l exists then
7: if y(j,k)l = 0 then
8: if B∗ −B > Cy then
9: y(j,k)l ← 1.

10: else
11: U(j,k)l ← 0.
12: Continue.
13: end if
14: end if
15: if (j, k)l 6= (j, k)l−1 then
16: s← r(s− smin) + smin.
17: else
18: B ←

∑m
j=1

∑Fj

k=1(C
xxj,k + Cyyj,k).

19: x(j,k)l ← min{x(j,k)l + s, U(j,k)l , x(j,k)l + B∗−B
Cx }.

20: l← l + 1.
21: end if
22: else
23: Break.
24: end if
25: Call Algorithm 1 in the article for simulation.
26: end while
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Appendix III: System parameters

Tables 3 to 6 indicate buffer space bj , mean and Coefficient of Variation (CV) of cycle time

(P), mean of uptime (Tup) and mean of downtime (Tdown) of the systems in the numerical

experimen. In all experiments, processing time is generated from truncated normal distribution

on interval (0, 2CT), and time to failure is generated from Weibull distribution with shape

parameter k = 2. Downtime distributions are varied in the different sections. In sections 6.1

and 6.2, repair time follows right-skewed triangular distribution. The relationship among lower

limit a, upper limit b and mode c is b− c = 2(c− a), and the value of c− a is reported in the

tables. In section 6.3, repair time follows exponential distribution.

System ID Stage j bj
CT UT DT

Mean CV Mean Mean c-a

A-5
1, 2, 4, 5 3 2 0.1 10 3 1

3 3 2.2 0.1 10 4 1

B-5-I
1 - 4 3 2 0.1 10 3 1

5 - 2.2 0.1 10 4 1

B-5-II

1 3 2 0.1 10 3 1
2 4 2 0.1 10 3 1
3 5 2 0.1 10 3 1
4 6 2 0.1 10 3 1
5 - 2.2 0.1 10 4 1

C-5
1, 3, 4 3 2 0.1 10 3 1

2 3 2.15 0.1 10 3 1
5 - 2 0.1 10 4 1

C-9
1 - 4, 6 - 8 3 2 0.1 10 3 2

5 3 2.15 0.1 10 3 2
9 - 2 0.1 10 4 2

D-5
1, 4, 5 3 2 0.1 10 3 1

2 3 2.15 0.1 10 3 1
3 3 2 0.1 10 4 1

E-5 1 - 5 3 2 0.1 10 3 1
E-9 1 - 9 3 2 0.1 10 3 1

Table 3.: Parameters of systems (section 6.1, 6.2.1 and 6.2.2).
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CT UT DT
Stage j bj Mean CV Mean Mean c-a

1 9 5.1 0.1 1716.78 29.69 9.90
2 12 5.1 0.1 3553.11 35.89 11.96
3 12 5.3 0.1 1346.28 34.52 11.51
4 9 5.3 0.1 638.68 44.4 14.80
5 6 3.8 0.1 3381.48 27.27 9.09
6 5 5.2 0.1 749.09 30.4 10.13
7 6 5.2 0.1 909.42 54.97 18.32
8 10 5 0.1 1027.90 33.98 11.33
9 9 3.5 0.1 - - -
10 30 5.1 0.1 442.59 27.75 9.25
11 6 5.5 0.1 1272.75 47.53 15.84
12 9 5.3 0.1 1921.29 45.23 15.08
13 9 4.7 0.1 6066.72 61.28 20.43
14 6 3.5 0.1 - - -
15 7 5 0.1 2178.95 35.43 11.81
16 8 5.1 0.1 2984.08 33.19 11.06
17 6 4.1 0.1 26621.56 214.69 71.56
18 6 4.9 0.1 2380.83 51.07 17.02
19 7 4.9 0.1 2407.41 51.64 17.21
20 31 4.9 0.1 639.55 75.83 25.28
21 128 6.1 0.1 221.61 45.39 15.13
22 128 5.1 0.1 5242.77 229.85 76.62
23 - 5.1 0.1 5242.77 229.85 76.62

Table 4.: Parameters of long serial line (section 6.2.3).

CT UT 1 DT 1 UT 2 DT 2
Stage j bj Mean CV Mean Mean c-a Mean Mean c-a

1 60 2.65 0.1 1500 200 40 90 2 0.4
2 12 2.85 0.1 450 50 10 60 5 1
3 41 2.5 0.1 500 80 16 60 5 1
4 93 3 0.1 800 20 4 80 2 0.4
5 22 2.4 0.1 650 60 12 48 5 1
6 90 2.75 0.1 690 85 17 30 2 0.4
7 80 2.8 0.1 820 40 8 60 4 0.8
8 99 2.65 0.1 520 120 24 55 6 1.2
9 58 2.3 0.1 1200 80 16 30 1 0.2
10 - 2.7 0.1 900 35 7 85 3 0.6

Table 5.: Parameters of the system with multi-failure (section 6.2.4).

6



CT UT DT
Stage j bj Mean CV Mean Mean

1 4 1 0.2 17 3
2 4 1 0.2 11 3
3 4 1 0.2 17 3

DT-BN 1 4 4 1 0.2 17 3
5 4 1 0.2 11.5 3
6 4 1 0.2 17 3
7 - 1 0.2 17 3
1 100 3.49 0.5 300 40
2 80 3 0.5 350 100

DT-BN 2 3 150 2.5 0.5 140 65
4 100 2.86 0.5 400 85
5 100 2.92 0.5 360 120
6 - 3.1 0.5 140 35
1 100 3.49 0.5 300 60
2 80 3 0.5 350 100

DT-BN 3 3 150 2.5 0.5 140 65
800 130

4 100 2.86 0.5 400 85
5 100 2.92 0.5 360 120
6 - 3.1 0.5 130 25

150 40

Table 6.: Parameters of DT-BN systems (section 6.3).
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Appendix IV: Proof of propositions

MP1-S

min{z}

s.t.

z =
edN,M
N

: ϑ (1)

edi,j − esi,j ≥ ti,j : ui,j ∀i = 1, ..., N, j = 1, ...,M (2)

esi,j − edi−1,j ≥ 0 : vi,j ∀i = 1, ..., N, j = 1, ...,M (3)

esi,j − edi,j−1 ≥ 0 : si,j ∀i = 1, ..., N, j = 1, ...,M (4)

edi,j − esi−bj ,j+1 ≥ 0 : wi,j ∀i = 1, ..., N, j = 1, ...,M (5)

eξi,j ≥ 0 : αξi,j ∀ξ ∈ {s, d}i = 1, ..., N, j = 1, ...,M (6)

MP1-S-Dual:

max{
N∑
i=1

M∑
j=1

ti,jui,j}

s.t.

si,j + vi,j − ui,j − wi+bj−1,j−1 = 0 : esi,j j = 1, ...,M, i = 1, ..., N, (i, j) 6= (1, 1) (7)

ui,j + wi,j − si,j+1 − vi+1,j = 0 : edi,j j = 1, ...,M, i = 1, ..., N, (i, j) 6= (N,M) (8)

uN,M −
ϑ

N
= 0 : edN,M (9)

αs1,1 − u1,1 = 0 : es1,1 (10)

ϑ = 1 (11)

αs1,1, si,j , ui,j , vi,j , wi,j ≥ 0 j = 1, ...,M, i = 1, ..., N

Proposition 4.1. MP1-S-Dual is to find the maximum weighted flow in the graph of ERG.

The weights on arcs are equal to the time delays, and all the nodes esi,j and edi,j hold flows. The

’start’ node is a source, and the ’end’ node is a sink absorbing ϑ
N unit flow.

Proof. Figure 4(b) presents the same element as in Figure 4(a), with dual variables in MP1-

S-Dual labeled on the arcs, instead of the time delay in MP1-S. For the node esi,j , the balance

of its flow, i.e., the difference between input flow and output flow, is equal to si,j + vi,j − ui,j −

wi+bj−1,j−1, the same as the lefthand side of constraint (7). Thus, (7) can be interpreted as
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(a) Element in the ERG of serial production lines. (b) Element of the dual subproblem.

Figure 4.: Elements in the ERG and of the dual subproblem.

nodes of starting events neither absorb nor create any flow. For the node edi,j , the balance of its

flow is equal to ui,j +wi,j − si,j+1− vi+1,j , the same as the lefthand side of constraint (8). Thus,

(8) represents that nodes of departure events neither absorb nor create any flow. (9) implies the

flow balance of edN,M , and ϑ
N can be regarded as the flow on the arc from edN,M to the end node.

(10) implies the flow balance of es1,1, and αsi,j can be regarded as the flow on the arc from start

node to es1,1.

Therefore, MP1-S-Dual can be interpreted as finding the maximum weighted flow in the

network, where the weights are equal to the delay on the triggering arcs, and that all the

nodes hold flows except the end node as a sink absorbing ϑ
N unit flow, and the start node as a

source.

Proposition 4.2. The dual solution using Algorithm 1 and Algorithm 2 is optimal solution of

model MP1-S-Dual.

Proof. The proof uses duality theory. First, the proposed solutions are proved to be feasible

solution of MP1-S and MP1-S-Dual, respectively. Then, the solutions are proved to be equal to

each other.

Lines 10–14 in Algorithm 1 assure that constraints (2) and (5) are satisfied. Lines 5–9 in

Algorithm 1 assure that constraints (3) and (4) are satisfied. Therefore, Algorithm 1 provides

feasible solution esi,j , e
d
i,j of MP1-S. Line 17 asssures that constraint (1) is satisfied.

Lines 6–7 in Algorithm 2 imply that ui,j+wi,j = (bui,j+bwi,j)(si,j+1+vi+1,j). Each event edi,j

is with only one input flow, i.e., bui,j + bwi,j = 1, so ui,j +wi,j = si,j+1 + vi+1,j , i.e., constraints

(8) hold. Similarly, lines 4–5 in Algorithm 2 assure that constraints (7) hold. Line 1 assures

that constraints (9) to (10) are satisfied. Therefore, Algorithm 2 provides feasible solution of

MP1-S-Dual.

In the spanning tree represented by bui,j , bvi,j , bwi,j , bsi,j , there is one and only one path from
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the start node to the end node. We denote the path as P.

Lines 6, 8, 11, 13 in Algorithm 1 imply that each event occurring time esi,j or edi,j is calculated

by adding a time delay, either 0 or ti,j , to its triggering event occurring time. Following a

triggering path, the occurring time of the last event on the path can be calculated as the sum

of all the time delay on the path. The occurring time of event edN,M is equal to the sum of all

the time delays on P. Thus, providing the solution in Algorithm 1, the objective function of

MP1-S is equal to accumulated time delay along P
N .

Lines 4–7 in Algorithm 2 imply that the input flow of one node is equal to its output flow.

Input flow of one node esi,j or edi,j is equal to sum of the flow absorbing by the leaves of its

spanning tree. Since the end node is the only sink in the graph absorbing 1
N unit flow, the only

arcs carrying non-zero flow are the arcs on P. Providing the solution in Algorithm 2, since the

weights on the arcs are equal to the time delays, the objective function of MP1-S-Dual is equal

to accumulated time delay along P
N .

The objective of MP1-S and of MP1-S-Dual are equal. According to strong duality, the feasible

solutions provided by Algorithm 1 and Algorithm 2 are the optimal solutions.
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Appendix V: ERG of serial production line

Figure 13.: Event relationship graph of serial production line.
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Appendix VI: numerical results of section 6.2.2

System Stage Original MP1-L MP1-H MP2-L MP2-H
ID No. xj xj xj xj

B-5-I

1 - 0 0 0 0
2 - 0 0 0 0
3 - 0 0.179 0 0
4 - 0 0.521 0 0
5 - 0.8 0.8 0.315 0.622

TH 0.324 0.349 0.351 0.334 0.344
∆TH (%) - 7.76% 8.34% 3.00%(*) 6.00%(*)

Cost - 90(*) 180 (*) 41.5 72.2

System Stage Original MP1-L MP1-H MP2-L MP2-H
ID No. xj xj xj xj

B-5-II

1 - 0 0 0 0
2 - 0 0 0 0
3 - 0 0 0 0
4 - 0 0.8 0 0
5 - 0.8 0.8 0.306 0.595

TH 0.325 0.351 0.351 0.334 0.344
∆TH (%) - 8.12% 8.13% 3.00%(*) 6.00%(*)

Cost - 90(*) 180 (*) 40.6 69.5

System Stage Original MP1-L MP1-H MP2-L MP2-H
ID No. xj xj xj xj

C-5

1 - 0 0 0 0
2 - 0 0 0 0
3 - 0.357 0.8 0.333 0.768
4 - 0 0 0 0
5 - 0.343 0.8 0.319 0.764

TH 0.345 0.356 0.367 0.355 0.366
∆TH (%) - 3.31% 6.31% 3.00%(*) 6.00%(*)

Cost - 90(*) 180 (*) 85.3 173.3

System Stage Original MP1-L MP1-H MP2-L MP2-H
ID No. xj xj xj xj

D-5

1 - 0 0 0 0
2 - 0.300 0.8 0.242 0.528
3 - 0.400 0.8 0.319 0.692
4 - 0 0 0 0
5 - 0 0 0 0

TH 0.343 0.355 0.367 0.353 0.363
∆TH (%) - 3.52% 6.87% 3.00%(*) 6.00%(*)

Cost - 90(*) 180 (*) 76.0 142.0
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