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5.3  Designs of permeable 
reactive barriers and examples 
of full scale treatment

Sabrina Saponaro*, Elena Sezenna, and 
Andrea Mastorgio
Politecnico di Milano, Department of Civil & Environmental Engineering, 
Milan, Italy 

*Corresponding author: sabrina.saponaro@polimi.it

Permeable reactive barriers (PRBs) are innovative technologies for the in situ 
remediation of contaminated groundwater. The technology involves the emplacement, 
into an excavated zone of the aquifer across the flow path of the contaminated 
groundwater, of a “reactive” filling material permeable to groundwater to intercept 
and treat the contaminants as the plume flows through under the influence of the 
natural hydraulic gradient (Careghini et al. 2013).

A wide range of materials are currently available. Some of them remove 
contaminants through non-destructive mechanisms, such as precipitation, sorption 
or cation exchange (also promoted by geochemistry modifications in the treatment 
zone), other through destructive mechanisms, such as abiotic degradation or 
biological degradation (in biobarriers) (Table 5.3.1). The choice among these is 
primarily based on the contaminant to remove and the abatement required, but 
the hydrogeological and biogeochemical conditions of the aquifer may have great 
influence as well (ITRC, 2011; Obiri-Nyarko et al. 2014). Sometimes, concurrently 
mechanisms acts in removing the pollutants. Multilayer barrier systems can be 
developed in order to treat groundwater affected by different kinds of pollutants 
(Obiri-Nyarko et al. 2014).

The most used abiotic materials include: (i) zero-valent iron Fe0 (ZVI); 
(ii) activated carbons (ACs); (iii) zeolites; and (iv) apatites.

ZVI has a high reduction potential (–440 mV) and acts primarily as a reductant 
material. Therefore it can effectively remove pollutants such as heavy metals and 
radionuclides, nutrients and aliphatic chlorinated solvents. Typically, ZVI grain 
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size ranges from 0.25 to 2 mm and the surface area from 0.5 to 1.5 m2/g. ZVI has 
been conventionally used as the reactive media of PRBs and more than 60% of the 
PRBs installed worldwide are iron-based (ITRC, 2011).

Table 5.3.1 Contaminants, main reactive materials and issues at PRB full-scale 
applications (ITRC, 2011; Obiri-Nyarko et al. 2014).

Contaminants Reactive Material Major Issues

Aliphatic 
chlorinated 
solvents

ZVI Iron reactions with groundwater 
constituents produce OH− ions and pH 
increase, which promotes precipitate 
formation on the reactive material 
(coating) and a reduced surface 
contact between Fe(0) and pollutants

Biobarrier Anaerobic conditions are required for 
highly chlorinated compounds
Degradation reactions, excessive 
variation in pH and redox conditions 
can lead to the solubilization of 
metals (iron, manganese, arsenic) 
and potential negative effects (e.g.: 
total dissolved solids) on the water 
quality

Monoaromatic 
solvents
Methyl-tert butyl 
ether

Biobarrier Aerobic conditions and an external 
source of oxygen are generally 
required

Phenols GAC Removal is strongly influenced the pH 
value (low pH values decrease phenol 
sorption)

Cationic metals Apatite Removal is affected by the pH (low 
pH is necessary to dissolve the 
apatite to release the phosphate)
The contaminant sorption is 
reversible and they can be released 
again into groundwater when 
geochemical conditions favor the 
mechanism

Arsenic ZVI Low pH is favorable to remove 
arsenic compounds under aerobic 
condition, while under anaerobic 
condition, acidic and alkaline pHs 
seems to be favorable for arsenate 
and arsenite removal

(Continued)
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Table 5.3.1 Contaminants, main reactive materials and issues at PRB full-scale 
applications (ITRC, 2011; Obiri-Nyarko et al. 2014) (Continued).

Contaminants Reactive Material Major Issues

The presence of other 
inorganic species in the aquifer 
may compete with contaminants for 
ZVI reactive sites

Chromium (VI) ZVI Chromium precipitation (as Cr(III)) 
progressively blocks reactions sites 
on iron
The formation of mineral 
precipitates can cause clogging
Removal may be influenced by 
pH, redox potential and dissolved 
organic carbon in the aquifer
The presence of other inorganic 
species in the aquifer may compete 
with Cr(VI) for ZVI reactive sites

Uranium ZVI Possible clogging due to 
the formation of mineral 
precipitates
Removal may be influenced by 
pH, redox potential and dissolved 
organic carbon in the aquifer
The presence of other inorganic 
species in the aquifer may compete 
with contaminants for ZVI reactive 
sites

Apatite Removal is affected by the pH (low 
pH is necessary to dissolve the 
apatite to release the phosphate)
The contaminant sorption is 
reversible and it can be released 
again into groundwater when 
geochemical conditions favor the 
mechanism

Strontium-90 Zeolites The use may be influenced by 
groundwater pH, its constituents 
(Ca, Mg, Na, SO4

2−, CO3
2−) and 

dissolved organic carbon

(Continued)
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Table 5.3.1 Contaminants, main reactive materials and issues at PRB full-scale 
applications (ITRC, 2011; Obiri-Nyarko et al. 2014) (Continued).

Contaminants Reactive Material Major Issues

Apatite Removal is affected by the pH (low 
pH is necessary to dissolve the 
apatite to release the phosphate)
The contaminant sorption is 
reversible and it can be released 
again into groundwater when 
geochemical conditions favor the 
mechanism

Nitrates Biobarrier Anaerobic (denitrifying) conditions 
are required to transform nitrates 
into N2

Nitrous oxide, NH4
+, CH4, CO2 can 

be produced
Gases can reduce the hydraulic 
conductivity in the barrier

Sulphates Biobarrier Anaerobic conditions are required 
to transform sulphates into 
sulphides

Perchlorate Biobarrier Anaerobic conditions are required 
to transform perchlorate to chlorate 
and chloride

ACs are carbonaceous materials with high sorption capacity; therefore, pollutant 
removal occurs mainly through sorption. They have been widely used for phenols, 
monoaromatic and chlorinated hydrocarbons, although heavy metals have been 
treated as well. Granular AC (GAC) was one of the materials commonly used in 
the early stages of the PRB technology (Bone, 2012).

Zeolites are aluminosilicate minerals that have high cation-exchange capacity 
(200–400 meq/100 g) and large surface area (up to 145 m2/g) (ITRC, 2011). 
Natural zeolites generally have low organic carbon content, which makes them 
unsuitable for sorption of organic compounds; however, surface modified zeolites 
have been developed exhibiting strong affinity with organics. Contaminants that 
can be removed include heavy metals, radionuclides, NO3

−, monoaromatic and 
chlorinated hydrocarbons (Obiri-Nyarko et al. 2014; USEPA, 2015a).

Apatites are phosphate minerals, containing mainly calcium and phosphorus, 
with net negative charge at neutral and alkaline pH. Apatites may remove inorganic 
contaminants (perchlorate, cationic metals, radionuclides, nitrate) via sorption 
to their negative charge surface or via ion-exchange, precipitation as phosphates, 
carbonates, oxides, and hydroxides, or incorporation into their mineral structure 
(USEPA, 2015b).
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5.3.1  DESIGN
A key aspect of the PRB design is a good understanding of the site and aquifer 
characteristics, which includes the site geology, aquifer hydrogeology, geochemistry, 
microbial activity and the contaminated plume 3D-geometry. Directions and rates 
of groundwater flow, including variations over time and depth, and preferential 
flow paths are important (Smith et al. 2003).

Once the site has been fully characterized, the design of a PRB include selection 
of the reactive medium, treatability studies at lab scale (batch and column tests) 
and pilot scale, and engineering design (Obiri-Nyarko et  al. 2014). Laboratory-
based trials are a prerequisite, while field-based pilot trials are recommended, but 
not obligatory. Nevertheless, is likely that both laboratory and field-scale trials 
would be conducted prior to full-scale installation, as these are considered the best 
ways of optimizing the design and minimizing risk of failure of the PRB (Smith 
et al. 2003).

After the reactive material has been selected, the dimension, location and 
orientation of the barrier have to be defined. The “capture zone” refers to the 
width of the barrier necessary to capture the entire plume. The “residence 
time” is defined as the time required for the contaminated groundwater to flow 
through the reactive material within the PRB to achieve the treatment goals 
(Smith et al. 2003).

The hydraulic conductivity of the filling material is usually selected at a 
value one order of magnitude higher than the aquifer hydraulic conductivity. In 
order to obtain this condition, the reactive material is usually mixed with sand to 
achieve the suitable permeability (Muegge, 2008). However, PRB interior changes 
its hydraulic properties during operation, as chemical reactions and/or bacterial 
growth may cause clogging/fouling (Abadzic & Ryan, 2001; Furukawa et al. 2002; 
Kacimov et al. 2011; Lampron et al. 2001; Vikesland et al. 2003).

The performance of the PRB over time needs to be addressed. The oldest 
PRB is close to two decades, but this is still not enough to provide sufficient 
information to help in adequately understanding and predicting their long-term 
performance. This can be predicted by simulation of longevity scenarios with the 
aid of numerical models. However, most of them do not take into consideration 
the changes in reactivity of the material over time. More recent models are able 
to incorporate the declining reactivity and permeability of the material in order 
to adequately represent long- term performance (Kouznetsova et al. 2007; Jeen 
et al. 2011).

There may be potential for generation of polluting substances within the barrier 
as a consequence of secondary reactions not considered as part of the PRB design 
for its target pollutants (Cheng et al. 1997).

5.3.2  FULL-SCALE TREATMENTS
A few sites where a full-scale PRB has been installed are reported in Table 5.3.2.
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