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account. Actually, every manufacturing process leaves on the sur-
face a signature, i.e., a systematic pattern that characterizes all the 

features machined by that process.
In a previous work it was presented a comparison between the 

results obtained by applied a variational model with and without 
considering the correlation among the points of two circular 
profiles due to the manufacturing signature for a specific case study 

[10].
In this work, the comparison is deepened. The effect of a manu-

facturing process on solving a stack-up function is investigated for 
a circular profile obtained by turning. The analysis of toleran-ces 

was carried out by means of a new variational model that allows to 

simulate the form tolerance. This model was applied with and 

without considering the correlation among the points of the same 

circular profile due to the manufacturing signature. Seven different 
cases were considered. This work aims to be a first step toward the 

integration of the design and the manufacturing in a concurrent 
engineering approach.

The paper is organized as follow: in Sec. 2, the new variational 
model is presented. In Sec. 3, the case study is introduced. In Sec. 
4, the tolerance stack-up function is solved by means of the varia-
tional model implemented in a MATLAB environment. In Sec. 5, the 

variational model is used to solve the stack-up function, once 

simulated the manufacturing signature of the circular profiles by an 

ARMAX model. In Sec. 6, a sensitivity analysis of the varia-tional 
model toward the manufacturing signature was developed by 

considering different values of the applied geometrical tolerances.

2 New Variational Model

Each functional requirement is schematized through an equa-
tion, which is usually called stack-up function, whose variables 

are the model parameters that are function of the dimensions and 

the tolerances assigned to the assembly components. It looks like

FR ¼ f p1; p2;…; pnð Þ (1)

where FR is the considered functional requirement, p1,…, pn are
the model parameters, and f(p) is the stack-up function, that is
usually not linear.

A functional requirement is usually a characteristic that relates
two features. Its analytical expression is obtained by applying the
equations of the Euclidean geometry to the features of the rigid
parts that define the functional requirement or to the points of the
features that define the functional requirement.

To define a stack-up function it is needed to follow a sequence
of steps that allows to model each component’s geometric varia-
tions due to the applied tolerances, the geometric variations
between couples of components due to the assembling process

1 Introduction

Tolerance analysis has a considerable weight in concurrent en-
gineering, and it represents the best way to solve problem in order 
to ensure higher quality and lower costs. The need to assign 

dimensional and geometric tolerances to assembly components is 

due to the standardization of the production and to the correct 
working of the assembly. The dimensions and the tolerances of 
the assembly components combine, according to the assembly 

sequences, and generate the tolerance stack-up functions. Solving 

a tolerance stack-up function means to determine the nominal 
value and the tolerance range of a product function by combining 

the nominal values and the tolerance ranges assigned to the 

assembly components.
Many well-known approaches of the literature for tolerance 

analysis exist, even if they do not consider the actual surface due 

to a manufacturing process [1,2]. Many commercial CAT software 

packages was developed on the basis of those models, such as
3-DCS of Dimensional Control Systems

VR 

, VisVSA of Siemens
VR 

and so on [3,4].
None of the models proposed in the literature provide a com-

plete and clear mechanism for handling all the requirements 

included in the tolerancing standards, and this limitation is reflected 

also in the available commercial CAT software. The main limitations 

include the following: no proper support for the appli-cation of the 

envelope rule and of the independence rule; cannot handle form 

tolerances (except for the vector loop model); no mechanisms for 
assigning probability density functions (PDFs) to model parameters 

starting from tolerances and considering toler-ance zone 

interactions; no proper representation of all the possible types of 
part couplings that include clearance [5].

A taxonomy was developed in a previous work to help evaluate, 
compare, and select tolerance analysis models, depending on the 

model characteristics and the type of application [6].

A widespread model of the literature is the variational that has 

been proposed by Martino and Gabriele [7], Boyer and Stewart 
[8], and Gupta and Turner [9]. The basic idea is to represent the 

variability of an assembly, due to tolerances and assembly con-
straints, through a parametric mathematical model. It models the 

dimensional and geometrical variations affecting a part by means 

of differential homogeneous transformation matrices.

The variational model of the literature considers the dimen-
sional and the geometrical tolerances applied to some critical points 

(contact points among profiles belonging to coupled parts) on the 

surface of the assembly components. These points are gen-erally 

considered uncorrelated since the ideal surface is taken into
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and the functional requirements of the assembly (see Fig. 1). The
first step creates a local model of tolerance analysis, the second a
global model of tolerance analysis and the third creates the stack-
up function of the global model. The whole sequence constitutes
the frame of a tolerance analysis model. The first step aims to
define the range of variation of the model’s parameters of a fea-
ture from the tolerances assigned to each feature of each assembly
component. This means to identify, for each applied tolerance of
each feature of each component of the assembly, the ranges of
rotation and translation of the barycenter of the nominal feature
due to the applied tolerance. Those rotation and translation are the
model’s parameters, whose ranges are bounded by the ranges of
the applied tolerance.

Typically, each feature has its local datum reference frame
(DRF), while each component and the whole assembly have their
own global DRF. In the nominal condition, the homogeneous
transformation matrix (called TN) that allows passing from one
DRF to another is known. When real features are machined, they
depart from nominal. Assuming that real features maintain their
nominal form (i.e., form deviations are neglected), the location of
a real feature deviates from nominal; this deviation is expressed
by parameters that constitute a differential homogeneous transfor-
mation matrix DT. Those parameters are associated to the transla-
tion or rotation of the nominal feature barycenter allowed by the
applied tolerance. To pass from the global DRF of part i, Ri, to
the local DRF of a feature j of part i, Rij, it is enough to multiply
the two matrices

TRi!Rij ¼ TNRi!Rij � DTRij (2)

where TRi!Rij is the total transformation matrix to pass from the
global DRF of part i to the local DRF of feature j of part i;
TNRi!Rij is the nominal transformation matrix to pass from the
global DRF of part i to the local DRF of feature j of part i; and
DTRij is the differential transformation matrix of feature j of
part i.

If a feature may not be directly referred to the global DRF, it is
reported to it through a chain of features. To calculate the total
matrix it is enough to make the product of the single
contributions.

The local model should schematize all the tolerance kinds, i.e.,
dimensional, form, orientation, location. To represent the form
deviation through the model’s parameters is a very critical aspect.

To consider the effect of the form deviation, the new model intro-
duces a virtual transformation applied to the points of the surface 

on which a form tolerance is assigned. This virtual transformation 

was introduced by Chase and Magleby inside their vector loop 

model for tolerance analysis, as deeply discussed in Ref. [11]. The 

proposed model translates this concept to a variational model by 

associating a parameter pf to the feature to which a form tolerance 

is applied. This parameter stands for the form deviation of the sin-
gle points of the feature. It may be positive or negative; it is posi-
tive if it goes outside the material. It varies from point to point of 
the feature.

The second step aims to define the range of variation of the 

model’s parameters from the variability of the coupled features 

during the assembly. The variability of the coupled features, by 

which the link among the parts is made, depends by the tolerances 

applied to the features themselves and by the assembly conditions.
Typically, the relative location of the parts is expressed by 

means of parameters which constitute the differential homogene-

ous transformation matrix DA (the transformation matrix is indi-
cated by the letter A ¼ assembly to distinguish it from the matrix 

DT that is for the part). The total transformation to pass from the 

global DRF of part i, Ri, to the global DRF of part l, Rl, is 

obtained simply by means

ARi!Rl ¼ ANRi!Rl � DARi!Rl

¼ TNRi!Rij � DTRij � DARij!Rlk � DT
�1
Rlk

� TN�1
Rl!Rlk

(3)

where ARi!Rl is the assembly matrix between part i and part l; 
ANRi!Rl is the assembly matrix between part i and part l in nomi-
nal condition; DARi!Rl is the differential assembly matrix 

between part i and part l; DARij!Rlk is the differential assembly 

matrix between feature j of part i and feature k of part l; TNRi!Rij 

is the nominal transformation matrix to pass from the global DRF

of part i to the local DRF of feature j of part i; DTRij is the differ-
ential transformation matrix of feature j of part i; DTRlk is the dif-
ferential transformation matrix of feature k of part l; and 

TNRl!Rlk is the nominal transformation matrix to pass from the 

global DRF of part l to the local DRF of feature k of part l.
The differential assembly matrices DARi!Rl and DARij!Rlk are 

hard to evaluate, since they depend on both the tolerances applied 

to the features in contact and the assembly conditions.
The global model has to be able to schematize the joints with 

contact and the joints with clearance between the coupled 

features.
The third step is to derive the stack-up functions. This means 

that the global model has to be able to approach to the joints 

which give a linear structure of the FR equation (stack-up func-
tion) and to the joints which carry out to a complex structure of 
the FR equation (network function), as shown in Fig. 2.

Once the assembly parameters are known, all features can be 

expressed in the same global DRF of the assembly

Xik ¼ ANRi!Rl
� DARi!Rl

� TNRl!Rlk � DTRlk � xk (4)

where Xik and xk are the vectors whose components are the coor-
dinates of a generic point expressed in the global DRF of part i
and in the local DRF of feature k.

Fig. 1 New variational model
Fig. 2 (a) Linear stack-up function and (b) network stack-up
function



Then, the equations of the functional requirements are defined 

by applying the analytical geometry.
Once modeled the stack-up functions, they may be solved by 

means of a worst case or a statistical approach [12]. To carry out a 

worst case approach, it is needed to define the worst configura-
tions of the assembly (i.e., those configurations due to the cumula-
tive effect of the smallest and the highest values of the tolerances 

assigned to the assembly components) that satisfy its assigned tol-
erances. This means to solve a problem of optimization (maximi-
zation and/or minimization) under constraints due to the assigned 

tolerances. Many are the methods developed by the literature to 

carry out a worst case approach (see Ref. [13]). To carry out a sta-
tistical approach, it is needed to translate each tolerance assigned to 

assembly components into one or more parameters of the stack-up 

function.
A PDF, that is function of both the manufacturing and the as-

sembly processes, is assigned to each parameter. Being the defini-
tion of the relationship among the production and assembly 

processes and the PDF of the tolerance of the component strongly 

hard to estimate, the commonly used assumption is to adopt a 

Gaussian PDF. Moreover, a further assumption is to consider in-
dependent the parameters used to represent the variability of the 

features delimiting each dimensional tolerance. The variation of 
the FR is obtained by means of a Monte Carlo simulation technique 

[1,14]; it is usually calculated as 6 three times the estimated 
standard deviation (three sigma paradigm of Ref. [12]).

3 Case Study

The case study is constituted by a box containing two circles, as 

shown in Fig. 3. The aim of this work is the measurement of the 

gap g between the second circle and the top side of the box as a 

function of the tolerances applied to the components.
Circular profiles machined by turning were studied and 

approximated by means of an ARMAX model [15].
This approach consists in reconstructing the circular profile by a 

set of evenly distributed points and then, this reconstructed pro-file, 
is sampled at an higher rate by resulting in a secondary set of 
sampled points which is used to estimate form error through a fit-
ting criteria as the Least Square or the minimum zone methods. In 

their work, Colosimo and Pacella [16] showed that the manufac-
turing signature of the turning process was mainly affected by 

bilobe and three-lobe contours. This harmonic model was com-
bined with a second-order autoregressive model of the noise. That

is due to the correlations of the measurements of the machined
profiles, since the data are obtained in similar process conditions
and they are related to similar material properties. Combining the
harmonic and the autoregressive parts, the parametric model of
the identified process signature is given by

Yt ¼

ffiffiffiffi

2

N

r

X

3

i¼2

b2i�1 cos i � t � 2p=Nð Þ þ b2i sin i � t � 2p=Nð Þ½ �

þ
1

1 � a1B� a2B2
et (5)

where t ¼ 1; 2; :::; N is the index of data points in the sampled pro-
file, B is the backshift operator [17], and N is the number of equally 

spaced points that were measured on the profile.

For each index t, Yt represents the radial distance (in milli-
meters) between the measured points and the LS substitute circle,

that was measured at regular position #t ¼ 2p=N.
The signature model of Eq. (5) is a linear combination of two 

harmonic terms, the bilobe and the trilobe contours, plus a second-
order autoregressive model of the noise. Each term of the first part 

of Eq. (5) is the ith harmonic characterized by i undula-tion per 
revolution. This model was applied to a case study consti-tuted by 

three parts, one fixed with planar surfaces and two circular profiles 

assembled on the fixed part. Instead considering the form 

tolerances applied to the two circular profiles, the ARMAX model 
was considered to simulate the real profile of the manufactured 

parts that, however, remains inside the form toler-ance zone. 
Therefore, the analysis of tolerances was carried out by means of 
the variational model shortly described in the previous paragraph. 
This model was applied with or without considering the correlation 

among the points of the same circular profile due to the 

manufacturing signature. Subsequently, six new cases were 

generated by changing the values of the applied geometrical toler-
ances by a scale factor (F). The variational model was applied to 

the new cases.
Both the dimensional and the geometrical tolerances shown in 

Fig. 3 were taken into account and the Envelope Principle was 

applied. The case study was solved through the statistical 
approach.

4 Simulation Without Signature

Once indicated with L1, L2, L3, and L4, the linear features of the 

box and with C1 and C2, the two circular parts as shown in Fig. 4, 
the assembly graph of Fig. 5 was built. It shows two joints of cyl-

inder slider kind between the box and the circle 1 at point A and 

point B, one joint of parallel cylinder kind between the circle 1 

and the circle 2 at point C, one joint of cylinder slider kind 

between the ball 2 and the box at point D and the measure to per-
form g. A DRF was assigned to each feature of each part and the 

whole assembly; all the global DRF’s have the x-axis horizontal. 
The DRF of the box is also considered as the global DRF of the 

assembly. The homogeneous transformation matrices were eval-

uated for the feature L1, L2, L3, and L4 of the box and for the two 

circles C1 and C2, in order to express all the features in the same 

global DRF of the assembly.
Therefore, the assembly was created by imposing the assembly 

conditions that are shown in the assembly graph and the gap g 

was evaluated by means of the following analytical equation:

g ¼ 1:270 þ rz03DX13 � DY13 þ 5rz03 � ty03 � r2 � dEF (6)

where

DX12 ¼ ty04 þ r1 þ dB þ rz04 40 � hð Þ
� �

= 1 þ rz01rz04ð Þ (7)

DY12 ¼ rz01DX12 � 5rz01 þ ty01 þ r1 þ dA ¼ rz01DX12 þ h (8)

h ¼ �5rz01 þ ty01 þ r1 þ dA (9)Fig. 3 Case study



DX13 ¼ �rz02DY13 � a (10)

DY13 ¼ bþ b2 � c
� �1=2

(11)

a ¼ 18:730rz02 þ ty02 þ r2 þ d (12)

b ¼ ½r02ð10 � a� DX12Þ � 38:730 þ DY12�= 1 þ r2
02

� �

(13)

c ¼ ½ð10 � a� DX12Þ
2 þ ð38:730 � DY12Þ

2

� 40 þ r1 þ r2 þ dCð Þ2�= 1 þ r2
02

� �

(14)

with r1 is the model parameter of the feature C1, DX12, and DY12 are 

the assembly parameters of the part C1 on the box, r2 is the model 
parameter of the feature C2 and DX13 and DY13 are the as-sembly 

parameters of the part C2 on the box. The tyi parameters and the rzi 
parameters are the translations and the rotations applied to the 

considered elements, which index is i, due to the tolerance values 

considered. For example ty03 is the translations of the ele-ment L3 

measured in its DRF. The di are the model parameters due to the 

form variations applied to the circular profiles evaluated
from the applied form tolerance values. For example dEF is the pa-
rameter evaluated summing dE with dF the two form parameters 

evaluated in the points E and in F.
The set of Eqs. (6)–(14) were solved by means of a statistical 

case approach by considering the model parameters as statistical 
variables following a Gaussian PDF. A Monte Carlo approach 

was used by 100.000 runs. The obtained value of the objective 

function g was 1.269 6 0.524 mm.

5 Simulation With Signature

The same mathematical model used in the previous paragraph 

was adopted for the current analysis with the only correction of the 

parameters which values were affected by the form tolerance of the 

circular profiles. In this way the model performed in the current 

analysis was the model referred in Eq. (6). Also in this case, g was 

the objective function and the function which parame-terize the 

positions of the centers of the two circular profile with respect to 

the boundary of the box is

Rþ r þ d (15)

where R is the nominal value of the radius of the circular profile, r 
is the model parameter due to the dimensional tolerance applied to 

the circular profiles and d is the model parameter due to the form 

tolerance applied to the circular profiles.
In this case, the values of dimensional and orientation toleran-

ces are the same of the previous case, but the values of the form 

tolerance of the two circular profiles were substituted by the value 

of the form deviations computed by means of the manufacturing 

signature (i.e., by means of Eq. (5)).
The roundness of the two circles was simulated by the local val-

ues of Yt evaluated for the points on the circular profile. These val-
ues were used to define the values of the parameters di used in the 

above mentioned variational model, where i ¼ a, b, c, d with a, b, 
c, and d are the contact points between the profiles ant the box. 
Since the manufacturing signature affects only the values of the di 
parameters, the value of r remains equal to 6 0.01 mm and R is 
equal to 20 mm.

In this case, the obtained value of the objective function g is 

1.269 6 0.526 mm that is very close to that obtained through the 
variational model without considering the manufacturing signa-
ture (see previous paragraph).

A further analysis was carried out by considering the dimen-

sional parameter r dependent by the manufacturing signature 

through the following relationship:

r ¼
D1 þ D2ð Þ

2
� Dn (16)

where D1 and D2 are two orthogonal diameters, of the manufac-
tured profile obtained by means of Eq. (5) and, thus, by summing

the values of Yt to the nominal diameter Dn that is equal to 40 

mm. The obtained value of the objective function g is 

1.263 6 0.526 mm. It is very close to the value obtained without 
considering the manufacturing signature.

The values of the adopted ARMAX model parameters are
showed in Table 1, while the values of the noise estimation et

were modeled by a Gaussian white noise with standard deviation
equal to 0.287 lm. To simulate the profile by means of the
ARMAX model was used a number of evenly distributed points
equal to 1240. This number was chosen to keep points in corris-
pondence of the contact points between circular profiles and box
and between the two circular profiles, that one hinted at letter A,
B, C, and D.

Fig. 4 Features of the parts

Fig. 5 Assembly graph

Table 1 ARMAX model parameters: (a) mean vector estimate
(mm) and (b) covariance matrix estimate (mm2)

�b3
�b4

�b5
�b6 �a1 �a2

(a) �0.0341 0.0313 0.0080 �0.0322 0.3714 0.2723

(b) 0.0004 �0.0002 0.0001 0 0.0001 0.0003
�0.0002 0.0004 0.0001 0 0.0001 �0.0002

0.0001 0.0001 0.0002 0 0.0001 0
0 0 0 0.0003 0.0003 0.0003
0.0001 0.0001 0.0001 0.0003 0.0072 0.0012
0.0003 0.0002 0 0.0003 0.0012 0.0036



6 Sensitivity Analysis

The geometrical tolerances applied to the case study were changed 

by multiplying them of a scale factor (F), as shown in Table 2.
At first, two further cases were generated (case studies 1 and 2 in 

Table 2) by decreasing the form tolerance range. It was observed 

that decreasing the form deviation involves a decrease of the g-
range due to signature, even if they remain near to those due to the 

model without signature.
Therefore, three further cases (case studies 4, 5, and 6) were 

produced by increasing the form tolerance range. The g-range due 

to the signature increases with the increase of the form deviation. 
The difference between the two models appears more evident. The 

g-range of the signature is smaller than that without signature; the 

mean value is smaller too. This is probably due to correlation 

among the points of the circle profile due to the signature.
A final case study was developed (7 in Table 2) to have an 

example of a rough process; it does not involve a control of form 

tolerance. The mean and the deviation of g due to the signature 

appear smaller than those due to the model without signature.

7 Conclusions

In this work, the problem to investigate the effects of consider-
ing the manufacturing signature in solving a tolerance stack-up 

function was tackled.
A case study involving three parts was defined and solved by 

means of a new variational model that allows to simulate the form 

tolerances. This model was applied with and without considering 

the correlation among the points of the same circular profile due to 

the manufacturing signature. A Monte Carlo approach was 

implemented with 100.000 runs of simulation.
Therefore, six further cases were generated by changing the 

applied geometrical tolerances of a scale factor.
The analysis of all the seven cases states that the application of the 

signature appears more evident with the increase of the range of  the 

form tolerance. Moreover, the signature involves a mean value and a 

range of the requirement g smaller than those due to the simu-lations 

without signature. This is probably due to a negative correla-tion 

among the points of the circle profile due to the signature.
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Table 2 Results of sensitivity analysis

g (mm)

With signature Without signature

Case study F-factor Circles form tolerance (mm) l 3r l 3r

1 0.2 0.01 1.268 0.100 1.270 0.104
2 0.5 0.025 1.266 0.249 1.270 0.261
3 1 0.05 1.269 0.526 1.269 0.524
4 2 0.1 1.255 1.001 1.271 1.043
5 5 0.25 1.232 2.501 1.271 2.608
6 10 0.5 1.190 5.010 1.282 5.232
7 20 1 1.137 10.035 1.303 10.439


	s1
	s2
	E1
	l
	E2
	E3
	E4
	F1
	F2
	s3
	E5
	s4
	E6
	E7
	E8
	E9
	F3
	E10
	E11
	E12
	E13
	E14
	s5
	E15
	E16
	F4
	F5
	T1
	s6
	s7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	T2

