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ABSTRACT

Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive
training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behavior. Results
show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of criticality. Finding such a
region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region
might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing
hyper-parameters can be studied by considering the memory–nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the
network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical
dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear
behavior in phase space characterized by a large memory of past inputs, comparable to the one of linear networks. Our contribution is
supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to
approximate many common nonlinear systems used for benchmarking.

Introduction
Although the use of Recurrent Neural Networks (RNNs) in machine learning is boosting, also as effective building blocks
for deep learning architectures, a comprehensive understanding of their working principles is still missing1,2. Of particular
relevance are Echo State Networks (ESNs), introduced by Jaeger3 and independently by Maass et al.4 under the name of Liquid
State Machine (LSM), which emerge from RNNs due to their training simplicity. The basic idea behind ESNs is to create a
randomly connected recurrent network, called reservoir, and feed it with a signal so that the network will encode the underlying
dynamics in its internal states. The desired – task dependent – output is then generated by a readout layer (usually linear)
trained to match the states with the desired outputs. Despite the simplified training protocol, ESNs are universal function
approximators5 and have shown to be effective in many relevant tasks6–12.

These networks are known to be sensitive to the setting of hyper-parameters like the Spectral Radius (SR), the input
scaling and the sparseness degree3, which critically affect their behavior and, hence, the performance at task. Fine tuning of
hyper-parameters requires cross-validation or ad-hoc criteria for selecting the best-performing configuration. Experimental
evidence and some results from the theory show that ESNs performance is usually maximized in correspondence of a very
narrow region in hyper-parameter space called Edge of Criticality (EoC)13–20. However, we comment that beyond such a
region ESNs behave chaotically, resulting in useless and unreliable computations. At the same time, it is everything but trivial
configuring the hyper-parameters to lie on the EoC still granting a non-chaotic behavior. A very important property for ESNs is
the Echo State Property (ESP), which basically asserts that their behavior should depend on the signal driving the network only,
regardless of its initial conditions21. Despite being at the foundation of theoretical results5, the ESP in its original formulation
raises some issues, mainly because it does not account for multi-stability and is not tightly linked with properties of the specific
input signal driving the network21–23.

In this context, the analysis of the memory capacity (as measured by the ability of the network to reconstruct or remember
past inputs) of input-driven systems plays a fundamental role in the study of ESNs24–27. In particular, it is known that ESNs
are characterized by a memory–nonlinearity trade-off28–30, in the sense that introducing nonlinear dynamics in the network
degrades memory capacity. Moreover, it has been recently shown that optimizing memory capacity does not necessarily lead to
networks with higher prediction performance31.

In this paper, we propose an ESN model that eliminates critical dependence on hyper-parameters, resulting in models
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Figure 1. Schematic representation of an ESN with a 4-dimensional input, a mono-dimensional output and N = 7 neurons in
the reservoir. Fixed connections are drawn using continuous lines while dashed lines represent connections that are learned.

that cannot enter a chaotic regime. In addition to this major outcome, such networks denote nonlinear behavior in phase
space characterized by a large memory of past inputs: the proposed model generates dynamics that are rich-enough to
approximate nonlinear systems typically used as benchmarks. Our contribution is based on a nonlinear activation function that
normalizes neuron activations on a hyper-sphere. We show that the spectral radius of the reservoir, which is the most important
hyper-parameter for controlling the ESN behavior, plays a marginal role in influencing the stability of the proposed model,
although it has an impact on the capability of the network to memorize past inputs. Our theoretical analysis demonstrates
that this property derives from the impossibility for the system to display a chaotic behavior: in fact, the maximum Lyapunov
exponent is always null. An interpretation of this very important outcome is that the network always operates on the EoC,
regardless of the setting chosen for its hyper-parameters. We tested the memory of our model on a series of benchmark
time-series, showing that its performance for memorization tasks is comparable with that exposed by linear networks. We
also explored the memory–nonlinearity trade–off following30, showing that our model outperforms networks with linear and
hyperbolical activations when both memory and nonlinearity are required by the task at hand.

Results
Echo state networks
An ESN without output feedback connections is defined as:

ak =Wxk−1+Win sk (1a)
xk = φ(ak) (1b)
yk =Woutxk (1c)

where xk ∈ RN is the system state at time-step k, N is the number of hidden neurons composing the network reservoir, and
W ∈ RN×N is the connection matrix of the reservoir. The signal value at time k, sk ∈ RNin , is processed by the input-to-reservoir
matrix Win ∈ RN×Nin . The activation function φ usually takes the form of the hyperbolic tangent function, for which the network
is a universal function approximator5. Also linear networks (i.e., when φ is the identity) are commonly studied, both for the
proven impact on applications and the very interesting results that can be derived in closed-form24,25, 27, 31, 32. Other activation
functions have been proposed in the neural networks literature, including those that normalize the activation values on a closed
hyper-surface33 and those based on non-parametric estimation via composition of kernel functions34.

The output y ∈ RNout is generated by the matrix Wout, whose weights are learned: generally by ridge regression or lasso3,35
but also with online training mechanisms36. In ESNs, the training phase does not affect the dynamics of the system, which are
de facto task-independent. It follows that once a suitable reservoir rich in dynamics is generated, the same reservoir may serve
to perform different tasks. A schematic representation of and ESN in depicted in Fig. 1

Self-normalizing activation function
Here, we propose a new model for ESNs characterized by the use of a particular self-normalizing activation function that
provides important features to the resulting network. Notably, the proposed activation function allows the network to exhibit
nonlinear behaviors and, at the same time, provides memory properties similar to those observed for linear networks. This
superior memory capacity is linked to the fact that the network never displays a chaotic behavior: we will show that the
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maximum Lyapunov exponent is always zero, implying that the network operates on the EoC. The proposed activation function
guarantees that the SR of the reservoir matrix (whose value is used as a control parameter) can vary in a wide range without
affecting the network stability.

The proposed self-normalizing activation function is

ak =Wxk−1+Win sk (2a)

xk = r
ak
‖ak ‖

(2b)

and leaves the readout (1c) unaltered. The normalization in Eq. 2b projects the network pre-activation ak onto an (N −1)-
dimensional hyper-sphere SN−1

r := {p ∈ RN, ‖p‖ = r} of radius r. Fig. 2 illustrates the normalization operator applied to the
state. Note that the operation (2b) is not element-wise like most of activation functions as its effect is global, meaning that a
neuron’s activation value depends on all other values.

Universal function approximation property
The fact that recurrent neural networks are universal function approximators has been proven in previous works37,38 and some
results on the universality of reservoir-based computation are given in4,39. Recently, Grigoryeva and Ortega5 proved that ESNs
share the same property. Here, we show that the universal function approximation property also holds for the proposed ESNs
model (2). To this end, we define a squashing function as a map f : R→ [−1,1] that is non decreasing and saturating, i.e.,
limx→±∞ f (x) = ±1. We note that φi(x) := xi/‖x‖ can be intended as a squashing function for each ith component. In the same
work5, the authors show that an ESN in the form (1) is a universal function approximator provided it satisfies the contractivity
condition: ‖φ(x1)−φ(x2)‖ ≤ ‖x1− x2‖ for each x1 and x2, when φ is a squashing function. Jaeger and Haas3 showed that this
condition is sufficient to grant the ESP, implying that ESNs are universal approximators.

We prove in the Methods section that (2) grants the contractivity condition, provided that:

σmin(W) ≥ 1+
‖Win‖‖ smax‖

r
(3)

where σmin(W) is the smallest singular value of matrix W and ‖ smax‖ denotes the largest norm associated to an input. Eq. 3
results in a sufficient yet not necessary condition that may be understood as requiring that the input will never be strong enough
to contrast the expansive dynamics of the system, leading the network state inside the hyper-sphere of radius r . In fact, unless
the signal is explicitly designed for violating such a condition, it will very likely not bring the system inside the hyper-sphere as
long as the norm of W is large enough compared to the signal variance.

Network state dynamics: the autonomous case
We now discuss the network state dynamics in the autonomous case, i.e., in the absence of input. This allows us to prove why
the network cannot be chaotic.

From now on, we assume r = 1 as this does not affect the dynamics, provided that condition (3) is satisfied. From (2), the
system state dynamics in the autonomous case reads:

φ(x) := Wx

‖Wx‖ (4)

At time-step n the system state is given by

xn = φ(xn−1) =
Wxn−1
‖Wxn−1‖

=
W

‖WW xn−2
‖Wxn−2 ‖ ‖

Wxn−2
‖Wxn−2‖

=
W2xn−2

‖W2xn−2‖
(5)

By iterating this procedure, one obtains:

xn := φn(x0) =
Wnx0
‖Wnx0‖

(6)

where x0 is the initial state. This implies that, for the autonomous case, a system evolving for n time-steps coincides with
updating the state by performing n matrix multiplications and projecting the outcome only at the end.

It is worth to comment that this holds also if matrix W changes over time. In fact, let Wn :=W(n) be W at time time n. Then,
the evolution of the dynamical system reads:

xn := φn(x0) =
WnWn−1 . . .W2W1x0
‖WnWn−1 . . .W2W1x0‖

(7)

Furthermore, note that a system described by matrix W and a system characterized by W ′ = aW coincide. In turn, this implies
that the SR of the matrix does not alter the dynamics in the autonomous case.
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Figure 2. Example of the behavior of the proposed model in a 2-dimensional scenario. The blue lines represent the linear
update step of Eq. (2a), while the dashed lines denote the projection of Eq. (2b). The red lines represent the actual steps
performed by the system. Note that condition (3) accounts for the fact that the linear step must never bring the system state
inside the hyper-sphere.

Edge of criticality
When tuning the hyper-parameters of ESNs, one usually tries to bring the system close to the EoC, since it is in that region that
their performance is optimal14. This can be explained by the fact that, when operating in that regime, the system introduces rich
dynamics without denoting chaotic behavior.

Here, we show that the proposed recurrent model (2) cannot enter a chaotic regime. Notably, we prove that, when the
number of neurons in the network is large, the maximum (local) Lyapunov exponent cannot be positive, hence neglecting the
possibility to introduce a chaotic behavior. To this end, we determine the Jacobian matrix of (2b) and then show that, since its
spectral radius tends to 1, the maximum Local Lyapunov Exponent (LLE) must be null. The Jacobian matrix of (2b) reads:

Ji j =
∂

∂xi
φ j(x) =

N∑
l

∂φ j

∂al

∂al
∂xi
=

Wi j

‖a‖

(
1−

aiaj

‖a‖2

)
(8)

where the time index k is omitted to ease the notation. We observe that, asymptotically for large networks (N→∞), we have
that ai/‖a‖ → 0 for each i, meaning that the Jacobian matrix reduces to J(x) =W/‖Wx‖. As we are considering the case with
r = 1, we know that ‖x‖ = 1.

This allows us to approximate the norm of W with its SR ρ = ρ(W),

J ≈ W
‖Wx‖ ≈

W
ρ
. (9)

Under this approximation (9), the largest eigenvalue of J must be 1 as the SR ρ is the largest absolute value among the
eigenvalues of W . We thus characterize the global behavior of (2b) by considering the maximum LLE14, which is defined as:

Λ := lim
n→∞

1
n

log

(
n∏
k

ρk

)
(10)

where ρk is the spectral radius of the Jacobian at time-step k. Eq. 10 implies that Λ = 0 as n→∞, hence proving our claim.
In order to demonstrate that Λ = 0 holds also for networks with a finite number N of neurons in the recurrent layer, we

numerically compute the maximum LLE by considering the Jacobian in (8). The results are displayed in Fig. 3. Fig. 3 panel (a)
shows the average value of the maximum LLE with the related standard deviation obtained for different values of SR. Results
show that the LLE is not significantly different from zero. In Fig. 3 panel (b), instead, we show the Lyapunov spectrum of
a network with N = 100 neurons in the recurrent layer, obtained for different SR values. Again, our results show that the
maximum LLE of (2b) is zero for finite-size networks, regardless of the values chosen for the SR.

4/16



Figure 3. Panel (a) shows LLEs for different value of the SR. Each point in the plot represents the mean of 10 different
realizations, using a network with N = 500 neurons. In panel (b) examples of the Lyapunov spectrum for different
100-dimensional networks are plotted. The Lyapunov exponents are ordered by decreasing magnitude. Note that the largest
exponent is always zero.

Network state dynamics: input-driven case
Let us define the “effective input” contributing to the neuron activation as u :=Win s. Accordingly, Eq. 2a takes on the following
form:

ak =Wxk−1+ uk, (11)

where uk operates as a time-dependent bias vector. Let us define the normalization factor as:

Nk = ‖Wxk−1+ uk ‖, (12)

Then, as shown in the Methods section, the state at time-step n can be written as:

xn = M (n,0)x0+

n∑
k=1

M (n,k)uk (13)

where

M (n,k) :=
Wn−k∏n
l=k Nl

. (14)

By looking at (13), it is possible to note that each uk is multiplied by a time-dependent matrix, i.e., the network’s final state
xn is obtained as a linear combination of all previous inputs.

Memory of past inputs
Here, we analyze the ability of the proposed model (2) to retain memory of past inputs in the state. In order to perform such
analysis, we define a measure of network’s memory that quantifies the impact of past inputs on current state xn. Our proposal
shares similarities with a memory measure called Fisher memory, first proposed by Ganguli et al.27 and then further developed
in24,32. However, our measure can be easily applied also to non-linear networks like the one Eq. 2 proposed here, justifying the
analysis discussed in the following.

Considering one time-step in the past, we have:

xn =
W
Nn

xn−1+
1

Nn
un (15)

5/16



All past history of the signal is processed in xn−1. Note that (15) keeps the same form for every n. Going backward in time one
more step, we obtain:

xn =
W
Nn

(
W

Nn−1
xn−2+

1
Nn−1

un−1

)
+

1
Nn

un (16)

As ‖xn‖ = ‖xn−1‖ = ‖xn−2‖ = 1, we see that there is a sort of recursive structure in this procedure, where each incoming input
is summed to the current state and then their sum is normalized. This is a key feature of the proposed architecture. In fact, it
guarantees that each input will have an impact on the state, since the norm of the activations will not be too big or too small,
because of the normalization. We now express this idea in a more formal way.

The norm of (14) can be written as

‖M (n,k)‖ = 1∏n
l=k Nl

‖Wn−k ‖ n−k�1≈ 1∏n
l=k Nl

ρn−k (17)

where the approximation holds thanks to the Gelfand’s formula1. If the input is null, we expect each Nl to be of the order of ρ as
‖xl ‖ = 1. So we write:

Nl = ‖Wxl−1+ ul ‖ = ρ+ δl (18)

where δl denotes the impact of the l-th input on the l-th normalization factor. Its presence is due to the fact that without any
input Nl would be approximately equal to ρ, while the input modifies the state and so the normalization value will be modified
accordingly. The value δl is introduced to account for this fact: δ: = Nl − ρ.

If we assume that each input produces a similar effect on the state (i.e. δl = δ for every l), we finally obtain:

‖M (n,k)‖ ≈ ρn−k

(ρ+ δ)n−k
(19)

We note that such assumption is reasonable for inputs that are symmetrically distributed around a mean value with relatively
small variance, e.g. for Gaussian or uniformly distributed inputs (as demonstrated by our results). However, our argument might
not hold for all types of inputs and a more detailed analysis is left as future research.

We define the memory of the networkMα(k |n) as the influence of input at time k on the network state at time n. More
formally, having defined α := ρ/δ (since (19) only depends on this ratio), we use (19) to define the memory as:

Mα(k |n) :=
( α

α+1

)n−k
=

(
1− 1

α+1

)n−k
(20)

Eq. 20 goes to 0 (i.e., no impact of the input on the states) as α→ 0 and tends to 1 for α→∞, implying that for an infinitely
large SR the network perfectly remembers its past inputs, regardless of their occurrence in the past. Note that (20) does not
depend on k and n individually, but only on their difference (elapsed time): the larger the difference, the lower the value of
Mα(k |n), meaning that far away inputs have less impact on the current state.

Memory loss
By using (20), we define the memory loss between state xn and xm of the signal at time-step k (with m > n > k and m = n+ τ)
as follows:

∆M(k |m,n) :=Mα(k |m)−Mα(k |n) =
( α

α+1

)m−k
−

( α

α+1

)n−k
=
(α+1)k
αk

αn

(α+1)n

(
ατ

(α+1)τ −1
)

=

(
1− 1

α+1

)n (
1+

1
α

)k ((
1− 1

α+1

)τ
−1

)
≤ 0

(21)

For very large values of α, we have ∆M(k |m,n) → 0, meaning that in our model (2b) larger spectral radii eliminate memory
losses of past inputs. Now, we want to assess if inputs in the far past have higher/lower impact on the state more than recent

1The Gelfand’s formula40 states that for any matrix norm ρ(A) = limk→∞
Ak

 1
k .
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inputs. To this end, we selected n > k > l and defined k = n− a and l = n− b, leading to b > a > 0 and b = a+ δ. Define:

∆M(k, l |n) =M(n− a|n)−M(n− a− δ |n) = αa

(α+1)a −
αa+δ

(α+1)a+δ =

=
αa

(α+1)a

(
1− αδ

(α+1)δ

)
=

(
1− 1

α+1

)a (
1−

(
1− 1

α+1

)δ)
≥ 0

(22)

We have that limδ→∞∆M(n− a,n− a− δ |n) =
(
1− 1

α+1

)a
, showing how the impact of an input that is infinitely far in the

past is not null compared with one that is only a <∞ steps behind the current state. This implies that the proposed network is
able to preserve in the network state (partial) information from all inputs observed so far.

Linear networks
In order to assess the memory of linear models, we perform the same analysis for linear RNNs (i.e., xn = an) by using the
definitions given in the previous section. In this case, an expression for the memory can be obtained straightforwardly and reads:

ML(k |n) := ρn−k (23)

It is worth noting that there is no dependency on δ and, therefore, on the input. Just like before, we have the memory loss of the
signal at time-step k between state xn and xm, as:

∆ML(k |m,n) =ML(k |m)−ML(k |n) =ML(k |n+ τ)−ML(k |n) = (ρτ −1)ρn−k ≤ 0 (24)

where we set m > n > k and m = n+ τ. As before, we also discuss the case of two different inputs observed before time-step n.
By selecting time instances n > k > l, k = n− a and l = n− b, we have b > a > 0 allowing us to write b = a+ δ. As such:

∆ML(k, l |n) =ML(k |n)−ML(l |n) = (1− ρδ)ρa ≥ 0. (25)

We see that in both (24) and (25) the memory loss tends to zero as the spectral radius tends to one, which is the critical point for
linear systems. So, according to our analysis, linear networks should maximize their ability to remember past inputs when their
SR in close to one and, moreover, their memory should be the same disregarding the particular signal they are dealing with. We
will see in the next section that both these claims are confirmed by our simulations.

Hyperbolic tangent
We now extend the analysis to standard ESNs, i.e., those using a tanh activation function. Define φ := tanh (applied element-wise).
Then, for generic scalars a and b, when |b| � 1 the following approximation holds:

φ(a+ b) = φ(a)+φ(b)
1+φ(a)φ(b) ≈ φ(a)+φ(b) (26)

When a is the state and b is the input, our approximation can be understood as a small-input approximation41. Then, the
state-update reads:

xn = φ(Wxn−1+ un) ≈ φ(Wxn−1)+φ(un)
= φ(Wφ(Wxn−2+un−1))+φ(un) ≈ φ(Wφ(Wxn−2))+φ(Wφ(un−1))+φ(un)

(27)

Thus, applying the same argument used in the previous cases, it is possible to write:

‖xn‖ = S(0)ρ (φ(‖un)‖)+ S(1)ρ (φ(‖un−1‖))+ · · ·+ S(n)ρ (φ(‖u0‖)) =
n∑

k=0
S(n−k)ρ (φ(‖uk ‖)) (28)

where we defined:

S(n)ρ (ξ) := φ(ρ · . . .φ(ρ · φ(︸             ︷︷             ︸
n times

ξ))) (29)

We see that, differently from the previous cases, the final state xn is a sum of nonlinear functions of the signal uk . Each signal
element uk is encoded in the network state by first multiplying it by ρ and then passing the outcome through the nonlinearity
φ(·). This implies that, for networks equipped with hyperbolic tangent function, larger spectral radii favour the forgetting of
inputs (as we are in the non-linear region of φ(·)). On the other hand, for small spectral radii the network operates in the linear
regime of the hyperbolic tangent and the network behaves like in the linear case.

A plot depicting the decay of the memory of input at time-step k for all three cases described above is shown in Fig. 4. The
trends demonstrate that, in all cases, the decay is consistent with our theoretical predictions.
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Figure 4. Decay of the memory in the cases associated with expressions (20), (23), and (28). In all cases, the decay is
consistent with the predictions. The memory for the hyperbolic tangent is estimated assuming a signal of magnitude 1.

Performance on memory tasks
We now perform experiments to assess the ability of the proposed model to reproduce inputs seen in the past, meaning that
the desired output at time-step k is yk = uk−τ , where τ ranges from 0 to 100. We compare our model with a linear network
and a network with hyperbolic tangent (tanh) activation functions. We use fixed, but reasonable hyper-parameters for all
networks, since in this case we are only interested in analyzing the network behavior on different tasks. In particular, we selected
hyper-parameters that worked well in all cases taken into account; in preliminary experiments, we noted that different values did
not result in substantial (qualitative) changes of the results. The number of neuron N is fixed to 1000 for all models. For linear
and nonlinear networks, the input scaling (a constant scaling factor of the input signal) is fixed to 1 and the SR equals ρ = 0.95.
For the proposed model (2), the input scaling is chosen to be 0.01, while the SR is ρ = 15. For the sake of simplicity, in what
follows we refer to ESNs resulting from the use of (2) as “spherical reservoir”.

To evaluate the performance of the network, we use the accuracy metric defined as γ =max{1−NRMSE,0}, where the
Normalized Root Mean Squared Error (NRMSE) is defined as:

NRMSE :=

√
〈‖yk − ŷk ‖2〉
〈‖yk − 〈yk〉‖2〉

. (30)

Here, ŷk denotes the computed output and 〈·〉 represents the time average over all time-steps taken into account. In the following,
we report the accuracy γ while varying τ in the past for various benchmark tasks. Each result in the plot is computed using the
average over 20 runs with different network initializations. The networks are trained on a data set of length Ltrain = 5000 and the
associated performance is evaluated using a test set of length Ltest = 2000. The shaded area represents the standard deviation.
All the considered signals were normalized to have unit variance.

White noise
In this task, the network is fed with white noise uniformly distributed in the [−1,1] interval. Results are shown in Fig.5, panel
(a). We note that networks using the spherical reservoir have a performance comparable with linear networks, while tanh
networks do not correctly reconstruct the signal when k exceeds 20. It is worth highlighting the similarity of the plots shown
here with our theoretical predictions about the memory (Eqs. (20), (23), and (28)) shown in Fig. 4.

Multiple superimposed oscillators
The network is fed with Multiple Superimposed Oscillators MSO with 3 incommensurable frequencies:

u(k) = sin(0.2k)+ sin(0.311k)+ sin(0.42k) (31)

Results are shown in Fig.5, panel (b). This task is difficult because of the multiple time scales characterizing the inputs3. We
note the performance of the linear and the spherical reservoirs are again similar and both outperform the network using the
hyperbolic tangent. The accuracy peak when k ≈ 60 is due to the fact that the autocorrelation of the signal reaches its maximum
value at that time-step.
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Figure 5. Results of the experiments on memory for different benchmarks. Panel (a) displays the white noise memorization
task, (b) the MSO, (c) the x-coordinate of the Lorenz system, (d) the Mackey-Glass series and (e) the Santa Fe laser dataset. As
described in the legend (f), different line types account for results obtained on training and test data. The shaded areas represent
the standard deviations, computed using 20 different realization for each point.
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Lorenz series
The Lorenz system is a popular mathematical model, originally developed to describe atmospheric convection.

Ûx = σ(y− x),
Ûy = x(ρ− z)− y,
Ûz = xy− βz.

(32)

It is well-known that this system is chaotic when σ = 10, β = 8
3 and ρ = 28. We simulated the system with these parameters and

then fed the network with the x coordinate only. Results are shown in Fig.5, panel (c). Also in this case, while the accuracy
for spherical and linear networks does not seem to be affected by k, the performance of networks using the tanh activation
dramatically decreases when k is large. This stresses the fact that non-linear networks are significantly penalized when they are
requested to memorize past inputs.

Mackley-Glass system
The Mackley-Glass system is given by the following delayed differential equation:

Ûx(t) = −βx(t)+ αx(t −λ)
1+ x(t −λ) (33)

In our experiments, we simulated the system using standard parameters, that is, λ = 17, α = 0.2 and β = 0.1. Results are shown
in Fig.5, panel (d). Note that in this case the performance of the network with spherical reservoir is comparable with the one
obtained using the hyperbolic tangent and both of them are outperformed by the linear networks.

Santa Fe laser dataset
The Santa Fe laser dataset is a chaotic time series obtained from laser experiments. The results are shown in Fig.5, panel (e).
Also in this case the hyperbolic tangent networks do not manage to remember the signal, while the other systems show the usual
behavior.

Memory/non-linearity trade-off
Here, we evaluate the capability of the network to deal with tasks characterized by tunable memory and non-linearity features30.
The network is fed with a signal where the uks are univariate random variables drawn from a uniform distribution in [−1,1]. The
network is then trained to reconstruct the desired output of yk = sin(ν ·uk−τ). We see that τ accounts for the memory required
to correctly solve the task, while ν controls the amount non-linearity involved in the computation. For each configuration of τ
and ν chosen in suitable ranges, we run a grid search on the range of admissible values of SR and input scaling. Notably, we
considered 20 equally-spaced values of the SR and for the input scaling. For networks using hyperbolic tangent, the SR varies
in [0.2,3]; [0.2,1.5] for linear networks, and [0.2,10] for networks with spherical reservoir. The input scaling always ranges in
[0.01,2]. 2 We then choose the hyper-parameters configuration that minimizes (30) on a training set of length Ltrain = 500 and
then assess the error on a test set with Ltest = 200.

In Figures 7, 8, and 9, we show the NRMSE for the task described above for different values of ν and τ, and the ranges of
the input scaling factor and the spectral radius which performed best for the hyperbolic tangent, linear and spherical activation
function, respectively. The results of our simulations agree with those reported in30 and, most importantly, confirm our
theoretical prediction: the proposed model possess memory of past inputs that is comparable with the one of linear networks
but, at the same time, it is also able to perform nonlinear computations. This explains why the proposed model denotes
the best performance when the task requires both memory and nonlinearity, i.e., when both τ and ν are large. Predictions
obtained for a specific instance of this task requiring both features are given in Fig 6, showing how the proposed model
outperforms the competitors. In order to explore the memory-nonlinearity relationship we followed the experimental design
proposed in30: our goal is to study the memory property of the proposed model and not to develop a model specifically
designed to maximize the compromise between memory and nonlinearity. The reader interested in models that aim at explicitly
tackling the memory–nonlinearity problem may refer to recently-developed hybrid systems30,42 which try to deal with the
memory–nonlinearity trade–off by combining, in different ways, linear and non-linear units so that the network can exploit a
combination of them according to the problem at hand. These approaches introduce new hyper-parameters which, basically,
allow to control the memory–nonlinearity trade–off. Future works will investigate such a trade–off.

2This choice of exploring large values of SR for the hyperspherical case is motivated by the fact that condition (3) must be satisfied in order for the network
to work properly: choosing a large SR will also lead to larger σmin(W ), as discussed in the ‘Universal function approximation property’ section.
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Figure 6. Comparison of the network prediction the memory–nonlinearity task for ν = 2.5 and τ = 10. The hyper-parameters of
the networks are the same used to generate Fig. 5. Here the accuracy values are γtanh = 0.12, γspherical = 0.63 and γlinear = 0.61.
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Figure 7. Results for the hyperbolic tangent activation function. The network performs as expected: the error grows with the
memory required to solve the task. The choice of the spectral radius displays a pattern, where larger SRs are preferred when
more memory is required. The scaling factor tends to be small for almost every configuration.

11/16



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

NRMSE

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

scaling factor

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

spectral radius

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8. Performance of linear networks. We note that τ seems to have no significant effect on the performance. In fact, we
note very large errors when the nonlinearity of the task is high. The choice of the scaling factor and of the spectral radius shows
a really weak tendency to certain values, indicating that the performance is only weakly influenced by the hyper-parameters.
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Figure 9. Performance of the proposed model. We see that the network performs reasonably well for all the tasks displaying
only a weak dependency on the memory. Moreover the spectral radius does not to play any role in the network performance.
The choice of the scaling factor denotes similar patterns with the hyperbolic tangent case.
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Discussion
In this work, we studied the properties of ESNs equipped with an activation function that projects at each time-step the network
state on a hyper-sphere. The proposed activation function is global, contrarily to most activation functions used in the literature,
meaning that the activation value of a neuron depends on the activations of all other neurons in the recurrent layer. Here, we
first proved that the proposed model is a universal approximator just like regular ESNs and gave sufficient conditions to support
this claim. Our theoretical analysis shows that the behavior of the resulting network is never chaotic, regardless of the setting of
the main hyper-parameters affecting its behavior in phase space. This claim was supported both analytically and experimentally
by showing that the maximun Lyapunov exponent is always zero, implying that the proposed model always operates on the
EoCs. This leads to networks which are (globally) stable for any hyper-parameter configurations, regardless of the particular
input signal driving the network, hence solving stability problems that might affect ESNs.

The proposed activation function allows the model to display a memory capacity comparable with the one of linear ESNs,
but its intrinsic nonlinearity makes it capable to deal with tasks for which rich dynamics are required. To support this claim, we
developed a novel theoretical framework to analyze the memory of the network. By taking inspiration from the Fisher memory
proposed by Ganguli et al.27, we focused on quantifying how much past inputs are encoded in future network states. The
developed theoretical framework allowed us to account for the nonlinearity of the proposed model and predicted a memory
capacity comparable with the one of linear ESNs. This theoretical prediction was validated experimentally by studying the
behavior of the memory loss using white noise as inputs as well as well-known benchmarks used in the literature. Finally,
we experimentally verified that the proposed model offers an optimal balance of nonlinearity and memory, showing that it
outperforms both linear and ESNs with tanh activation functions in those tasks where both features are required at the same time.

Methods
Contractivity condition
The universal approximation property, as exhaustively discussed in5, can be proved for an ESN of the form (1b) provided that it
has the ESP. To prove the ESP, it is sufficient to show that the network has the contractivity condition, i.e., that for each x and y
in the domain of the activation function φ, it must be true that:

‖φ(x)−φ(y)‖ ≤ ‖x− y‖ (34)

Let us introduce the the notation x̂ := x/‖x‖ and ŷ := y/‖y‖. Taking the square of the norm, one gets:

‖φ(x)−φ(y)‖2 = r2(2−2(x̂ · ŷ)) ≤ r2
((
‖x‖
‖y‖ +

‖y‖
‖x‖

)
−2x̂ · ŷ

)
(35)

Where a · b is the scalar product between two vectors and the inequality a
b +

b
a ≥ 2 follows from the fact that (a− b)2 =

a2+ b2−2ab > 0 for all a,b > 0. Now, we assume ‖x‖, ‖y‖ > r and show that:

r2 ·
(
‖x‖
‖y‖ +

‖y‖
‖x‖ −2x̂ · ŷ

)
≤ ‖x‖‖y‖

(
‖x‖
‖y‖ +

‖y‖
‖x‖ −2x̂ · ŷ

)
= ‖x‖2+ ‖y‖2−2(‖x‖)(‖y‖)x̂ · ŷ︸               ︷︷               ︸

2x ·y

= ‖x− y‖22 (36)

proving the contractivity condition (34).
We see that the only condition needed is ‖x‖, ‖y‖ > r , which means that the linear part of the update (2a) must map states

outside the hyper-sphere of radius r . Finally, by applying properties of norms, we observe that:

‖W · xk +Win · sk ‖ ≥ ‖W · xk ‖ − ‖Win · sk ‖ ≥ σmin(W)r − ‖Win‖‖ smax‖ (37)

and asking this to be larger than r results in the condition (3).

Input-driven dynamics
Here we show how to derive (13). Consider a dynamical system evolving according to (2): if we explicitly expand the first steps
from the initial state x0 we obtain:

x1 =
Wx0+ u1
‖Wx0+ u1‖

=
Wx0+ u1

N1
=

W
N1

x0+
1

N1
u1 (38)

x2 =
Wx1+ u1

N2
=

W2

N2N1
x0+

W
N2N1

u1+
1

N2
u2 (39)

x3 =
Wx2+ u3

N3
=

W3

N3N2N1
x0+

W2

N3N2N1
u1+

W
N3N2

u2+
1

N3
u3 (40)
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So that the general case can be written as:

xn =
Wxn−1+ un

Nn
=

Wn

NnNn−1 . . .N1
x0+

Wn−1

NnNn−1 . . .N1
u1+

Wn−2

NnNn−1 . . .N2
u2+ · · ·+

1
Nn

un (41)

and in a more compact form as follows:

xn = M (n,0)x0+

n∑
k=1

M (n,k)uk (42)

where

M (n,k) :=
Wn−k∏n
l=k Nl

(43)

and N0 = 1.
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