
ON TWO PHASE FREE BOUNDARY PROBLEMS GOVERNED

BY ELLIPTIC EQUATIONS WITH DISTRIBUTED SOURCES

Daniela De Silva

Department of Mathematics, Barnard College, Columbia University

New York, NY 10027, USA

Fausto Ferrari

Dipartimento di Matematica dell’Università di Bologna
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Abstract. We present some recent progress on the analysis of two-phase free
boundary problems governed by elliptic operators, with non-zero right hand

side. We also discuss on several open questions, object of future investigations.

1. Introductory examples. In the last few years, a significant progress has been
achieved in the analysis of free boundary problems (f.b.p.) governed by elliptic
equations with forcing terms, in particular on the regularity issues. In this brief
survey we describe the new results, ideas and techniques introduced in the paper
[12] by De Silva and subsequently refined in [16], [13], [14] to cover a broad spectrum
of applications. In absence of distributed sources, this theory has been developped
by a number of authors along the ideas of Caffarelli in the seminal papers [5, 6],
with a substantially different approach that we shall briefly recall and comment
later on.

Before introducing the precise setting we are going to work in, we exhibit a few
motivating examples.

The first one comes from classical hydrodynamics and concerns travelling grav-
ity waves on the surface of an ideal fluid (that is with constant density, inviscid,
no surface tension). The motion is assumed to be two dimensional in a vertical
(x, y)−plane. In a reference frame moving with the waves, the motion is steady
and the fluid occupies a fixed region Ω which lies above a flat bottom y = 0 and
below an unknown free surface F.
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If the flow is incompressible with constant speed, one is reduced to seek for a
stream function ψ that solves the following one phase f.b. problem

∆ψ = −γ(ψ) in Ω

0 < (x, y) < B in Ω

= B on {y = 0}

ψ = 0, on F (ψ) ≡ {ψ = 0}

|∇ψ|2 = −2gy + q on F (ψ) .

(1)

The function γ : [0, B]→ R is the so called vorticity function and the first equation
expresses a functional dependence between ψ and the vorticity ω = ∆ψ.

The last equation is the Bernoulli law at the free surface F (ψ); B and q are given
constants. Of particular interest are the periodic waves in which F (ψ) is periodic
along the horizontal direction.

A classical conjecture of Stokes in the irrotational case γ = 0 refers to the ex-
istence of the so called extreme waves, exhibiting at sharp crests a corner with
included angle of 120◦. At these points, called stagnation points, the velocity of
the fluid relative to the reference frame must be zero, that is q − 2gy = 0. Also,
between sharp crests the wave profile is conjectured to be strictly convex (hence
locally Lipschitz). The Stokes conjecture has been proved in [2] and in [22].

The case γ 6= 0, γ smooth, has been recently investigated by [24] and [25]: a
symmetric wave, locally monotone at either sides of a stagnation point, at these
points has either a 120◦ corner or an horizontal tangent.

Among the questions left open in the above papers there is the regularity of the
wave profile away from stagnation points. From [11] we know that in these regions
F (ψ) is locally Lipschitz. In [12] is proved that indeed F (ψ) is smooth.

Back in 1956 Batchelor proposed a model for large Reynolds number limits of the
steady Navier-Stokes equations that leads to the following free boundary problem
for a two dimensional flow with closed streamlines.

Let Ω be a bounded domain in the plane, whose boundary is a simple closed
curve Γ. Let γ be another simple closed curve contained in Ω, a priori unknown
(the free boundary). Call Ω1 the annular domain bounded by Γ and γ and Ω2 the
domain bounded by γ.

Given two constants ω > 0 and µ < 0, we seek for two functions ψ1, ψ2 solutions
of the following so called Prandtl-Batchelor system: ∆ψ1 = 0 in Ω1 ψ1 = 0 on γ, ψ1 = µ on Γ

∆ψ2 = ω in Ω2 ψ2 = 0 on γ.

Moreover, the following jump condition on the tangential velocities holds on γ :

|∇ψ1|2 − |∇ψ2|2 = σ

for some constant σ ≥ 0.
Thus, ψ1 is a stream function for an irrotational flow in Ω2, and ψ2 is a stream

function for a ω−vorticity flow in Ω2.



The Prandtl-Batchelor problem is somehow connected with the minimization
problem, arising in flow of two fluids in jets and cavities1,

J (u) =

∫
Ω


n∑

i,j=1

aij (x)uxiuxj − f (x)u+ q (x)λ (u)

→ min

over u ∈ g +H1
0 (Ω), with q ≥ c > 0 a.e. and

λ (u) =

{
λ1 u < 0
λ2 u > 0

λ1, λ2 ≥ Λ ≡ λ1 − λ2 > 0, 0 ≤ λ (0) ≤ λ2.

Here the free boundary condition takes the form(
u+
ν∗
)2 − (u−ν∗)2 = Λq (x)

where u+
ν∗ and u−ν∗ denote the conormal derivatives of u, in the inward directions

to the positive and negative phase, respectively.
When n = 2, aij = δij and λ (u) = − (2ωu+ σ)χ{u<0}, J can be written in the

form

J (u) =

∫
Ω

|∇u|2 − ω
∫
{u<0}

u+ σ |{u < 0}|

and in [17] it is shown that a minimizer of J solves formally the Prandtl-Batchelor
system, but the author could not derive the free boundary condition.

Thus, there is no satisfactory theory for this problem. Viscosity solutions are
Lipschitz across γ as shown in [8], but neither existence nor regularity is known
(uniqueness fails already in the radial case, where two explicit solution can be
found).

Here we shall prove that flat or Lipschitz free boundaries are smooth (see [13]).
Other examples come from limits of singular perturbation problems with forcing

term as in [20], where the authors analyze solutions arising in the study of flame
propagation with nonlocal effects.

2. Main definitions and results. All the model examples in Section 1 fit in the
following general framework. In a bounded domain Ω ⊂ Rn, consider the problem Lu = f in Ω+(u) ∪ Ω−(u)

u+
ν = G(u−ν , x) on F (u) = ∂Ω+(u) ∩ Ω,

(2)

where

Ω+(u) = {x ∈ Ω : u(x) > 0}, Ω−(u) = {x ∈ Ω : u(x) ≤ 0}◦.
Here f is bounded on Ω and continuous in Ω+(u)∪Ω−(u), while u+

ν and u−ν denote
the normal derivatives in the inward direction to Ω+(u) and Ω−(u) respectively.
F (u) is called the free boundary.
L is a uniformly elliptic operator with ellipticity constants λ,Λ > 0, in nondiver-

gence form

Lu = Tr
(
A (x)D2u

)
+ b (x) · ∇u (3)

with Hölder continuous coefficients, or a fully nonlinear operator

Lu = F
(
D2u

)
(F (O) = 0) (4)

where D2u is the Hessian matrix of u.

1See [ACF] for the case f = 0, aij = δij .



Expressely note that, in the fully nonlinear case, we assume for F neither con-
cavity nor homogeneity of degree one. Also observe that if F is an operator in our
class then for every r > 0

Fr(M) =
1

r
F(rM)

is still an operator in the same class.
The function

G(η, x) : [0,∞)× Ω→ (0,∞)

satisfies the following assumptions:

(H1) G(η, ·) ∈ C0,γ̄(Ω) uniformly in η; G(·, x) ∈ C1,γ̄([0, L]) for every x ∈ Ω.
(H2) Gη(·, x) > 0 with G(0, x) ≥ γ0 > 0 uniformly in x.
(H3) There exists N > 0 such that η−NG(η, x) is strictly decreasing in η, uniformly

in x.

Classical comparison sub/super solutions are defined as follows.

Definition 2.1. We say that v ∈ C(Ω) is a C2 strict (comparison) subsolution

(resp. supersolution) to our f.b.p. in Ω, if v ∈ C2(Ω+(v)) ∩ C2(Ω−(v)) and the
following conditions are satisfied:

1. Lv > f (resp. < f) in Ω+(v) ∪ Ω−(v);
2. If x0 ∈ F (v), then

v+
ν (x0) > G(v−ν (x0), x0) (resp. v+

ν (x0) < G(v−ν (x0), x0), v+
ν (x0) 6= 0.)

Observe that the free boundary of a strict comparison sub/supersolution is C2.
Viscosity sub/super solutions are defined in the usual way. Given u, ϕ ∈ C(Ω),

we say that ϕ touches u by below (resp. above) at x0 ∈ Ω if u(x0) = ϕ(x0), and

u(x) ≥ ϕ(x) (resp. u(x) ≤ ϕ(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that ϕ touches u strictly by below
(resp. above).

Definition 2.2. Let u be a continuous function in Ω. We say that u is a viscosity
solution to our f.b.p. in Ω, if the following conditions are satisfied:

1. Lu = f in Ω+(u) ∪ Ω−(u) in the viscosity sense;

2. Let x0 ∈ F (u) and v ∈ C2(B+(v))∩C2(B−(v)) (B = Bδ(x0)) with F (v) ∈ C2.
If v touches u by below (resp.above) at x0 ∈ F (v), then

v+
ν (x0)) ≤ G(v−ν (x0)) (resp. ≥).

When f = 0 and L can be put into divergence form or Lu = F
(
D2u

)
is concave,

homogeneous of degree one, the existence of viscosity solutions has been settled by
Caffarelli in [7] and by Wang in [26], respectively. In particular, the positivity set of
u has finite perimeter and, with respect to (n− 1)−dimensional Hausdorff measure
Hn−1, a.e. points on F (u) have a normal in the measure theoretical sense.

We shall assume optimal (Lipschitz) regularity of our solution. Indeed, in our
generality, the existence of Lipschitz viscosity solutions with proper measure theo-
retical properties of the free boundary is an open problem and it will be object of
future investigations.

When L = ∆, under the assumption G(η, x)→∞, as η →∞, the Lipschitz con-
tinuity of the solution in the nonhomogeneous case has been proven in [8], Theorem
4.5, as a consequence of the following monotonicity formula:



Theorem 2.3. Let u, v be nonnegative, continuous functions in B1, with

∆u ≥ −1,∆v ≥ −1 in the sense of distributions

and u (0) = v (0) = 0, u (x) v (x) = 0 in B1. Then, for r ≤ 1/2,

Φ (r) =
1

r4

∫
Br

|∇u|2

|x|n−2

∫
Br

|∇v|2

|x|n−2 ≤ c (n)
(

1 + ‖u‖2L2(B1)

)(
1 + ‖v‖2L2(B1)

)
. (5)

Observe that if the supports of u and v were separated by a smooth surface with
normal ν at x = 0 then, by taking the limit as r → 0, we could deduce that

(uν (0))
2

(vν (0))
2 ≤ Φ (1/2) .

Hence Φ (r) “morally” gives a control in average of the product of the normal
derivatives of u at the origin.

If L is linear and can be written in divergence form an estimate like (5) is available
(see [21]) and one can reproduce the proof of Theorem 4.5 in [8], to recover the
Lipschitz continuity of a viscosity solution. Observe that then f = f(x, u,∇u) is
allowed, with f(x, ·, ·) locally bounded.

As we have said, we are mainly interested in the regularity properties of the free
boundary, in particular in proving that flat or Lipschitz free boundaries are smooth
(C1,γ).

A way to express the flatness of the free boundary is to assume that F (u) or
the zero set of u+ is trapped between two parallel hyperplanes at δ−distance from
each other, for a small δ (δ−flatness). While this looks like a somewhat strong
assumption, it is indeed a natural one since it is satisfied for example by rescaling a
solution around a point of the free boundary where there is a normal in some weak
sense (regular points), for instance in the measure theoretical one. We have seen
that in the homogeneous case Hn−1−a.e. points on F (u) are of this kind, when L is
a divergence form operator or Lu = F

(
D2u

)
. Moreover, starting form a Lipschitz

free boundary, Hn−1−a.e. points on F (u) are regular, by Rademacher Theorem.
The following results are proved in [13], [14]. A constant depending only on

(some of) the parameters n, Lip(u), λ,Λ, [aij ]C0,γ̄ , ‖b‖L∞ , ‖f‖L∞ , [G(η, ·)]C0,γ̄ , γ0

and N is called universal. The C1,γ̄ norm of G(·, x) may depend on x and enters in
a qualitative way only. We will always assume that

0 ∈ F (u) .

Theorem 2.4 (Flatness implies C1,γ). Let u be a Lipschitz viscosity solution to
(2) in B1, with Lip(u) ≤ L. Assume that f is continuous in B+

1 (u) ∪ B−1 (u),
‖f‖L∞(B1) ≤ L and G satisfies (H1)-(H3).

There exists a universal constant δ̄ > 0 such that, if

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ}, (δ − flatness) (6)

with 0 ≤ δ ≤ δ̄, then F (u) is C1,γ in B1/2.

When L is linear or if F (positively) homogeneous of degree one (or when Fr(M)
has a limit F∗(M), as r → 0, which is always homogeneous of degree one) we also
have:

Theorem 2.5. (Lipschitz implies C1,γ) Let u be a Lipschitz viscosity solution
to (2) in B1, with Lip(u) ≤ L. Assume that f is continuous in B+

1 (u) ∪ B−1 (u),
‖f‖L∞(B1) ≤ L and G satisfies (H1)-(H3). If F (u) is a Lipschitz graph in a neigh-

borhood of 0, then F (u) is C1,γ in a (smaller) neighborhood of 0.



Here some of the ideas are presented for the model case G(β, x) =
√

1 + β2.
Theorem 2.5 follows from Theorem 2.4 and the main result in [5] or [18], via a

blow-up argument.
The flatness conditions present in the literature (see, for instance [6]), are often

stated in terms of “ε- monotonicity” along a large cone of directions Γ(θ0, e) of axis
e and opening θ0. Precisely, a function u is said to be ε-monotone (ε > 0 small)
along the direction τ in the cone Γ(θ0, e) if for every ε′ ≥ ε,

u(x+ ε′τ) ≥ u(x).

A variant of Theorem 2.4 states the following (for simplicity we take L = ∆).

Theorem 2.6. ([13]) Let u be a solution to our f.b.p in B1, 0 ∈ F (u). Suppose
that u+ is non-degenerate. Then there exist θ0 < π/2 and ε0 > 0 such that if u+

is ε-monotone along every direction in Γ(θ0, en) for some ε ≤ ε0, then u+ is fully
monotone in B1/2 along any direction in Γ(θ1, en) for some θ1 depending on θ0, ε0.

In particular F (u) is Lipschitz and therefore C1,γ .

Geometrically, the ε-monotonicity of u+ can be interpreted as ε-closeness of F (u)
to the graph of a Lipschitz function. Our flatness assumption requires ε-closeness
of F (u) to a hyperplane. If ‖f‖∞ is small enough, depending on ε, it is not hard
to check that ε-flatness of F (u) implies cε-monotonicity of u+ along the directions
of a flat cone, for a c depending on its opening.

The proof of Theorem 2.6 follows immediately from the following elementary
lemma:

Lemma 2.7. Let u be a solution to to our f.b.p in B1, 0 ∈ F (u). Suppose that u+

is non-degenerate. Assume that u+ is ε-monotone along every direction in Γ(θ0, en)
for some ε ≤ ε0, then there exist a radius r0 > 0 and δ0 > 0 depending on ε0, θ0

such that u+ is δ0-flat in Br0 , that is

{xn ≤ −δ0} ⊂ Br0 ∩ {u+(x) = 0} ⊂ {xn ≤ δ0}.

3. Reduction of Theorem 2.4 to a localized form. The proof of Theorem 2.4
is based on an iterative procedure that “squeezes” our solution around an optimal
configuration Uβ (x · ν) at a geometric rate in dyadically decreasing balls. Here
Uβ = Uβ (t) is given by

Uβ (t) = αt+ − βt− β ≥ 0, α = G0 (β) ≡ G (β, 0)

and ν is a unit vector, which plays the role of the normal vector at the origin.
Uβ (x · ν) is a so-called two plane solution when f = 0.

The above plan of flatness improvement works nicely in the one phase case (then
β = 0) or as long as the two phases u+, u− are, say, comparable (nondegenerate
case). The difficulties arise when the negative phase becomes very small but at the
same time not negligible (degenerate case). In this case the flatness assumption in
Theorem 2.4 gives a control of the positive phase only, through the closeness to a
one plane solution U0 (xn) = x+

n .
As we shall see, this requires to face a dychotomy in the final iteration. On the

other hand a similar situation is already present in the homogeneous case f = 0
(see e.g. [6]).

The first step is to check that the flatness condition (6) implies that u is close to
Uβ for some β. Indeed we prove that



Lemma 3.1. Given any η > 0 there exist δ̄, ρ̄ > 0 depending only on η, n, and L
such that if δ ≤ δ̄, then

‖u− Uβ‖L∞(Bρ̄) ≤ ηρ̄ (7)

for some 0 ≤ β ≤ L.

The proof, by contradiction, follows from the following compactness result, where

Lku = Tr
(
Ak (x)D2u

)
or Lku = Fk

(
D2u

)
.

Lemma 3.2. Let uk be a sequence of (Lipschitz) viscosity solutions to
|Lkuk| ≤M, in Ω+(uk) ∪ Ω−(uk),

(u+
k )ν = Gk((u−k )ν , x), on F (uk).

Assume that:

1. uk → u∗ uniformly on compact sets of Ω
2. Ak → A∗ uniformly on compact sets of Ω, or Fk → F∗ uniformly on compact

sets of matrices,
3. Gk(η, ·)→ G(η, ·) on compact sets of Ω, uniformly on 0 ≤ η ≤ L = Lip(uk),
4. {u+

k = 0} → {(u∗)+ = 0} in the Hausdorff distance2

Then

|L∗u∗| ≤M, in Ω+(u∗) ∪ Ω−(u∗)

and u∗ satisfies the free boundary condition

(u∗)+
ν = G((u∗)−ν , x) on F (u∗),

both in the viscosity sense.

In view of Lemma 3.1, after proper rescaling, Theorem 2.4 follows from the
following result.

Lemma 3.3. Let u be a (Lipschitz) viscosity solution to our f.b.p. in B1, with
Lip (u) ≤ L. There exists a universal constant η̄ > 0 such that, if

‖u− Uβ‖L∞(B1) ≤ η̄ for some 0 ≤ β ≤ L, (8)

{xn ≤ −η̄} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ η̄}, (9)

‖f‖L∞(B1) ≤ η̄, [G(η, ·)]C0,γ̄(B1) ≤ η̄, ∀0 ≤ η ≤ L,
and, when L = Tr

(
AD2

)
+ b · ∇,

[A]C0,γ̄(B1) ≤ η̄, ‖b‖L∞(B1) ≤ η̄,

then F (u) is C1,γ in B1/2.

2 If K1,K2 are two compact sets, their Hausdorff distance is defined by

dH (K1,K2) = inf {α > 0,K1 ⊂ Nα (K2) and K2 ⊂ Nα (K1)}

where

Nα (K) = {x ∈ Rn; d (x,K) ≤ α} .
Equivalently,

dH (K1,K2) = ‖d (x,K1)− d (x,K2)‖L∞(Rn) .



We are almost ready to start the improvement of flatness procedure. This means
that from (8) and (9) we should be able to squeeze more the graph of u (and therefore
F (u)) around a possibly rotated new two plane solution in a neighborhood of the
origin. A closer look to (8) reveals that, when α and β are comparable, a nice control
on the location of F (u) is available but when β � α only a one side control of F (u)
is possible. This dichotomy is well reflected in the following elementary lemma, that
we give for a general continuous function and that translates the “vertical” closeness
between the graphs of u and Uβ given by (8) into “horizontal” closeness, which is
much more confortable for our purposes.

Lemma 3.4. Let u be a continuous function. If, for a small η > 0,

‖u− Uβ‖L∞(B1) ≤ η

and

{xn ≤ −η} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ η},

then:
If β ≥ η1/3,

Uβ

(
xn − η1/3

)
≤ u (x) ≤ Uβ

(
xn + η1/3

)
in B3/4

If β < η1/3,

U0

(
xn − η1/3

)
≤ u+ (x) ≤ U0

(
xn + η1/3

)
in B3/4.

Set η̄ = ε̃3 in the Main Lemma. Then, according to Lemma 3.4, the dichotomy
nondegenerate versus degenerate translates quantitatively into the two cases:

β ≥ ε̃ : nondegenerate, β < ε̃ : degenerate.

The parameter ε̃ will be chosen later in the final iteration, as shown in the next
section.

4. The nondegenerate case.

4.1. Improvement of flatness. Assume that for some ε > 0, small, we have

Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1, (10)

with 0 < β ≤ L, α = G (β, 0) ≡ G0 (β). One would like to get in a smaller ball an
improvement of (10). It is convenient to consider first the nondegenerate case, that
at this stage reads β ≥ ε. After a rescaling we may assume that f is small compared
to β, in particular,

‖f‖L∞(B1) ≤ ε2β. (11)

Then the basic step in the improvement of flatness reads as follows.

Lemma 4.1. If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending
on r, then

Uβ′(x · ν1 − r
ε

2
) ≤ u(x) ≤ Uβ′(x · ν1 + r

ε

2
) in Br, (12)

with |ν1| = 1, |ν1 − en| ≤ C̃ε, and |β − β′| ≤ C̃βε for a universal constant C̃.



FIGURE 1. Improvement of flatness

To prove Lemma 3.3 we rescale considering a blow up sequence

uk (x) =
u
(
r̄kx
)

r̄k
x ∈ B1 (13)

for suitable r̄ ≤ min
{
r0,

1
16

}
, ε̃ ≤ ε0 (r̄), as in Lemma 4.1, and iterate to get, at

the kth step,

Uβk(x · νk − r̄kεk) ≤ u(x) ≤ Uβk(x · νk + r̄kεk) in Br̄k ,

with εk = 2−kε̃, |νk| = 1, |νk − νk−1| ≤ C̃εk−1,

|βk − βk−1| ≤ C̃βk−1εk−1, εk ≤ βk ≤ L.
Note that at each step we have the correct inductive hypotheses. For instance,

starting with β = β0 ≥ ε0 = ε̃, if k ≥ 1 and βk−1 ≥ εk−1, then

βk ≥ βk−1(1− C̃εk−1) ≥ 2−k+1ε̃
(

1− C̃2−k+1ε̃
)

≥ 2−kε̃ = εk.

Moreover, since fk (x) = ρkf (ρkx) , x ∈ B1 and (recall that η̄ = ε̃3)

‖fk‖L∞(B1) ≤ ρkε̃
3 ≤ ε2

kβk.

The Figure 1 describes the step from k to k + 1.



This implies that F (u) is C1,α at the origin. Repeating the procedure for points
in a neighborhood of x = 0, since all estimates are universal, we conclude that there
exists a unit vector ν∞ = lim νk and C > 0, γ ∈ (0, 1], both universal, such that,
in the coordinate system e1, ..., en−1, ν∞, ν∞⊥ej , ej · ek = δjk, F (u) is C1,γ graph,
say xn = f (x′) , with f (0′) = 0 and

|f (x′)− ν∞ · x′| ≤ C |x′|
1+γ

in a neighborhood of x = 0.
The main question is: where is it hidden the information allowing one to realize

the step from ( 10) to ( 12)?
Let us examine briefly Caffarelli’s technique in the case f = 0, L = ∆. As we

have already mentioned, the starting point is ε−monotonicity along the directions of
a large cone of directions Γ(θ0, en), of axis en and opening θ0. To get C1,γ Caffarelli
proves first that F (u) is Lipschitz and then that Lipschitz free boundaries are
smooth3. The first part amounts to prove that actually u is fully monotone along
a possibly rotated cone with a smaller opening. Let us focus more on the part
Lipschitz implies C1,γ . Here are the main steps:

1. To prove that the level sets of u are all Lipschitz graphs with a common
Lipschitz constant in the direction en, say, in B1. This follows from full monotonicity
along the directions of a cone, say, Γ(θ0, en).

2. To improve the flatness of the level sets in some ball away from the free
boundary. This amounts to enlarge the cone of monotonicity in this ball.

3. To carry this gain (giving up a little amount of it) up to the free boundary in
B1/2. This step is the most crucial and we describe it below.

4. Rescale and iterate the steps 2 and 3.
The final situation of the process is shown in Figure 2.
Here there are two main questions: first, where is it stored the key information

that allows to enlarge the cone away from the free boundary? second, how can we
transport the gain from inside to the free boundary?

Concerning the first question, one looks at the direction of ∇u at the point
p = en/2. Then Γ(θ0, en) is contained in the half space

H+ = {τ : Dτu (p) = 〈∇u (p) , τ〉 ≥ 0} .
From pure geometric considerations there is a cone Γ(θ1, ν1) ⊂ H+, containing
Γ(θ0, en), such that π/2 − θ1 ≤ µ(π/2 − θ0), for some universal µ. This means a
geometric interior decay of the Lipschitz constant of the level sets of u. In particular,
Dτu (p) ≥ 0 if τ ∈ Γ(θ1, ν1) and, since the directional derivatives are harmonic, by
Harnack inequality, the positivity of Dτu, τ ∈ Γ(θ1, ν1), 4 propagates to a ball
B (p) ⊂⊂ Ω+ (u) .

To carry this gain up to F (u) , Caffarelli uses a continuity method based on the
construction of a family of continuous deformations (sort of supconvolutions) of the
type

vεϕt (x) = sup
Bεϕt(x)(x)

u (x− τ)

with ε > 0, τ ∈ Γ(θ0/2, en) and the parameter t ∈ [0, 1] . The variable radius ϕ has
to be chosen such that ϕt ∼ 1 + t (π/2− θ1) in B (p) , ϕt ∼ 1 + σt (π/2− θ1) in
B1/2 for some positive σ, and ϕt ∼ 1 + t (π/2− θ0) everywhere else in B1.

3See however [3], [19] where one goes directly from flatness to C1,γ .
4Actually for a slightly smaller θ1.



FIGURE 2. Enlargement of the monotonicity cone

Then, the inequality
vεϕ0

(x) ≤ u (x) in B1

for each ε > 0 and τ ∈ Γ(θ0/2, en) simply means that u is monotone along these
directions. One would like to show that the same holds for vεϕt (x) ≤ u (x) and for
every t ∈ [0, 1] . Then

vεϕt (x) ≤ u (x) in B1

realizes a geometric improvement of the flatness of F (u) in B1/2.
To implement the program, the deformations vεϕt (x) must act as comparison

subharmonic functions on their support and the main problem is to find under
which condition on ϕ this happens.

The answer is the following differential inequality (see [5]):

ϕ∆ϕ ≥ C (n) |∇ϕ|2 . (14)

At this point, the construction of a smooth function ϕ with the desired properties
it is not difficult.

The situation for more general operators is much more involved. For instance, in
the variable coefficient case (see [19]), if we have a nonnegative function u such that
Lu =Tr

(
A (x)D2u

)
+ b (x) · ∇u = 0 on its support, the condition that ϕ = ϕ0 has

to satisfy in order to make vϕ an L−subsolution on its support takes the following
form:

Lϕ ≥ C (n, λ,Λ)

{
|∇ϕ|2 + ω2

ϕ
+ ‖b‖L∞

}
(15)

where ω is the modulus of continuity of A computed at maxϕ/Λ.
Let us now return to the case when distributed sources are present. The above

deformation method seems to be quite complicated to implement and indeed, using



De Silva technique, one avoids the use of supconvolutions and works directly on
u rather than on its derivatives. This is another big advantage, since there is no
need to differentiate the equation or to use perturbation methods. With respect
to the homogeneous case, the only disadvantage is that we have to assume the
Lipschitz continuity of u while, using the deformation method, this comes out as a
consequence of the process.

We are back to our basic question: where is it hidden the information allowing
to go from (10) to (12)?

Here a linearized problem comes into play.

4.2. The linearized problem. Let us first consider the one-phase case (see [12])
where u ≥ 0 in B1,

Lu = Tr
(
A (x)D2u

)
= f in B+

1 (u)

and uν = |∇u| = g (x) on the free boundary. Assume that

|f | ≤ ε2, |aij (x)− δij | ≤ ε, |g (x)− 1| ≤ ε2.

The flatness condition writes (U0 (x) = x+
n )

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ in B1. (16)

Renormalize by setting

ũε (x) =
u (x)− xn

ε
in B+

1 (u) ∪ F (u)

or
u (x) = xn + εũε (x) in B+

1 (u) ∪ F (u) . (17)

In (17), u appears as a first order perturbation of the hyperplane xn.
The idea is that the key information we are looking for is stored precisely in

the “coefficient” ũε. To extract it we look at what happens to ũε, asymptotically
as ε → 0. Note that, as ε → 0, B+

1 (u) → {xn > 0} and F (u) goes to {xn = 0} ,
both in Hausdorff distance.

We have:

Lũε =
f

ε
∼ ε in B+

1 (u)

and on F (u) ,

|∇u|2 = |en + ε∇ũε|2 = g2 ∼ 1 + ε2

that is, after simplifying by ε,

2ũxn + ε |∇ũε|2 ∼ ε.
Thus, formally, letting ε→ 0, we get “for the limit” ũ = ũ0 the following problem:

∆ũ = 0, in B+
1/2 = B1/2 ∩ {xn > 0} (18)

and the Neumann condition (linearization of the free boundary condition)

ũxn = 0 on B1/2 ∩ {xn = 0} . (19)

We call (18), (19) the linearized problem.
Let us see how the general condition∣∣∇u+

∣∣ = G
(∣∣∇u−∣∣ , x)

linearizes in the nondegenerate two phase problem.
First let

Lu = Tr
(
A (x)D2u

)
+ b (x) · ∇u = f in B1.



Assume that

|aij (x)− δij | ≤ ε, |bj (x)| ≤ ε2, |f | ≤ ε2 min {α, β}
and

|G (η, ·)−G0 (η)| ≤ ε2 ∀η ∈ [0, L] .

The flatness condition

α(xn − ε)+ − β(xn − ε)− ≤ u(x) ≤ α(xn + ε)+ − β(xn + ε)− in B1, (20)

with 0 < β ≤ L, α = G0 (β) , suggests the renormalization

ũε(x) =


u(x)− αxn

αε
, x ∈ B+

1 (u) ∪ F (u)

u(x)− βxn
βε

, x ∈ B−1 (u)

or

u (x) =


αxn + εαũε(x), x ∈ B+

1 (u) ∪ F (u)

βxn + εβũε(x), x ∈ B−1 (u).

(21)

We have
Lũε ∼ ε in B+

1 (u) ∪B−1 (u) .

On F (u) , ∣∣∇u+
∣∣ = α |en + ε∇ũε(x)| ∼ α

(
1 + ε (ũε)xn +

1

2
ε2 |∇ũε|2

)
and

G
(∣∣∇u−∣∣ , x) = G (|βen + εβ∇ũε| , x) ∼ G

(
β

(
1 + ε (ũε)xn +

1

2
ε2 |∇ũε|2

)
, x

)
∼ G0(β) + εG′0 (β)

(
β (ũε)xn +

1

2
εβ |∇ũε|2

)
+ ε2.

As before, letting ε → 0, we get formally for “the limit” ũ = ũ0 the following
problem:

∆ũ = 0, in B+
1/2 ∪B

−
1/2 (22)

and (α = G0 (β)) the transmission condition (linearization of the free boundary
condition)

α (ũxn)
+ − βG′0 (β) (ũxn)

−
= 0 on B1/2 ∩ {xn = 0} (23)

where (ũxn)
+

and (ũxn)
−

denote the en−derivatives of ũ restricted to {xn > 0}
and {xn < 0}, respectively.

When Lu = F
(
D2u

)
, the Laplace equation in (22) must be replaced by the fully

nonlinear equation
F±

(
D2ũ

)
= 0 in B±1/2 (24)

where F+ (M) ,F− (M) are limits (of sequences) of operators of the form

F+ (M) =
1

αε
F+ (αεM) and F+ (M) =

1

βε
F+ (βεM)

respectively.
Thus, at least formally, we have found an asymptotic problem for the limits

of the renormalizations ũε. The crucial information we were mentioning before is



contained in the following regularity result. Consider the transmission problem,
(α̃ 6= 0) 

∆ũ = 0 in B1 ∩ {xn 6= 0},

α̃2(ũn)+ − β̃2(ũn)− = 0 on B1 ∩ {xn = 0}.
(25)

Theorem 4.2. Let ũ be a viscosity solution to (25) in B1 such that ‖ũ‖∞ ≤ 1.

Then ũ ∈ C∞
(
B̄±1/2

)
and in particular, there exists a universal constant C̄ such

that

|ũ(x)− ũ(0)− (∇x′ ũ(0) · x′ + p̃x+
n − q̃x−n )| ≤ C̄r2, in Br (26)

for all r ≤ 1/2 and with α̃2p̃− β̃2q̃ = 0.

If the Laplace equation in (25) is replaced by F±
(
D2ũ

)
= 0 in B±1/2, ũ ∈

C1+γ′
(
B̄±1/2

)
and the right hand side of (26) must be replaced by C̄r1+γ′ , 0 <

γ′ < 1.

The question is now to transfer the estimate (26) to ũε and then read it in terms
of flatness for u through formulas (21).

The right way is to proceed by contradiction.
Fix r ≤ r0, to be chosen suitably. Assume that for a sequence εk → 0 there is a

sequence uk of solutions of our free boundary problem in B1, with right hand side
fk such that ‖fk‖L∞(B1) ≤ ε2

kβk and

Uβk(xn − εk) ≤ uk(x) ≤ Uβk(xn + εk) in B1, 0 ∈ F (uk) , (27)

with 0 ≤ βk ≤ L, αk = Gk (βk, 0) , but the conclusion of Lemma 4.1 does not hold
for every k ≥ 1.

Construct the corresponding sequence of renormalized functions

ũk(x) =


uk(x)− αkxn

αkεk
, x ∈ B+

1 (uk) ∪ F (uk)

uk(x)− βkxn
βkεk

, x ∈ B−1 (uk).

At this point we need compactness to show that ũk converges uniformly (up to a
subsequence) to a limit function ũ, Hölder continuous in B1/2. Also αk = Gk (βk, 0)

converges to α̃ = G̃0

(
β̃
)
. The compactness is provided by the Harnack inequality

stated in Theorem 4.3 and its corollary, as we shall see later, and is inspired by the
work of Savin, see [23].

It turns out that the limit function ũ satisfies the linearized problem (22) or (24)

and (23) with β̃2 replaced by β̃G̃′0(β̃), in the viscosity sense. Hence, from (26),
having ũ(0) = 0,

|ũ (x)− (x′ · ν′ + p̃x+
n − q̃x−n )| ≤ Cr2, x ∈ Br, (28)

for all r ≤ 1/4 (say), with

α̃p− β̃G̃′0(β̃)q = 0, |ν′| = |∇x′ ũ(0)| ≤ C.

Since ũk converges uniformly to ũ in B1/2, (28) transfers to ũk :

|ũk (x)− (x′ · ν′ + p̃x+
n − q̃x−n )| ≤ C ′r2, x ∈ Br. (29)



Set

β′k = βk (1 + εkq̃) νk =
1√

1 + ε2
k|ν′|2

(en + εk (ν′, 0)) .

Then,

α′k = Gk(βk(1 + εkq), 0) = Gk(βk, 0) + βkG
′
k(βk, 0)εkq +O(ε2

k)

= αk(1 + βk
G′k(βk, 0)

αk
qεk) +O(ε2

k) = αk(1 + εkp) +O(ε2
k)

where to obtain the first equality we used that α̃p− β̃G̃′0(β̃)q = 0 and hence

βk
G′k(βk, 0)

αk
q = p+O(εk).

Moreover
νk = en + εk(ν′, 0) + ε2

kτ, |τ | ≤ C.
With these choices we can now show that (for k large and r ≤ r0)

Ũβ′k(x · νk − εk
r

2
) ≤ ũk(x) ≤ Ũβ′k(x · νk + εk

r

2
), in Br

where again we are using the notation:

Ũβ′k(x) =


Uβ′k(x)− αkxn

αkεk
, x ∈ B+

1 (Uβ′k) ∪ F (Uβ′k)

Uβ′k(x)− βkxn
βkεk

, x ∈ B−1 (Uβ′k).

This will clearly imply that

Uβ′k(x · νk − εk
r

2
) ≤ uk(x) ≤ Uβ′k(x · νk + εk

r

2
), in Br

leading to a contradiction.
In view of (29) we need to show that in Br

Ũβ′k(x · νk − εk
r

2
) ≤ (x′ · ν′ + p̃x+

n − q̃x−n )− Cr2

and
Ũβ′k(x · νk + εk

r

2
) ≥ (x′ · ν′ + p̃x+

n − q̃x−n ) + Cr2.

This can be shown after some elementary calculations as long as r ≤ r0, r0 universal,
and ε ≤ ε0 (r).

We are left with compactness. The Harnack inequality takes the following form.

Theorem 4.3. Let u be a solution of our f.b.p. in B1 with Lipschitz constant L.
There exists a universal ε̃ > 0 such that, if x0 ∈ B1 and u satisfies the following
condition:

Uβ (xn + a0) ≤ u (x) ≤ Uβ (xn + b0) in Br (x0) ⊂ B1 (30)

with
‖f‖L∞(B2) ≤ ε

2β, 0 < β ≤ L
and

0 < b0 − a0 ≤ εr
for some 0 < ε ≤ ε̃, then

Uβ (xn + a1) ≤ u (x) ≤ Uβ (xn + b1) in Br/20 (x0)



with

a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (1− c) εr
and 0 < c < 1 universal.

If u satisfies (30) with, say r = 1, then we can apply Harnack inequality repeat-
edly and obtain

Uβ(xn + am) ≤ u(x) ≤ Uβ(xn + bm) in B20−m(x0),

with

bm − am ≤ (1− c)mε
for all m’s such that

(1− c)m20mε ≤ ε̄.
This implies that for all such m’s, the oscillation of the renormalized functions ũk
in Br(x0), r = 20−m, is less than (1 − c)m = 20−γm = rγ . Thus, the following
corollary holds.

Corollary 1. Let r = 1 in Theorem 5.1. Then

|ũk (x)− ũk (x0)| ≤ C |x− x0|γ

for all x ∈ B1 (x0) such that |x− x0| ≥ εk/ε̃.

Note now that

− 1 ≤ ũk(x) ≤ 1 for x ∈ B1 (31)

and F (uk) converges to B1 ∩ {xn = 0} in the Hausdorff distance. These facts,
together with Ascoli-Arzela Theorem give that as εk → 0 the graphs of the ũk
converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder
continuous function ũ over B1/2.

Thus the improvement of flatness process in the nondegenerate case can be con-
cluded.

5. The degenerate case.

5.1. Improvement of flatness. In this case, the negative part of u is negligible
and the positive part is close to a one-plane solution (i.e. β = 0). Thus, assume
that for some ε > 0, small, we have

U0(xn − ε) ≤ u+(x) ≤ U0(xn + ε) in B1. (32)

Again one would like to get in a smaller ball an improvement of (32). At this stage
nondegeneracy reads β < ε. This time the key lemma is:

Lemma 5.1. Let u satisfies (32). Assume that

‖f‖L∞(B1) ≤ ε4,

and

‖u−‖L∞(B1) ≤ ε2. (33)

There exists a universal r1, such that if 0 < r ≤ r1 and 0 < ε ≤ ε1 for some ε1

depending on r, then

U0(x · ν1 − r
ε

2
) ≤ u+(x) ≤ U0(x · ν1 + r

ε

2
) in Br, (34)

with |ν1| = 1, |ν1 − en| ≤ Cε for a universal constant C.



The proof follows the same pattern of the nondegenerate case.
Fix r ≤ r1, to be chosen suitably. By contradiction assume that, for some

sequences εk → 0 and uk, solutions of our f.b.p. in B1 with r.h.s. fk such that
‖fk‖L∞(B1) ≤ ε4

k and

‖u−k ‖L∞(B1) ≤ ε2
k,

U0(xn − εk) ≤ uk(x) ≤ U0(xn + εk) in B1, 0 ∈ F (uk)

but the conclusion of the lemma does not hold.
Then one proves via a Harnack inequality (see below), that the sequence of

normalized functions

ũk(x) =
uk(x)− xn

εk
x ∈ B+

1 (uk) ∪ F (uk)

converges to a limit function ũ, Hölder continuous in B1/2.
The limit function ũ is a viscosity solution of the linearized problem

∆ũ = 0 in B1/2 ∩ {xn > 0},

ũxn = 0 on B1/2 ∩ {xn = 0}.
(35)

The regularity of ũ is not a problem and the contradiction argument proceeds as
before with obvious changes.

The Harnack inequality takes the following form.

Theorem 5.2. Let u be a solution of our f.b.p. in B1 with Lipschitz constant L.
There exists a universal ε̃ > 0 such that, if x0 ∈ B1 and u satisfies the following
condition

(xn + a0)
+ ≤ u+ (x) ≤ (xn + b0)

+
in Br (x0) ⊂ B1 (36)

with

‖f‖L∞(B2) ≤ ε
4,

∥∥u−∥∥
L∞(B2)

≤ ε2

and

0 < b0 − a0 ≤ εr
for some 0 < ε ≤ ε̃, then

(xn + a1)
+ ≤ u+ (x) ≤ (xn + b1)

+
in Br/20 (x0)

with

a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (1− c) εr
and 0 < c < 1 universal.

Lemma 5.1 provides the first step in the flatness improvement. Notice that this
improvement is obtained through the closeness of the positive phase to a one plane
solution, as long as inequality (33) holds. This inequality expresses in another
quantitative way the degeneracy of the negative phase and should be kept valid at
each step of the iteration of Lemma 5.1. However, it could happen that this is not
the case and in some step of the iteration, say at the level εk of flatness, the norm
‖u−‖L∞(B1) becomes of order ε2

k. When this occurs, a suitable rescaling restores a
nondegenerate situation. This give rise in the final iteration to the dychotomy we
have mentioned in Section 2.

The situation is precisely described in the following lemma.



Lemma 5.3. Let u be a solution in B1 satisfying

U0(xn − ε) ≤ u+(x) ≤ U0(xn + ε) in B1 (37)

with

‖f‖L∞(B1) ≤ ε4,

and for C̃ universal,

‖u−‖L∞(B2) ≤ C̃ε2, ‖u−‖L∞(B1) > ε2. (38)

There exists (universal) ε1 such that, if 0 < ε ≤ ε1, the rescaling

uε (x) = ε−1/2u
(
ε1/2x

)
satisfies, in B2/3 :

Uβ′(xn − C ′ε1/2) ≤ uε(x) ≤ Uβ′(xn + C ′ε1/2)

with β′ ∼ ε2 and C ′ depending on C̃.

Let us see how the dychotomy arises. To prove Lemma 3.3 in the degenerate

case, choose r̄ ≤ min {r0, r1, 1/16} , and ε̃ ≤ min
{
ε0 (r̄) , ε1 (r̄) /2, 1/

(
2C̃
)}

and

assume β < ε̃. In view of our choice of ε̃, we obtain that u satisfies the relation

U0(xn − ε̃) ≤ u+(x) ≤ U0(xn + ε̃) in B1.

Since

‖u− Uβ‖L∞(B1) ≤ η̄ = ε̃3

we infer ∥∥u−∥∥
L∞(B1)

≤ β + ε̃3 ≤ 2ε̃.

Call ε′ =
√

2ε̃. Then

U0(xn − ε′) ≤ u+(x) ≤ U0(xn + ε′) in B1

and

‖f‖L∞(B1) ≤ (ε′)
4
, ‖u−‖L∞(B1) ≤ (ε′)

2
.

From Lemma 5.1, we get

U0(x · ν1 − r̄
ε′

2
) ≤ u+(x) ≤ U0(x · ν1 + r̄

ε′

2
) in Br̄

with |ν1| = 1, |ν1 − en| ≤ Cε′ for a universal constant C.
We now rescale considering a blow up sequence

uk (x) =
u
(
r̄kx
)

r̄k
x ∈ B1 (39)

and set εk = 2−kε′

fk (x) = ρkf (ρkx) x ∈ B1.

Note that

‖fk‖L∞(B1) ≤ ρk (ε′)
4 ≤ 1

16
(ε′)

4
= ε4

k.

We can iterate Lemma 5.1 and obtain

U0(x · νk − εk) ≤ u+
k (x) ≤ U0(x · νk + εk) in B1

with |νk − νk−1| ≤ Cεk−1, as long as

‖u−k ‖L∞(B1) ≤ ε2
k.



Let k∗ > 1 be the first integer for which this fails:

‖u−k∗‖L∞(B1) > ε2
k∗

and

‖u−k∗−1‖L∞(B1) ≤ ε2
k∗−1.

We also have

U0(x · νk∗−1 − εk∗−1) ≤ u+
k∗−1(x) ≤ U0(x · νk∗−1 + εk∗−1) in B1.

By usual comparison arguments we can write

u+
k∗−1(x) ≤ C |xn − εk∗−1| ε2

k∗−1 in B19/20

for C universal. Rescaling, we have

‖u−k∗‖L∞(B1) ≤ C1ε
2
k∗

where C1 universal (C1 depends on r̄). Then uk∗ satisfies the assumptions of Lemma
5.3 and therefore the rescaling

v (x) = ε
−1/2
k∗ uk∗(ε

1/2
k∗ x)

satisfies in B2/3 :

Uβ′(x · νk∗ − C ′ε1/2
k∗ ) ≤ v(x) ≤ Uβ′(x · νk∗ + C ′ε

1/2
k∗ )

with β′ ∼ ε2
k∗ . Call ε̂ = C ′ε

1/2
k∗ . Then v is a solution of our f.b.p. in B2/3 with r.h.s.

g (x) = ε
1/2
k∗ fk∗(ε

1/2
k∗ x)

and the flatness assumption

Uβ′(x · νk∗ − ε̂) ≤ v(x) ≤ Uβ′(x · νk∗ + ε̂).

Since β′ ∼ ε2
k∗ , we have

‖g‖L∞(B1) ≤ ε
1/2
k∗ ε

4
k∗ ≤ ε̂2β′

as long as ε̂ ≤ min
{
ε0 (r̄) , 1

2C̃

}
, which is true if C ′ (2ε̃)

1/4 ≤ min
{
ε0 (r̄) , 1

2C̃

}
or

ε̃ ≤ 1

2C ′4
min

{
ε0 (r̄) ,

1

2C̃

}4

.

Under these restrictions, v satisfies the assumptions of the nondegenerate case and
we can proceed accordingly.

This concludes the proof of the main Lemma.

6. Further developments. With the two Theorems 2.4 and 2.5 the regularity the-
ory for two phase problems with forcing terms has reached a reasonably satisfactory
level. However many open questions remain open, object of future investigations.

The first one is to provide an existence results for viscosity solutions satisfying a
Dirichlet boundary condition, extending for instance the results in the homogeneous
case in [7].

Another question is the C∞−smoothness (resp. analyticity) of the free boundary
in presence of C∞ (resp. analytic) coefficients and data.

We shall deal with these two questions in forthcoming papers.
Also of great importance, we believe, is to have information on the Hausdorff

measure or dimension of the singular (nonflat) points of the free boundary. For



instance, in 3 dimensions, the free boundary for local energy minimizer in the vari-
ational problem ∫

Ω

{
|∇u|2 + χ{u>0}

}
→ min

is a smooth surface (see [9]). In dimension n = 7, De Silva and Jerison in [15] pro-
vided an example of a minimizer with singular free boundary. Thus the conjecture
is that energy minimizing free boundaries should be smooth for n < 7.

Nothing is known in the nonhomogeneous case.
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