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Abstract. This paper is a natural continuation of our previous work
on conformal embeddings of vertex algebras [6], [7], [8]. Here we con-
sider conformal embeddings in simple affine vertex superalgebra Vk(g)
where g = g0̄⊕g1̄ is a basic classical simple Lie superalgebra. Let Vk(g0̄)
be the subalgebra of Vk(g) generated by g0̄. We first classify all levels
k for which the embedding Vk(g0̄) in Vk(g) is conformal. Next we prove
that, for a large family of such conformal levels, Vk(g) is a completely
reducible Vk(g0̄)–module and obtain decomposition rules. Proofs are
based on fusion rules arguments and on the representation theory of
certain affine vertex algebras. The most interesting case is the decom-
position of V−2(osp(2n+8|2n)) as a finite, non simple current extension
of V−2(Dn+4)⊗V1(Cn). This decomposition uses our previous work [10]
on the representation theory of V−2(Dn+4).

We also study conformal embeddings gl(n|m) ↪→ sl(n + 1|m) and in
most cases we obtain decomposition rules.
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2 ADAMOVIĆ, MÖSENEDER, PAPI, PERŠE
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1. Introduction

This paper is a natural continuation of our previous work on conformal
embeddings of vertex algebras [6], [7], [8]. We are focused on embeddings
of affine vertex algebras into vertex superalgebras Vk(g), where g = g0̄ ⊕ g1̄

is a basic classical simple Lie superalgebra. Recall that if V is a VOA and
W is a subVOA, the embedding W ⊂ V as vertex algebras is said to be
conformal if both VOAs share the same conformal vector. It is difficult to
classify all conformal embeddings in Vk(g), so we confine ourselves to deal
with a simpler problem:

Problem 1.1 (Classification problem). Classify levels k such that the affine
vertex subalgebra Vk(g0̄) generated by g0̄ ⊂ g is conformally embedded into
Vk(g).

We completely solve this problem: see Theorem 3.1. Classification of
conformal levels (i.e., levels solving Problem 1.1) is also important as a
motivation for studying the representation theory of affine vertex algebras
at conformal levels. In many cases such conformal levels have also appeared
in our earlier works on conformal and collapsing levels for affineW–algebras
[7], [10].

After classification of conformal levels, we are ready to consider the next
important problem:

Problem 1.2 (Simplicity problem). Assume that k is a conformal level.
Determine the structure of the subalgebra Vk(g0̄). In particular, determine
when Vk(g0̄) is simple.

In the current paper we focus on proving simplicity of Vk(g0̄) in several
interesting cases.

The proof of simplicity is very natural when a free-field realization of
Vk(g) is available. Here are examples of such cases:

g = sl(m|n), g is of type B(m,n), D(m,n) or C(n), k = 1.

The general simplicity problem, when a realization is missing, is usually
very delicate. We can solve it in the following cases:
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• g = spo(2|3), k = −3/4.
• g = F (4), k = 1.
• g = G(3), k = 1.
• g = osp(2n+ 8|2n), k = −2.

The last case g = osp(2n + 8|2n), k = −2 is very interesting since the
subalgebra V−2(g0̄) ∼= V−2(Dn+4)⊗V1(Cn). Here we explore the representa-
tion theory of the simple vertex algebra V−2(Dn+4) developed in [10], which
gives that V−2(g) is semi–simple as V−2(g0̄)–modules.

There are interesting cases when Vk(g0̄) is not simple (cf. Remark 3.2).
In our paper [9] we detected similar cases for non-regular conformal embed-
dings. It turns out that analysis of these cases requires different techniques,
and we plan to investigate them in our future research.

The simplicity problem is related with the next natural problem:

Problem 1.3 (Decomposition problem). Assume that k is a conformal level.
Describe the structure of Vk(g) as a Vk(g0̄)–module.

In the cases dealt with in this paper, we are able to solve both the simplic-
ity and the decomposition problem using what we call fusion rules argument.
By

this we mean the following: suppose that W ⊂ V is an embedding of
vertex algebras. LetM be a collection of W–submodules of V that generates
V as a vertex algebra. Then the structure of span(M) under the dot product
(cf. (2.1)) in the set of all W–submodules gives information about the
structure of V as a W–module. If the embedding is conformal then there
are constraints that allow in many cases to recover the structure of span(M)
and solve the simplicity and decomposition problems.

Since we study decomposition rules only in the cases when Vk(g0̄) is a
simple vertex algebra, the decomposition of Vk(g) is naturally related with
the extensions of the simple vertex algebra Vk(g0̄).

When g is even, k is a subalgebra of g, and Vk(g) is an extension of
simple current type of the conformal subalgebra Vk(k), we were able (cf. [6],
[8], [9]) to get explicit decomposition rules without knowing precisely the
fusion rules for Vk(k)–modules. We can apply such methods here to obtain
decomposition formulas when Vk(g) is a simple current extension of Vk(g0̄).
These decompositions are presented in Subsection 4.1 (see e.g. Proposition
4.1). Interestingly, in many such cases we also have explicit realizations.

The previous analysis does not apply to g = psl(n|n) and in this case V1(g)
does not have explicit realization. But using fusion rules for V−1(sl(n)) from
[5] we obtain the following result (see Theorem 4.4).

Theorem 1. For n ≥ 3, V1(psl(n|n)) is a simple current extension of
V1(sl(n))⊗ V−1(sl(n)); the related decomposition is given in (4.6).

Next we consider some cases when Vk(g) is not a simple current extension
of Vk(g0̄). The next theorem sums up the results proven in Proposition 4.13,
Theorem 4.20 and Theorem 4.23.
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Theorem 2. Assume that we are in the following cases of conformal em-
beddings

• g = spo(2|3), k = −3/4.
• g = F (4), k = 1.
• g = G(3), k = 1.

Then Vk(g) is a finite, non simple current extension of Vk(g0̄)

These cases (among others) have been previously studied by T. Creutzig
in [13] using the extension theory of the vertex algebra Vk(g0̄) and tensor
category arguments. He impressively identifies the larger vertex algebra
Vk(g) among all possible extensions of Vk(g0̄). We present a different (and
more elementary) proof which uses only some affine fusion rules. In partic-
ular, we first prove that Vk(g0̄) is simple. In our cases, this directly implies
that Vk(g0̄) is semi-simple in the category KLk (see [10, §3]) and therefore
Vk(g) is a completely reducible as Vk(g0̄)–module. To obtain the precise
decomposition we apply Vk(g0̄)–fusion rules.

Our fusion rules method can be applied beyond the affine vertex algebra
setting. As an example, we present in Section 6 a new proof of simplicity
of the free-field realization of V1(osp(n|m)) (cf. [25]) and corresponding
decomposition of the Fock space. As a consequence, this also gives a new
proof of the simplicity of the realization of V−1/2(sp(2n)) from [17].

In Section 7 we deal with g = osp(2n + 8|2n), k = −2. We have the
following result (cf. Theorems 7.8, 7.9):

Theorem 3. Assume that n ≥ 1. We have the following decomposition

V−2(osp(2n+ 8|2n)) =
n⊕
i=0

L−2(iω1)⊗ L1(ωi).

Acknowledgments: We would like to thank Thomas Creutzig and Vic-
tor Kac for valuable discussions. We also thank the referee for his/her careful
reading of our paper.
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2. Setup and preliminary results

2.1. Notation. Let g = g0̄ ⊕ g1̄ be a basic classical simple Lie superalge-
bra. Recall that among all simple finite-dimensional Lie superalgebras it is
characterized by the properties that its even part g0̄ is reductive and that
it admits a non-degenerate invariant supersymmetric bilinear form (·|·). A
complete list of basic classical simple Lie superalgebras consists of simple
finite-dimensional Lie algebras and the Lie superalgebras sl(m|n) (m,n ≥
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1,m 6= n), psl(m|m) (m ≥ 2), osp(m|n) = spo(n|m) (m ≥ 1, n ≥ 2 even),
D(2, 1; a) (a ∈ C, a 6= 0,−1), F (4), G(3). Recall that sl(2|1)and osp(2|2)
are isomorphic. Also, the Lie superalgebras D(2, 1; a) and D(2, 1; a′) are
isomorphic if and only if a, a′ lie on the same orbit of the group generated
by the transformations a 7→ a−1 and a 7→ −1− a, and D(2, 1; 1) = osp(4|2).
See [20] for details.

Choose a Cartan subalgebra h for g0̄ and let ∆ be the set of roots. If ∆+

is a set of positive roots, then we let Π be the corresponding set of simple
roots. If g is not an even Lie algebra, we choose as ∆+ the distinguished set
of positive roots (i.e. Π has the minimal number of odd roots) from Table
6.1 of [25].

We normalize the form (·|·) as follows: if g is an even simple Lie algebra
then require (θ|θ) = 2 (where θ is the highest root of g). If g is not even,
then we let (·|·) be the form described explicitly in Table 6.1 of of [25]. Let
Cg be the Casimir element of g and let 2h∨ be the eigenvalue of its action
on g.

Let k ∈ C be non-critical, i.e. k 6= −h∨. We let V k(g), Vk(g) denote,
respectively, the universal and the simple affine vertex algebra (see [24, §
4.7 and Example 4.9b]). Note that the definition of V k(g), Vk(g) depends
on the choice of (·|·).

Let g0 be an equal rank basic classical subsuperalgebra of g such that the
restriction of (·|·) is nondegenerate. We further assume that g0 decomposes
as g0 = g0

0⊕· · ·⊕g0
s with g0

0 even abelian and g0
i basic classical simple ideals

for i > 0. A remarkable example of such a situation is the case g0 = g0̄.
If ν ∈ h∗, we set νj = ν|h∩g0

j
. For a simple basic classical Lie superalgebra

a, we let Va(µ) denote the irreducible finite dimensional representation of a
of highest weight µ. If U is an irreducible finite dimensional representation
of a, we let La,k(U) be the irreducible representation of V k(a) with top
component U . We simply write La(µ) or Lk(µ) for La,k(Va(µ)).

Let {xi}, {yi} be dual bases of g (i.e. (xh|yk) = δhk). If j > 0, let (·|·)j
be normalized invariant form on g0

j and set {xji}, {y
j
i } to be dual bases of

g0
j with respect to (·|·)j . Let h∨j be the dual Coxeter number of g0

j . For g0
0,

let {x0
i }, {y0

i } be dual bases of g0
0 with respect to (·|·)0 = (·|·)|g0

0×g0
0

and set

h∨0 = 0.
If k = (k0, . . . , ks) is a multi-index of levels we set

V k(g0) = V k0(g0
0)⊗ · · · ⊗ V ks(g0

s),

and, assuming kj + h∨j 6= 0 for all j, we let

Vk(g0) = Vk0(g0
0)⊗ · · · ⊗ Vks(g0

s).

Here V k(g0
0) denotes the corresponding Heisenberg vertex algebra. We also

set Vg0(µ) = ⊗Vg0
j
(µj) and Lg0(µ) = ⊗Lg0

j
(µj).
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If g0
0 = C$ and k 6= 0, then, setting c = $√

k($|$)
, V k(g0

0) is the ver-

tex algebra Mc(1) generated by c with λ–product [cλc] = λ1. We denote
by Mc(1, r) the irreducible Mc(1)–module generated by the highest weight
vector vr such that

c(0)vr = rvr, c(s)vr = 0 (s ≥ 1).

In particular Lg0
0
(µ0) = Mc(1,

µ($)√
k($|$)

).

We consider V k(g), V k(g0) and all their quotients, including Vk(g), Vk(g0),
as conformal vertex algebras with conformal vectors ωg, ωg0 given by the
Sugawara construction:

ωg =
1

2(k + h∨)

dim g∑
i=1

: yixi :, ωg0 =

s∑
j=0

1

2(kj + h∨j )

dim g0
j∑

i=1

: yji x
j
i : .

Recall that, if a vertex algebra V admits a conformal vector ω and the
corresponding field is Y (ω, z) =

∑
n∈Z ωnz

−n−2, then, by definition of con-
formal vector, ω0 acts semisimply on V . If x is an eigenvector for ω0, then
the corresponding eigenvalue ∆x is called the conformal weight of x.

Let V be a vertex algebra. Denote by T the translation operator on V
defined by Tu = u(−2)1 . If U , W are subspaces in a vertex algebra then
we define their dot product:

(2.1) U ·W = span(u(n)w | u ∈ U, w ∈W, n ∈ Z).

The dot product is associative and, if the subspaces are T -stable, commu-
tative (cf. [12]). The dot product in a simple vertex algebra does not have
zero divisors: if U · V = {0} then either U = {0} or W = {0}.

We let Vk(g0) denote the vertex subalgebra of Vk(g) generated by x(−1)1,
x ∈ g0. Note that, given k ∈ C, there is a uniquely determined multi-index
u(k) such that Vk(g0̄) is a quotient of V u(k)(g0) hence, if uj(k) + h∨j 6= 0

for each j, ωg0 is a conformal vector in Vk(g0). We will say that Vk(g0) is
conformally embedded in Vk(g) if ωg = ωg0 .

Our aim is the study of conformal embeddings of Vk(g0) in Vk(g); in
particular we will describe the classification of all conformal embeddings of
Vk(g0̄) in Vk(g). The basis of our investigation is the following result, which
is a variation of [4, Theorem 1]. Let g1 be the orthocomplement of g0 in g.

Theorem 2.1. In the above setting, Vk(g0) is conformally embedded in Vk(g)
if and only for any x ∈ g1 we have

(ωg0)0x(−1)1 = x(−1)1.(2.2)

Assume that g1 is completely reducible as a g0-module, and let

g1 =
t⊕
i=1

Vg0(µi)

be its decomposition. Set µ0 = 0.
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Corollary 2.2. Vk(g0) is conformally embedded in Vk(g) if and only if

s∑
j=0

(µji , µ
j
i + 2ρj)j

2(uj(k) + h∨j )
= 1(2.3)

for all i > 0.

Assume g0
0 = {0} and that g0 is the set of fixed points an automorphism

σ of g of order s and let g = ⊕i∈Z/sZg(i) be the corresponding eigenvalue

decomposition. Note that g0 = g(0) and that g1 =
∑

i 6=0 g
(i). Since g1 is

assumed to be completely reducible as g0-module, we have

g(i) =
∑
r∈I(i)

V (µr),

where I(i) is a subsets of {1, . . . t}. The map σ can be extended to a finite
order automorphism of the simple vertex algebra Vk(g) which induces the
eigenspace decomposition

Vk(g) = ⊕i∈Z/sZVk(g)(i).

Clearly Vk(g)(i) are ĝ0–modules. Note that g0̄ is the fixed point set of the
involution defined σ(x) = (−1)ix for x ∈ gī, so the above setting applies to
g0̄.

The following result is a super analog of [4, Theorem 3]. For the sake of
completeness, we provide a proof.

Theorem 2.3. Assume that, if ν is the weight of a g0-primitive vector
occurring in V (µi) ⊗ V (µj), then there is a ĝ0-primitive vector in Vk(g) of
weight ν if and only if ν = µr for some r.

Then Vk(g0) is simple and

(2.4) Vk(g) = Vk(g0)⊕ (⊕ti=1Lg0(µi)).

Proof. Set U = C1 ⊕ g1 ⊂ Vk(g) and U = Vk(g0) · U . It is enough to show
that Vk(g) = U . Since U generates Vk(g) it suffices to check that U is a
vertex subalgebra, which is equivalent to checking that U · U ⊂ U .

Since U · Vk(g0) = Vk(g0) · U , we have

U · U = Vk(g0) · U · Vk(g0) · U = Vk(g0) · U · U

so it is enough to check that U · U ⊂ U . Assume the contrary. Then
there is n such that U(n)U + U is nonzero in Vk(g)/U . Since U is finite
dimensional, we can assume n to be maximal. It follows that there are i, j
and a vector v in Vg0(µi)(n)Vg0(µj) such that (v + U)/U is nonzero. Since

Vg0(µi)(n)Vg0(µj) is finite–dimensional, it is g0–generated by g0–primitive

vectors, thus we can assume that v is g0–primitive. Let V , W be g0–
submodules of Vg0(µi)(n)Vg0(µj) such that v+W is the highest weight vector
of V/W ' Vg0(ν). In particular, if η is a weight occurring in W , then η < ν.
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Note that, if x ∈ g0 and m > 0, then

(2.5) x(m)Vg0(µi)(n)Vg0(µj) ⊂ ad(x)(Vg0(µi))(n+m)Vg0(µj).

In particular, x(m)W ⊂ U . Set W = Vk(g0) ·W . By the above observation
if η is a weight occurring in (W + U)/U , then η < ν. This implies that
v + U /∈ (W + U)/U . If α is a positive root in g0, then xα(0)v ∈ W , so
xα(0)(v+U) ∈ W+U . Moreover, by (2.5) again, x(m)v ∈ U for m > 0. Set
V = Vk(g0)·V . It follows that v+U is ĝ0–singular vector in (V+U)/(W+U).

By our hypothesis, ν = µr for some r. Then, by (2.3), ∆v = 1 or ∆v = 0.
This implies that v ∈ g(−1)1+C1, thus v ∈ U , and we reach a contradiction.

�

Remark 2.1. The hypothesis of the previous theorem hold whenever for
all primitive vectors of weight ν occurring in Vg0(µi)⊗Vg0(µj), one has that
either ν = µr for some r or

(2.6)
s∑
r=1

(νr, νr + 2ρr)r
2(ur(k) + h∨r )

6∈ Z+.

Let now assume that g0
0 = C$ and that g1 decomposes as

g1 = Vg0(µ)⊕ Vg0(µ∗).

Observe that this is the case when g0 = g0̄ and g0̄ is not semisimple.
By a suitable choice of $ we can assume that $ acts as the identity on

Vg0(µ) and as minus the identity on its dual. Define ε ∈ (g0
0)∗ by setting

(2.7) ε($) = 1.

If q ∈ Z, let Vk(g)(q) be the eigenspace for the action of $(0) on Vk(g)
corresponding to the eigenvalue q. Let {0, ν1, · · · , νm} be the set of weights
of g0–primitive vectors occurring in Vg0(µ)⊗ Vg0(µ∗).

The following result is a super analog of [6, Theorem 2.4].

Theorem 2.4. Assume that k 6= 0 and that Vk(g)(0) does not contain
ĝ0-primitive vectors of weight νr, where r = 1, . . . ,m. Then

(2.8) Vk(g0) ∼= Vk(g0) = Vk(g)(0)

and Vk(g)(q) is a simple Vk(g0)–module, so that Vk(g) is completely reducible
as a ĝ0-module. Moreover

Vk(g)(q) = Vg0(µ) · Vg0(µ) · . . . · Vg0(µ)︸ ︷︷ ︸
q times

if q > 0,

Vk(g)(q) = Vg0(µ∗) · Vg0(µ∗) · . . . · Vg0(µ∗)︸ ︷︷ ︸
|q| times

if q < 0.
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Remark 2.2. The assumption of Theorem 2.4 holds whenever, for r =
1, . . . ,m,

t∑
j=0

(νjr , ν
j
r + 2ρj)j

2(uj(k) + h∨j )
6∈ Z+.(2.9)

3. Conformal levels

Definition 3.1. A level k ∈ C is said to be a conformal level for the emebed-
ding g0 ⊂ g if

(1) k + h∨ 6= 0,
(2) uj(k) + h∨j 6= 0 for all j,

(3) Vk(g0) is conformally embedded in Vk(g).

Theorem 3.1. The conformal levels for the embeddings g0̄ ⊂ g are as fol-
lows.

(1) If g = sl(m|n), m > n ≥ 2,m 6= n + 1, the conformal levels are
k = 1,−1, n−m2 ;

If n = 1, m ≥ 3, the conformal levels are k = −1, 1−m
2 ;

If m = n+ 1, m ≥ 3, the conformal levels are k = 1,−1
2 ;

If m = 2, n = 1 the only conformal level is k = −1
2 ;

(2) If g = psl(m|m), the conformal levels are k = 1,−1;
(3) If g is of type B(m,n), the conformal levels are k = 1, 3−2m+2n

2 if

m 6= n, k = 3
2 if m = n, and k = −2n+3

2 if m = 0.
(4) If g is of type D(m,n), the conformal levels are k = 1, 2−m+ n if

m 6= n and k = 1 if m = n;
(5) If g is of type C(n+1), the conformal levels are k = 1, 1+n if n > 1

and k = 2 if n = 1;
(6) If g is of type F (4), the conformal levels are k = 1,−3

2 ;

(7) If g is of type G(3), the conformal levels are k = 1,−4
3 ;

(8) If g is of type D(2, 1, a), the conformal levels are k = 1,−1−a, a for
a /∈ 1,−1/2,−2; the only conformal level for D(2, 1;−1

2) is k = 1
2 ;

the only conformal level for both D(2, 1; 1) and D(2, 1;−2) is k = 1.

Proof. We apply Corollary 2.2 and solve (2.3). For each case we list here
the relevant data.
(1) g = sl(m|n), m > n ≥ 1: in this case g0̄ = C$×sl(m)×sl(n) (disregard
the rightmost factor when n = 1), where

$ =
1

n−m

(
nIm 0

0 mIn

)
.

The form is the supertrace form, hence it restricts to the normalized in-
variant form on sl(m) and to its opposite on sl(n). It follows that u0(k) =
u1(k) = k and u2(k) = −k. As g0̄-module,

g1̄ = VC$(ε)⊗Vsl(m)(ω1)⊗Vsl(n)(ωn−1)⊕VC$(−ε)⊗Vsl(m)(ωm−1)⊗Vsl(n)(ω1)
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Since (ε, ε) = n−m
mn and, in the normalized invariant form of sl(r),

(ω1, ω1 + 2ρ) = (ωr−1, ωr−1 + 2ρ) =
(r − 1)(r + 1)

r
,

equation (2.3) reads for both factors of g1̄

(m− 1)(m+ 1)

2m(k +m)
+

(n− 1)(n+ 1)

2n(−k + n)
+
n−m
2mnk

= 1

whose solutions are 1,−1, 1
2(n − m) if n > 1 and −1, 1

2(1 − m) if n = 1.
Next we have to check that the previous values are not critical for g: this
excludes k = 1 when m = n+ 1.
(2) g = psl(m|m): in this case g0̄ = sl(m) × sl(m). The form is the form
induced by the supertrace form on sl(m|m), hence it restricts to the nor-
malized invariant form on the first sl(m)-factor of g0̄ and to its opposite on
the second factor. It follows that u1(k) = k and u2(k) = −k. As g0̄-module,

g1̄ = Vsl(m)(ω1)⊗ Vsl(m)(ωm−1)⊕ Vsl(m)(ωm−1)⊗ Vsl(m)(ω1),

thus equation (2.3) reads for both factors of g1̄

(m− 1)(m+ 1)

2m(k +m)
+

(m− 1)(m+ 1)

2m(−k +m)
= 1

whose solutions are 1,−1.
(3) g of type B(m,n): in this case g0̄ = so(2m + 1) × sp(2n). The form is
half the supertrace form. If m > 1, (·|·) restricts to the normalized invariant
form on so(2m + 1) and to −1/2 the normalized invariant form on sp(2n).
It follows that u1(k) = k and u2(k) = −k/2. As g0̄-module,

g1̄ = Vso(2m+1)(ω1)⊗ Vsp(2n)(ω1),

thus equation (2.3) reads

m

k + 2m− 1
+

2n+ 1

2(−k + 2n+ 2)
= 1.

Its solutions are 1, 3−2m+2n
2 . Next we have to check that the previous values

are not critical for g: this excludes k = 1 when m = n .
If m = 1 then (·|·) restricts to twice the normalized invariant form on

so(3) and to −1/2 the normalized invariant form on sp(2n). It follows that
u1(k) = 2k and u2(k) = −k/2. As g0̄-module,

g1̄ = Vso(3)(2ω1)⊗ Vsp(2n)(ω1),

thus equation (2.3) reads

1

k + 1
+

2n+ 1

2(−k + 2n+ 2)
= 1.

Its solutions are 1, 1+2n
2 . Next we have to check that the previous values are

not critical for g: this excludes k = 1 when n = 1 .
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Finally, in the case m = 0, (·|·) restricts to 1/2 the normalized invariant
form on sp(2n). It follows that u1(k) = k/2. As g0̄-module,

g1̄ = Vsp(2n)(ω1),

thus equation (2.3) reads

2n+ 1

2(k + 2n+ 2)
= 1.

whose unique solution is −3+2n
2 . This value is never critical for g.

(4) g of type D(m,n): in this case g0̄ = so(2m)× sp(2n). The form is half
the supertrace form, hence it restricts to the normalized invariant form on
so(2m) and to −1/2 the normalized invariant form on sp(2n). It follows
that u1(k) = k and u2(k) = −k/2. As in case (3), as g0̄-module,

g1̄ = Vso(2m)(ω1)⊗ Vsp(2n)(ω1),

thus equation (2.3) reads

2m− 1

2(k + 2m− 2)
+

n+ 1/2

2(1− k/2 + n)
= 1.

Its solutions are 1, 2−m+ n. Examining the critical values excludes k = 2
when m = n.
(5) g of type C(n+ 1): in this case g0̄ = C$ × sp(2n), where

$ =

(
H 0
0 0

)
, H =

(
1 0
0 −1

)
.

The form is 1/2 the supertrace form, and u0(k) = k and u1(k) = −(1/2)k.
As g0̄-module,

g1̄ = VC$(ε)⊗ Vsp(2n)(ω1)⊕ VC$(−ε)⊗ Vsp(2n)(ω1),

thus equation (2.3) reads

1

2k
+

n+ 1/2

2− k + 2n
= 1.

Its solutions are 1, 1 + n, and k = 1 should be excluded when n = 1.
(6) g of type F (4): in this case g0̄ = sl(2)× so(7). We choose the invariant
form in such a way that it restricts to the normalized invariant form on
so(7), and u1(k) = −2/3k, u2(k) = k. We have

g1̄ = Vsl(2)(ω1)⊗ Vso(7)(ω3)

thus equation (2.3) reads

9

8(−k + 3)
+

21

8(k + 5)
= 1.

Its solutions are −3
2 , 1.
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(7) g of type G(3): in this case g0̄ = sl(2) × G2. We choose the invariant
form in such a way that it restricts to the normalized invariant form on G2,
and u1(k) = −3/4k, u2(k) = k. We have

g1̄ = Vsl(2)(ω1)⊗ VG2(ω1)

thus equation (2.3) reads

3

−3k + 8
+

2

k + 4
= 1.

Its solutions are −4
3 , 1.

(8) g of type D(2, 1; a): in this case g0̄ = sl(2) × sl(2) × sl(2). We choose
the invariant form in such a way that it restricts to the normalized invariant
form on the first sl(2) and u1(k) = k, u2(k) = k/a, u3(k) = − k

1+a . We have

g1̄ = Vsl(2)(ω1)⊗ Vsl(2)(ω1)⊗ Vsl(2)(ω1)

thus equation (2.3) reads

3

4(k + 2)
+

3

4(ka + 2)
+

3

4(− k
1+a + 2)

= 1.

Its solutions are 1,−1− a, a and some cases are excluded as specified in the
statement. �

Remark 3.2. Note that for g of type D(2, 1; a) one can choose the parameter
a so that the subalgebra Vk(g0̄) is non simple. For example, for a = −3

4 , one

can show that Vk(g0̄) = V1(sl(2)) ⊗ V −4/3(sl(2)) ⊗ V−4(sl(2)). These non
simple embeddings will be investigated in our future papers.

The next result gives some examples of conformal embeddings for g0 ⊂ g
with g0 not a Lie algebra.

Theorem 3.3.
(1) Assume n 6= m,m−1.The conformal levels for the embedding gl(n|m) ⊂
sl(n+ 1|m) are k = 1 and k = −n+1−m

2 .
(2) The conformal levels for the embedding sl(2)×osp(3|2) ⊂ G(3) are k = 1
and k = −4/3.

Proof. Consider first the embedding gl(n|m) ⊂ sl(n+ 1|m). We have

g0 = C$ ⊕ sl(n|m), $ =
1

n−m+ 1
Im,n

where

Im,n =

m− n 0 0
0 In 0
0 0 Im

 .

Then g = g0 ⊕ g1, where

g1 = VC$(ε)⊗ Cn|m ⊕ VC$(−ε)⊗ (Cn|m)∗.
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The invariant form is the supertrace form. We now compute the conformal
levels. Equation (2.2) becomes in the present case

n−m+ 1

2k(n−m)
+

(m− n+ 1)(1−m+ n)

2(k + n−m)(m− n)
= 1.

Its solutions are k = 1 and k = −n+1−m
2 .

Consider now the case of sl(2)× osp(3|2) ⊂ G(3). Recall that ∆+ is the
distinguished positive set of roots for G(3). Let α1, α2, α3 be the correspond-
ing simple roots ordered as in Table 6.1 of [25]. Let ω∨i ∈ h be such that

αj(ω
∨
i ) = δji. Then g0 is the fixed point set of σ = eπ

√
−1ω∨2 . In particular,

one sees that

g0 = h⊕
⊕

α(ω∨2 ) even

gα, g1 =
⊕

α(ω∨2 ) odd

gα.

From this explicit description one sees that one can choose the simple
roots for osp(3|2) to be β1 = α1 and β2 = 2α2 + α3 and that

g1 = Vsl(2)(ω1)⊗ Vosp(3|2)(β1 + 3/2β2).

Equation (2.2) becomes in the present case

3

4(k + 2)
+

3

8(3
2k − 1)

= 1

whose solutions are k = 1 and k = −4/3. �

Remark 3.4. Note that a conformal level is either 1 or collapsing (see [7] for
the notion of collapsing level). There are however a few negative collapsing
levels which are not conformal.

4. Decompositions for the embedding g0̄ ⊂ g

4.1. Easy cases. In the following proposition we list the cases when (2.4),
(2.8) hold since conditions (2.6), (2.9) are verified. To simplify some formulas
we also introduce the following notation for some V−1(sl(m))–modules:

U (m)
s = Lsl(m)(sω1), U

(m)
−s = Lsl(m)(sωm−1), s ∈ Z+.
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Proposition 4.1.

(1) V−4/3(G(3)) = V1(sl(2))⊗ V−4/3(G2)⊕ Lsl(2)(ω1)⊗ LG2(ω1),

(2) V−3/2(F (4)) = V1(sl(2))⊗ V−3/2(so(7))⊕ Lsl(2)(ω1)⊗ Lso(7)(ω3),

(3) V1(B(m,n)) = V1(so(2m+ 1))⊗ V−1/2(sp(2n))

⊕Lso(2m+1)(ω1)⊗ Lsp(2n)(ω1),m 6= n,

(4) Vk(B(0, n)) = V−(2n+3)/4(sp(2n))

⊕Lsp(2n)(ω1), k = −(2n+ 3)/2,

(5) V1(D(m,n)) = V1(so(2m))⊗ V−1/2(sp(2n))

⊕Lso(2m)(ω1)⊗ Lsp(2n)(ω1), m 6= n+ 1,

(6) V1(C(n+ 1)) = Mc(1)⊗ V−1/2(sp(2n))

⊕
∑

q∈Z\{0}

Mc(1, 2q)⊗ V−1/2(sp(2n))

⊕
∑
q∈Z

Mc(1, 2q + 1)⊗ Lsp(2n)(ω1),

(7) V1(sl(m|n)) = Mc(1)⊗ V1(sl(m))⊗ V−1(sl(n))

⊕
∑

q∈Z\{0}

Mc(1,
√

n−m
nm qm)⊗ V1(sl(m))⊗ U (n)

−qm

⊕
∑

j=1,...,m−1
q∈Z

Mc(1,
√

n−m
nm (qm+ j))⊗ Lsl(m)(ωj)⊗ U

(n)
−qm−j .

In case (7), m 6= n, n− 2,m ≥ 2, n ≥ 3.

Proof. In cases (1)–(5) one needs only to check (2.6). As an example, here
we give the details only for case (4): g = osp(1|2n) and the invariant form
is (x|y) = −1

2str(xy). Moreover, as g0̄-module, g1̄ = Vsp(2n)(ω1), thus

g1̄ ⊗ g1̄ =

{
Vsp(2n)(2ω1)⊕ Vsp(2n)(ω2)⊕ Vsp(2n)(0) if n > 1

Vsp(2n)(2ω1)⊕ Vsp(2n)(0) if n = 1
.

Since, u1(k) = 1/2 and h∨1 = n+ 1,

(2ω1, 2ω1 + 2ρ0)1

2(u1(k) + h∨1 )
=

2n+ 2

2
(

1
4(−2n− 3) + n+ 1

) =
2

2n+ 1
+ 2

and, if n > 1,

(ω2, ω2 + 2ρ0)1

2(u1(k) + h∨1 )
=

2n

2
(

1
4(−2n− 3) + n+ 1

) = − 2

2n+ 1
+ 2

thus (2.6) holds.
In cases (6), (7) the only nontrivial step is the computation of the decom-

position for V1(C(n+ 1)) and V1(sl(n|m)).
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The decomposition for V1(C(n + 1)) follows readily from Theorem 2.4,
the fusion rule for V−1/2(sp(2m)) (see [29])

Lsp(2m)(ω1)× Lsp(2m)(ω1) = V−1/2(sp(2m)),(4.1)

and the well known fusion rules

Mc(1, r)×Mc(1, s) = Mc(1, r + s).(4.2)

For V1(sl(n|m)), consider the V1(sl(m))–modules

Z
(m)
0 = V1(sl(m)), Z

(m)
j = Lsl(m)(ωj), j = 1, . . . ,m− 1.

and recall the following fusion rules:

U (n)
s1 × U

(n)
s2 = U

(n)
s1+s2 (s1, s2 ∈ Z),(4.3)

Z
(m)
j1
× Z(m)

j2
= Z

(m)
j1+j2 mod m (j1, j2 ∈ {0, . . . ,m− 1}).(4.4)

The fusion rules (4.3) were proved in [5] and (4.4) in [16].

Since in this case Vg0̄
(µ) = LC$(ε) ⊗ Z(m)

1 ⊗ U (n)
1 , Vg0̄

(µ∗) = LC$(−ε) ⊗
Z

(m)
m−1 ⊗ U

(n)
−1 and LC$(±ε) = Mc(1,±

√
n−m
nm ), we obtain from (4.2), (4.3),

(4.4) that

Vg0̄
(µ) · Vg0̄

(µ) · . . . · Vg0̄
(µ)︸ ︷︷ ︸

q times

= Mc(1,
√

n−m
nm q)⊗ Z(m)

q mod m ⊗ U
(n)
−q

and

Vg0̄
(µ∗) · Vg0̄

(µ∗) · . . . · Vg0̄
(µ∗)︸ ︷︷ ︸

−q times

= Mc(1,
√

n−m
nm q)⊗ Z(m)

q mod m ⊗ U
(n)
−q ,

so Theorem 2.4 provides the desired decomposition. �

Remark 4.2. In Subsection 4.8 below we derive the decomposition above for
V1(C(n+ 1)) using a different approach that has the advantage of clarifying
the vertex algebra structure of the even part of V1(C(n+ 1)).

4.2. Another approach to the case g = sl(m|n), k = 1. Here we give
a different approach to the decomposition of V1(sl(m|n)) as V1(g0̄)–module
that extends the result in Proposition 4.1 to the missing m = n− 2 case.

Theorem 4.3. Let g = sl(m|n) with m 6= n, m ≥ 2, n ≥ 3. Then

(4.5) V1(g0̄) = V1(sl(m))⊗ V−1(sl(n))⊗Mc(1)

and the decomposition in Proposition 4.1 (6) holds. In particular, V1(g) is a
simple current extension of the vertex algebra V1(sl(m))⊗V−1(sl(n))⊗Mc(1)

Proof. It is enough to prove that the action of V1(g0̄) on V1(sl(m|n)) is
semisimple. In fact, in such a case, by the fusion rules (4.3), (4.4) and (4.2),
Theorem 2.4 can be applied. The semisimplicity follows from the free field
realization of V1(gl(m|n)) in M(2m,2n) = F(m) ⊗M(n) where F(m) and M(n)
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are respectively the fermionic and Weyl vertex algebras (cf. Section 6). In
fact the composition of the embeddings

V1(gl(m)× gl(n)) ⊂ V1(gl(m|n)) ⊂ F(m) ⊗M(n)

is the tensor product of the embeddings of V1(gl(m)) in F(m) and of V−1(gl(n))

in M(n). It is well known that F(m) is completely reducible as ĝl(m)-module.

The fact that M(n) is completely reducible as ĝl(n)-module is proven in
[5]. �

4.3. The case g = psl(m|m), k = 1. The approach of § 4.2 readily extends
to the case of g = psl(m|m):

Theorem 4.4. Assume that m ≥ 3. Then

(4.6) V1(psl(m|m)) =

m−1∑
j=0

∑
q∈Z

Lsl(m)(ωj)⊗ U
(m)
−qm−j .

In particular, V1(g) is a simple current extension of the vertex algebra
V1(sl(m))⊗ V−1(sl(m)).

Proof. The proof follows as in Theorem 4.3 from the semisimplicity of the
action of V1(sl(m) × sl(m)) on V1(psl(m|m)). To prove semisimplicity, let
I ∈ sl(m|m) be the identity matrix. Then we have V1(sl(m|m))–modules

V1(sl(m|m)) · I ⊂ V1(sl(m|m)) ⊂ V1(gl(m|m)).

Moreover the map x mod CI 7→ x(−1)1 mod V1(sl(m|m) · I extends to
a vertex algebra map from V 1(psl(m|m)) to V1(sl(m|m))/(V1(sl(m|m) · I).
Let V1(psl(m|m)) be the image of this map. Since V1(sl(m) × sl(m)) acts
semisimply on V1(gl(m|m)), it acts semisimply also on V1(psl(m|m)) and
therefore on its quotient V1(psl(m|m)). �

Remark 4.5. The simple current extension in the theorem above is a super
analog of extensions studied in [27]. We should also mention that the super-
character formula for V1(g) is presented in [3].

The case m = 2 was given by Creutzig and Gaiotto as one of the main
results in their paper [14]. We shall here only state their result on the
decomposition.

Proposition 4.6. [14, Remark 9.11] Assume that m = 2. We have:

V1(g) =

∞⊕
i=0

(
(2i+ 1)Z

(2)
0 ⊗ U (2)

2i

)
⊕
∞⊕
i=0

(
(2i+ 2)Z

(2)
1 ⊗ U (2)

2i+1

)
.

In particular, V1(g) is an extension of V1(sl(2)) ⊗ V−1(sl(2)) which is not
simple current.



CONFORMAL EMBEDDINGS OF SUPERALGEBRAS 17

4.4. The case g = sl(m|n), k = −h∨/2. An interesting case is to consider
embeddings to Vk(g) where g = sl(m|n) and conformal level is k = −h∨/2.
In this paper we only consider the case n = 1. The general case is more
complicated and we plan to consider it in our future work.

4.4.1. The case n = 1. In this case, k = 1/2 −m. This level is admissible
for sl(2m), and the fusion rules were determined in [8, Proposition 5.1]. We
have:

• The set of irreducible Vk(sl(2m))–modules in KLk is

{Lsl(2m)(ωi) | i = 0, . . . , 2m− 1}.

• The following fusion rules hold:

Lsl(2m)(ωi1)× Lsl(2m)(ωi2) = Lsl(2m)(ωi3)

where 0 ≤ i1, i2, i3 ≤ 2m− 1 such that i1 + i2 ≡ i3 mod(2m).

Now we are ready to analyse the conformal embedding sl(2m) × C ↪→
sl(2m, 1) at level k. We have:

• Vk(g)0 ∼= Vk(sl(2m))⊗Mc(1), where c = (I2m,1)(−1)1.

• Vk(g)j is irreducible Vk(sl(2m))⊗Mc(1) on which c(0) acts as j(2m−
1). In particular,

Vk(g)j ∼= Lsl(2m)(ωij )⊗Mc(1, j(2m− 1)).

where 0 ≤ ij ≤ 2m− 1 such that ij ≡ j mod(2m).
• Now we get:

Com(Vk(sl(2m)), Vk(g)) = F2m(2m−1) =
⊕
i∈Z

Mc(1, i2m(2m− 1))

where F2m(2m−1) is the rank one lattice vertex algebra VZα such that
〈α, α〉 = 2m(2m− 1).

4.5. The case g of type D(m,n), k = 1. The following approach to the
decomposition includes also the case m = n + 1, not covered by Theorem
4.1.

Assume first that n ≥ 2. We consider the universal affine vertex algebra
V 1(g). The vector

(4.7) Ω =
(
Xε1+ε2(−1)2 −X2ε1(−1)X2ε2(−1)

)
1

is a singular vector in V −1/2(sp(2n)), and it defines a non-trivial graded
ideal J1(g) = V 1(g) · Ω in V 1(g). Set

Q1(g) = V 1(g)/J1(g).

Proposition 4.7. Assume that n ≥ 2.
(1) The even subalgebra of Q1(g) is isomorphic to

V−1/2(sp(2n))⊗ V1(so(2m)),
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(2) The following decomposition holds

Q1(g) = V−1/2(sp(2n))⊗ V1(so(2m))⊕ Lsp(2n)(ω1)⊗ Lso(2m)(ω1).

(3) Q1(g) = V1(g).

Proof. First we notice the following facts

• The maximal ideal in V −1/2(sp(2n)) is generated by Ω (cf. [1]).
• The maximal ideal in V 1(so(2m)) is generated by XΘ̄(−1)21, where

Θ̄ is the highest root in so(2m), and XΘ̄ is a corresponding root
vector.
• XΘ̄(−1)21 ∈ V 1(g) · Ω.

This implies that Q1(g) contains a vertex subalgebra U isomorphic to

V−1/2(sp(2n))⊗ V1(so(2m)).

By using the decomposition of g as sp(2n) × so(2m)–module, the semi–
simplicity of U–modules, we find a U–submodule M inside of V1(g) which
is isomorphic to

Lsp(2n)(ω1)⊗ Lso(2m)(ω1).

Recall the following the fusion rules

• [29] Lsp(2n)(ω1)× Lsp(2n)(ω1) = V−1/2(sp(2n)).
• [16] Lso(2m)(ω1)× Lso(2m)(ω1) = V1(so(2m)).

which implies the fusion rules M ×M = U and therefore U ⊕M is a vertex
subalgebra of Q1(g). Since U ⊕M contains all generators of Q1(g), we get
the assertion. �

The above decomposition holds also in the case n = 1.

Proposition 4.8. Assume that n = 1. Then we have:

V1(g) = V−1/2(sl(2))⊗ V1(so(2m))⊕ Lsl(2)(ω1)⊗ Lso(2m)(ω1).

Proof. From the explicit realization we conclude that V1(g) has a subalgebra
isomorphic to V−1/2(sl(2)) ⊗ V1(so(2m)) and contains the V−1/2(sl(2)) ⊗
V1(so(2m))–module Lsl(2)(ω1) ⊗ Lso(2m)(ω1). The claim follows by using
fusion rules. �

Remark 4.9. The same argument applied to g of type B(n,m) yields the
same result of Theorem 4.1 and, moreover, shows that, if n ≥ 2, the vector
Ω given in (4.7) generates the maximal ideal in V 1(g).

4.6. The case g of type D(m,n), k = 2 −m + n. We conjecture that in
this case V−2(g0̄) will be a simple vertex algebra, and that Vk(g) is the semi-
simple V−2(g0̄)–module. But at the moment we can prove these conjectures
only in the case g = osp(2n+ 8|2n) and conformal level k = −2. Note that
k = −2 is also a collapsing level, and therefore we can use results from [10].
The general case, i.e., when k is non-collapsing, is at the moment beyond
the range of applicability of our methods.
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Theorem 4.10. (1). The vertex algebra V−2(g0̄) is simple and it is iso-
morphic to V−2(so(2n+ 8))⊗ V1(sp(2n)).
(2). We have the following decomposition

V−2(g) =
n⊕
i=0

L−2(iω1)⊗ L1(ωi).

The proof will be given in Section 7. It uses explicit realization of one non
simple quotient of V −2(g), the fusion rules and the representation theory of
the vertex algebra V−2(so(2n+ 8)) from [10].

4.7. The case g = spo(2|3), k = −3/4. We now discuss the case of g of
type B(1, 1). According to Theorem 3.1, the only conformal level is k = 3/2.
In this case g0̄ = sp(2)×so(3) ' sl(2)×sl(2). Let α, β be roots of sp(2) and
so(3) respectively. In the normalization of the form (·|·) used in Theorem 3.1
we have (α|α) = −4 and (β|β) = 1. In this section we normalize the form
so that (α|α) = 2 and (β|β) = −1/2. With this normalization k = −3/4.
As in [7], we let spo(2|3) denote g with this latter choice of the invariant
form. Different normalizations occur in the literature: for example in [13]
the form is chosen so that (α|α) = −8 and (β|β) = 2, hence k = 3.

We have a vertex algebra homomorphism Φ : V k(sl(2))⊗ V −4k(sl(2))→
Vk(spo(2|3)).

Lemma 4.11. There are no ĝ0̄–singular vectors in V−3/4(spo(2|3)) of g0̄–
weights

(8ω1, 0), (7ω1, 2ω1), (6ω1, 2ω1), (5ω1, 0), (0, 8ω1), (ω1, 6ω1).

Proof. Let vn,m be the space of ĝ0̄–singular vectors in V−3/4(spo(2|3)) of
g0̄–weight (nω1,mω2). Let Vn,m = Vk(g0̄) · vn,m. The fusion rules argument
and Clebsch-Gordan formulas (see e.g. [19, §22]) imply that

Vn1,m1 · Vn2,m2 ⊂
min{n1,n2}∑

i=0

min{m1,m2}∑
j=0

Vn1+n2−2i,m1+m2−2j .(4.8)

We can exclude summands Vr,s in (4.8) such that the conformal weight of
vr,s, i.e.

hr,s =
r(r + 2)

5
+
s(s+ 2)

20
,

is not an integer.
Assume first that v0,8 6= {0}. The fusion rules

V1,2 · V0,8 ⊂ V1,10 + V1,8 + V1,6,

and

h1,10 = 33/5, h1,8 = 23/5, h1,6 = 3,

imply that V−3/4(spo(2|3)) must contain a ĝ0̄–singular vector v of g0̄ weight
(ω1, 6ω1).



20 ADAMOVIĆ, MÖSENEDER, PAPI, PERŠE

Using

V1,2 · V1,6 ⊂ V2,8 + V2,6 + V2,4 + V0,8 + V0,6 + V0,4,

and

h2,8 = 28/5, h2,6 = 4, h2,4 = 14/5, h0,8 = 4, h0,6 = 12/5, h0,4 = 6/5,

we get that v is ĝ–singular. A contradiction, since Vk(g) is simple.
In this way we have proved that there are no ĝ0̄– singular vectors of

weights (ω1, 6ω1), (0, 8ω1).
Since the maximal ideal of V 3(sl(2)) is generated by a singular vector of

g0̄-weight (0, 8ω1), we also have that V3(sl(2)) = V3(sl(2)). In particular,
we can refine the fusion rule information from (4.8) by using fusion rules for
V3(sl(2)) and get

V1,2 · V5,0 ⊂ V6,2 + V4,2,

V1,2 · V6,2 ⊂ V7,2 + V7,0 + V5,2 + V5,0,

V1,2 · V7,2 ⊂ V8,2 + V8,0 + V6,2 + V6,0,

V1,2 · V8,0 ⊂ V9,2 + V7,2.

Since the only integral values of conformal weights associated with the above
decompositions are h8,0 = 16, h7,2 = 13, h6,2 = 10, h5,0 = 7, we get

V1,2 · V5,0 ⊂ V6,2,(4.9)

V1,2 · V6,2 ⊂ V7,2 + V5,0,(4.10)

V1,2 · V7,2 ⊂ V8,0 + V6,2,(4.11)

V1,2 · V8,0 ⊂ V7,2.(4.12)

The remaining assertions of the Lemma can be obtained by using the
following arguments:

(a) (4.9) implies that if v is a ĝ0̄– singular vectors of weight (5ω1, 0),
then v must be ĝ– singular. A contradiction.

(b) (4.10) implies that if v is a non-trivial ĝ0̄– singular vector of weight
(6ω1, 2ω1), then there is a non-trivial ĝ0̄– singular vector of weight
(5ω1, 0). A contradiction because of (a).

(c) (4.11) implies that if v is a non-trivial ĝ0̄– singular vector of weight
(7ω1, 2ω1), then there is a non-trivial ĝ0̄– singular vector of weight
(6ω1, 2ω1). A contradiction because of (b).

(d) (4.12) implies that if v is a non-trivial ĝ0̄– singular vector of weight
(8ω1, 0), then there is a non-trivial ĝ0̄– singular vector of weight
(7ω1, 2ω1). A contradiction because of (c).

�

Let enm, fnm be as in § 8.5 of [26]: enm is a root vector for the root
nα1 +mα2, and fnm is a root vector for the root −(nα1 +mα2). If {h1, h2}
is a basis for h, then a basis of spo(2|3) is

B = {e22, e12, e11, e10, e01, h1, h2, f22, f12, f11, f10, f01}.
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Moreover, up to a renormalization of the generators, we have

(4.13) [e22, e12] = [e01, e12] = 0, [f22, e12] = −f10,

(4.14) [f10, e12] = 0, [f01, e12] = −(1/2)e11, [e11, e12] = 0.

(4.15) [e22, f22] = h1, [h1, e01] = 0, [f22, e11] = f11, [f22, e12] = −f10.

(4.16) [f11, e12] = −1/2e01, [e01, f01] = h2, [f01, e11] = −(1/2)e10.

(4.17) [e10, e12] = e22, [e01, e11] = e12, [e11, e11] = −e22.

If V is a vertex algebra and a, b ∈ V , denote by : ab := a(−1)b their normal
order.

Lemma 4.12. We have

: e10e11e12 :/∈ V1,2.

Proof. A basis of the space of vectors in V k(spo(2|3)) of sl(2)×sl(2)–weight
(3ω1, 0) and of conformal weight 3 is given by

C = {: T (e22)e11 :, : T (e11)e22 :, : f11e22e22 :, : e22e01e10 :,

: f01e22e12 :, : h1e22e11 :, : h2e22e11 :, : e10e11e12 :}.

If v is in the span of C and in the maximal ideal of V k(spo(2|3)), then
x(1)y(1)v = 0 for all x, y ∈ spo(2|3). By computing x(1)y(1)v with x, y ∈ B
and v a generic linear combination of elements of C, if v is in the maximal
ideal of V k(spo(2|3)),

v ∈ C(: T (e22)e11 :− 3/4 : T (e11)e22 : − : f11e22e22 : −1/2 : e22e01e10 :
(4.18)

+ : f01e22e12 : − : h1e22e11 :).

If : e10e11e12 :∈ V1,2 then it is a linear combination in Vk(spo(2|3)) of
C\{: e10e11e12 :}, but this implies that : e10e11e12 : plus a linear combination
of elements of C\{: e10e11e12 :} belongs to the maximal ideal of V k(spo(2|3)),
and this contradicts (4.18). �

Proposition 4.13. (1). The vertex algebra V−3/4(sl(2))⊗ V3(sl(2)) is con-
formally embedded into V−3/4(spo(2|3)).
(2). The following decomposition holds

V−3/4(spo(2|3)) = (V−3/4(sl(2))⊕ Lsl(2)(3ω1))⊗ V3(sl(2))
⊕

(Lsl(2)(ω1)⊕ Lsl(2)(2ω1))⊗ Lsl(2)(2ω1).

Proof. Since V −3/4(sl(2)) (resp. V 3(sl(2))) contains a unique singular vector
of g0̄-weight (8ω1, 0) (resp. (0, 8ω1)), Lemma 4.11 implies that V−3/4(sl(2))
and V3(sl(2)) are simple vertex algebras. This proves (1).

(2) First we notice that V−3/4(spo(2|3)) is semisimple as a module for its
subalgebra V−3/4(sl(2)) ⊗ V3(sl(2)) (we use the facts that V−3/4(sl(2)) is
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rational in the category O [2] and that V3(sl(2)) is a rational vertex oper-
ator algebra). It is very easy to check that : e10e11e12 : is a ĝ0̄–singular
vector in Vk(spo(2|3))/V1,2. By Lemma 4.12, : e10e11e12 : is nonzero in
Vk(spo(2|3))/V1,2. Thus, by semisimplicity, V3,0 is nonzero in Vk(spo(2|3)).
Moreover, since : e10e11e12 : is the unique element of C which is not in V1,2,
we see that V3,0 ' Lsl(2)(3ω1)⊗ V3(sl(2)).

By fusion rules, we see that V1,2 · V3,0 = V2,2.

The subspace of V k(g) of vectors having conformal weight 2 and h-weight
(2ω1, 2ω1) has basis {: e22e01 :, : e11e12 :}. Using (4.15), we find

[(f22)λ : e22e01 :] = − : h1e01 : −(3/4)λe01

[(f22)λ : e11e12 :] =: f11e12 : − : e11f10 : −(1/2)λe01.

This implies that, up to a constant, there is only one ĝ0̄–singular vector
of weight (2ω1, 2ω1). Since V−3/4(spo(2|3)) is semisimple as V−3/4(sl(2)) ⊗
V3(sl(2))–module, it follows that V2,2 ' Lsl(2)(2ω1)⊗ Lsl(2)(2ω1).

Note that, by Lemma 4.11, we have the following fusion rules

V1,2 · V1,2 ⊂ V0,0 + V2,2,

V1,2 · V2,2 ⊂ V3,0 + V1,2,

V1,2 · V3,0 ⊂ V2,2,

V2,2 · V2,2 ⊂ V0,0 + V2,2,

V2,2 · V3,0 ⊂ V3,0 + V1,2,

V3,0 · V3,0 ⊂ V0,0.

Thus U = V0,0 ⊕ V1,2 ⊕ V3,0 ⊕ V2,2 is a vertex subalgebra of V−3/4(spo(2|3)).
Since g ⊂ U , we get U = V−3/4(spo(2|3)). �

Remark 4.14. The decomposition in Proposition 4.13 has recently also ap-
peared in the lecture notes of T. Creutzig [13] presented at RIMS. In the
proof of decomposition he uses some very non-trivial result on the extension
theory of vertex operator algebras based on vertex tensor categories.

We should mention that our approach uses neither tensor product theory
nor extension theory of vertex algebras. It would be interesting to understand
how the tensor category approach imposes further constraints on the dot
product structure and possibly makes our approach more effective.

4.8. The case g = C(n + 1), k = 1. Let M(m|2n) be the vertex algebra
introduced in Section 6 below. Here we specialize to the case m = 2. In
particular we let V be the superspace C(2|2n) with reversed parity.

The vertex algebra M(2|2n) is isomorphic to F(1) ⊗ M(n), where F(1) is
the fermionic vertex algebra generated by V1̄ equipped with the symmetric
form 〈·, ·〉|V1̄

and M(n) is the Weyl vertex algebra generated by V0̄ equipped
with the symplectic form 〈·, ·〉|V0̄

. By the boson-fermion correspondence [24]
F(1)
∼= VL where VL = Mα(1)⊗C[L] is the lattice vertex algebra associated

to the lattice L = Zα, 〈α, α〉 = 1. We have VL = V 0
L ⊕ V 1

L , where V 0
L ( resp.
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V 1
L ) is the even part (resp. odd part) of VL. Moreover,

V 0
L = Mα(1)⊗ C[Z(2α)], V 1

L = Mα(1)⊗ C[α+ Z(2α)].

The conformal vector in Mα(1) ⊂ V 0
L ⊂ F(1) is ωF = 1

2 : αα :.

Proposition 4.15.
(1) There is a conformal embedding V1(g)→M(2|2n) uniquely determined by

(4.19) X 7→ 1

2

∑
i

: X(ei)e
i :, X ∈ osp(2|2n).

(2) There is a conformal embedding of V−1/2(sp(2n)) ⊗ V 0
L in V1(g) and we

have the following decomposition

V1(g) = V−1/2(sp(2n))⊗ V 0
L

⊕
Lsp(2n)(ω1)⊗ V 1

L .

Proof.
(1) The fact that (4.19) extends to a map from V 1(g) to M(2|2n) and that the
image is simple is given in Theorem 7.1 of [25]. We provide an alternative
proof in Section 6 . The check that the emebdding is conformal is given in
Lemma 6.2 below.
(2) Let M±(2|2n) be as in Section 6. By Theorem 7.1 of [25], M+

(2|2n) '
V1(osp(2|2n)). Clearly

M+
(2|2n) = M+

(n) ⊗ F
+
(1) ⊕M

−
(n) ⊗ F

−
(1) = M+

(n) ⊗ V
0
L ⊕M−(n) ⊗ V

1
L .

one has M+
(n) ' V−1/2(sp(2n)) and M−(n) ' Lsp(2n)(ω1). �

Remark 4.16. The decomposition in Proposition 4.15 (2) is the eigenspace
decomposition of V1(g) for the involution induced by the parity involution of
g. Indeed, it is enough to verify that, if X ∈ g0̄, then X(−1)1 ∈M+

(n)⊗F
+
(2)

and, if X ∈ g1̄, then X(−1)1 ∈M−(n) ⊗ F
−
(1). This follows from (4.19).

4.9. The case g = F (4), k = 1.

Lemma 4.17. The vertex subalgebra of V1(g) generated by g0̄ is simple and
isomorphic to V1(so(7))⊗ V− 2

3
(sl(2)).

Proof. The vertex subalgebra of V1(g) generated by g0̄ is isomorphic to
V1(so(7))⊗V−2/3(sl(2)) where V−2/3(sl(2)) is either simple or universal affine
vertex algebra associated to sl(2) at level −2/3. Similarly, the V1(so(7)) ⊗
Ṽ−2/3(sl(2))–module generated by g1̄ is isomorphic to Lso(7)(ω3)⊗L̃sl(2)(ω1),

where L̃sl(2)(ω1) is a highest weight V−2/3(sl(2))–module, of sl(2)–highest
weight ω1.

We let vλ,µ be the set of ĝ0̄–singular vectors of g0̄–weight (λ, µ) and Vλ,µ =
V1(g0̄) · vλ,µ. Let also hλ,µ be the conformal weight of a vector v ∈ vλ,µ.

Assume that V−2/3(sl(2)) = V −2/3(sl(2)). Then it has a unique singular
vector Ω0 of sl(2)–weight 6ω1, thus V0,6ω1 6= {0}.
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By using the tensor product decomposition

Vsl(2)(ω1)⊗ Vsl(2)(6ω1) = Vsl(2)(5ω1)⊕ Vsl(2)(7ω1),

we see that

V0,6ω1 · Vω3,ω1 ⊂ Vω3,5ω1 + Vω3,7ω1 .

Since hω3,7ω1 = 49/4 , we see that Vω3,5ω1 6= {0}. Next we use the decom-
position

Vsl(2)(ω1)⊗ Vsl(2)(5ω1) = Vsl(2)(6ω1)⊕ Vsl(2)(4ω1)

to deduce that

Vω3,ω1 · Vω3,5ω1 ⊂ V0,6ω1 + V0,4ω1 + Vω1,6ω1 + Vω1,4ω1 .

Since h0,4ω1 = 9/2, h0,6ω1 = 9, hω1,4ω1 = 5, hω1,6ω1 = 19/2, and hω3,5ω1 = 7,
we see that Vω1,4ω1 6= {0} otherwise any v ∈ vω3,5ω1 is ĝ–singular.

By using decomposition

Vsl(2)(ω1)⊗ Vsl(2)(4ω1) = Vsl(2)(5ω1)⊕ Vsl(2)(3ω1),

and fusion rules of V1(so(7))–modules

Lso(7)(ω1)× Lso(7)(ω3) = Lso(7)(ω3)

we conclude that

Vω3,ω1 · Vω1,4ω1 ⊂ Vω3,5ω1 + Vω3,3ω1 .

Since hω3,3ω1 = 13/4, hω3,5ω1 = 7, and hω1,4ω1 = 5, we conclude that
any v ∈ vω1,4ω1 is ĝ–singular. This is in contradiction with the simplicity of
V1(g).

Therefore V−2/3(sl(2)) = V−2/3(sl(2)) and the claim follows. �

In this section we follow the description of the roots of g given in [21].

Lemma 4.18. The following formulas hold in V 1(F (4)):

(1) [(xε1−ε2)λ : xδxε1 :] = 0,
(2) [(xε1−ε2)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] = 0,
(3) [(xε1−ε2)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] = 0,
(4) [(xε2−ε3)λ : xδxε1 :] = 0,
(5) [(xε2−ε3)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] = 0,
(6) [(xε2−ε3)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] = 0,
(7) [(xε3)λ : xδxε1 :] =: xδxε1+ε3 :,
(8) [(xε3)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] =
− : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2+ε3) :,

(9) [(xε3)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] =
: x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2+ε3) :,

(10) [(xδ)λ : xδxε1 :] = 0,
(11) [(xδ)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] = 0,
(12) [(xδ)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] = 0,
(13) [(x−ε1−ε2)λ : xδxε1 :] = −2 : xδx−ε2 :,
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(14) [(x−ε1−ε2)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] =
−2 : x1/2(δ−ε1−ε2+ε3)x1/2(δ+ε1−ε2+ε3) :,,

(15) [(x−ε1−ε2)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] = 0
2 : x1/2(δ−ε1−ε2+ε3)x1/2(δ+ε1−ε2+ε3) :,

(16) [(x−δ)λ : xδxε1 :] = − : hδxε1 : −2/3λxε1,
(17) [(x−δ)λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] =

: x1/2(−δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :
+ : x1/2(δ+ε1+ε2+ε3)x1/2(−δ+ε1−ε2−ε3) : +8/3λxε1,

(18) [(x−δ)λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] =
: x1/2(−δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :
+ : x1/2(δ+ε1+ε2−ε3)x1/2(−δ+ε1−ε2+ε3) : −8/3λxε1,

(19) [(x−1/2(δ+ε1+ε2+ε3))λ : x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :] =
−16/3 : h1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :
−8/3 : x1/2(δ+ε1+ε2+ε3)x−ε2−ε3) : +32/3λx1/2(δ+ε1−ε2−ε3),

(20) [(x−1/2(δ+ε1+ε2+ε3))λ : x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :] =
8/3 : x−ε3x1/2(δ+ε1−ε2+ε3) :
−8/3 : x1/2(δ+ε1+ε2−ε3)x−ε2) : +8/3λx1/2(δ+ε1−ε2−ε3).

Proof. We apply Wick’s formula and an explicit calculation of the structure
constants for F (4) following [15]. �

Lemma 4.19. In V 1(F (4)) the unique (up to a multiplicative constant)
ĝ0̄–singular vector of conformal weight 2 and h–weight δ + ε1 is

vδ+ε1 =: x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :+: x1/2(δ+ε1+ε2−ε3)x1/2(δ+ε1−ε2+ε3) :

Moreover (the image of) vδ+ε1 is nonzero in V1(F (4)).

Proof. By Lemma 4.18, one checks that vδ+ε1 is ĝ0̄–singular. To check that
it is the only one, we observe that a basis of the space of vectors in V 1(F (4))
of conformal weight 2 and h–weight δ + ε1 is {v1, v2, v3} where

v1 =: xδxε1 :, v2 =: x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) :,

v3 =: x1/2(δ+ε1+ε2+ε3)x1/2(δ+ε1−ε2−ε3) : .

If a linear combination av1 + bv2 + cv3 is ĝ0̄–singular, then, by Lemma
4.18 (7)–(9) and (16)–(18) we have

a− b+ c = 0,−2
3(a− 4b+ 4c) = 0,

hence a = 0 and b = c.
By Lemma 4.18 (19) and (20), we have

x−1/2(δ+ε1+ε2+ε3)(1)vδ+ε1 = 40
3 x1/2(δ+ε1+ε2+ε3) 6= 0.

�

Theorem 4.20. We have:

V1(g) = V1(so(7))⊗ V
−2

3
(sl(2))

⊕
Lso(7)(ω3)⊗ Lsl(2)(ω1)⊕

Lso(7)(ω1)⊗ Lsl(2)(2ω1).(4.20)
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Proof. Observe that V1(g) is completely reducible as V1(so(7))⊗V− 2
3
(sl(2))–

module. Clearly Vω3,ω1 ' Lso(7)(ω3)⊗ Lsl(2)(ω1) and, by Lemma 4.19,

Vω1,2ω1 ' Lso(7)(ω1)⊗ Lsl(2)(2ω1).

For the proof it is enough to check that V0,0 + Vω3,ω1 + Vω1,ω2 is a vertex
subalgebra. This follows from the subsequent remarks.

• Since h0,2ω1 = 3/2 and hω1,0 = 1/2,

Vω3,ω1 · Vω3,ω1 ⊂ V0,0 + Vω1,2ω1 .

• Since hω3,3ω1 = 13/4,

Vω3,ω1 · Vω2,2ω1 ⊂ Vω3,ω1 .

• Since h0,4ω1 = 9/2 and h0,2ω1 = 3/2,

Vω1,2ω1 · Vω1,2ω1 ⊂ V0,0.

�

Remark 4.21. The decomposition in Theorem 4.20 has also appeared in
[13].

4.10. The case g = G(3), k = 1. In this case g0̄ = (g0̄)1 ⊕ (g0̄)2 with
(g0̄)1 ' sl(2) and (g0̄)2 of type G2.

Lemma 4.22. There are no ĝ0̄–singular vectors in V1(G(3)) of g0̄–weight
(8ω1, 0). The vertex subalgebra of V1(g) generated by g0̄ is isomorphic to
V− 3

4
(sl(2))⊗ V1(G2).

Proof. The vertex subalgebra of V1(g) generated by g0̄ is isomorphic to

V−3/4(sl(2))⊗ V1(G2) where V−3/4(sl(2)) is a quotient of V −3/4(sl(2)). In-

deed, the maximal ideal of V 1(G2) is generated by : xθxθ : where θ here is

the highest root of G2. But : xθxθ : is ĝ0̄–singular and (2θ,2θ+2ρ2)2

2(1+h∨2 )
6= 2.

By Theorem 5.3 of [8], V−3/4(sl(2)) is either the universal or simple affine
vertex algebra associated to sl(2) at level −3/4 and the maximal ideal in

V −3/4(sl(2)) is generated by a unique singular vector of sl(2)–weight 8ω1.
Let us now show that such singular vector cannot exist.

Let vn,m be a the set of ĝ0̄ singular vector in V1(G(3)) of g0̄ weight
(nω1,mω2), where n ∈ Z≥0 and m ∈ {0, 1}. Let Vn,m = V1(g0̄) · vn,m.
The fusion rules argument implies that

Vn,0 · V1,1 ⊂ Vn+1,1 + Vn−1,1.

Vn,1 · V1,1 ⊂ Vn+1,1 + Vn−1,1 + Vn+1,0 + Vn−1,0.

We can exclude summands Vr,0 such that the conformal weight

hr,0 =
r(r + 2)

5
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of vr,0 is not in Z+ and summands Vr,1 such that the conformal weight

hr,1 =
r(r + 2)

5
+

2

5

of vr,1 is not in Z+.
The only integral conformal weights in the above decompositions are

h8,0 = 16, h5,0 = 7, h3,0 = 3, h0,0 = 1, h7,1 = 13, h6,1 = 10, h2,1 = 2.

It follows that

V8,0 · V1,1 ⊂ V7,1,

V7,1 · V1,1 ⊂ V6,1 + V8,0,

V6,1 · V1,1 ⊂ V5,0 + V7,1,

V5,0 · V1,1 ⊂ V6,1,

and this implies that V8,0 generates a proper ideal in V1(g). A contradiction.
This implies that V−3/4(sl(2)) = V−3/4(sl(2)). The claim follows. �

The next result is obtained as a consequence of the results of Section 5
below, thus we postpone its proof to the end of § 5.2.

Theorem 4.23. We have

V1(g) =
(
V− 3

4
(sl(2))⊕ Lsl(2)(3ω1)

)
⊗ V1(G2)⊕(

Lsl(2)(ω1)⊕ Lsl(2)(2ω1)
)
⊗ LG2(ω1)

5. Some examples of decompositions of embeddings g0 ⊂ g

5.1. The conformal embedding gl(n|m) ↪→ sl(n+ 1|m).

Recall that Vk(g)(q) is the eigenspace for the action of $(0) on Vk(g)
corresponding to the eigenvalue q.

Theorem 5.1. Assume that we are in the following cases:

• Conformal level k = 1, m 6= n+ 2.
• Conformal level k = −h∨

2 = −n+1−m
2 , n 6= m+ 2, n 6= m+ 3.

Then each Vk(g)(q) is a simple Vk(g
0)–module.

Proof. We have to decompose the tensor product of the two pieces of g1.
Observe that Cn|m ⊗ (Cn|m)∗ ∼= gl(n,m), hence the desired decomposition
is (

VC$(ε)⊗ Cn|m
)
⊗
(
VC$(−ε)⊗ (Cn|m)∗

)
= C⊗ C⊕ C⊗ sl(n,m).

(Recall from (2.7) the definition of ε). We can now apply Theorem 2.4. If
k = 1 formula (2.9) reads

−m+ n

1−m+ n
= 1− 1

1−m+ n
,
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which is never integral in our hypothesis. For k = −n+1−m
2 we obtain

2(m− n)

1 +m− n
= 2− 2

1 +m− n
,

which is again never integral in our hypothesis. The claim follows. �

Using the free field realization of [23] for k = 1, we can actually write
down the decomposition and also cover the missing m = n + 2 case. In
sl(n|m) set α∨i = Eii − Ei+1i+1 for i 6= n and α∨n = Enn + En+1n+1. Define
ωi ∈ h∗ by setting ωi(α

∨
j ) = δij and ω0 = 0. Set

λ(q) =


ωq if 0 ≤ q ≤ n,

(1 + q − n)ωn + (q − n)ωn+1 if q ≥ n,

−qωm+n−1 if q ≤ 0.

Proposition 5.2. As a Mc(1)⊗ V1(sl(n|m))–module

V1(sl(n+ 1|m)) =
∑
q∈Z

Mc(1,
−q
‖$‖)⊗ Lsl(n|m)(λ(−q)).

Proof. Set $1 = In+1+m, $2 = E11, $3 =

(
0 0
0 In+m

)
∈ gl(n+ 1|m) and let

ci = $i/‖$i‖. By [23], § 3, there is an embedding of Mc1(1) ⊗ V1(sl(n +
1|m) in M(2n+2|2m). The action of $1(0) on M(2n+2|2m) defines the charge

decomposition M(2n+2|2m) = ⊕q∈ZM q
(2n+2|2m) and

Mc1(1)⊗ V1(sl(n+ 1|m) = M0
(2n+2|2m).

In particular, if Mc1(1)+ = span($1(n) | n > 0),

V1(sl(n+ 1|m) = (M0
(2n+2|2m))

Mc1 (1)+
.

Clearly, M(2n+2|2m) = M(2|0)⊗M(2n|2m). By boson-fermion correspondence,
as a Mc2(1)–module, M(2|0) =

∑
q∈ZMc2(1, q). The action of $3(0) on

M(2n|2m) defines the charge decomposition M(2n|2m) = ⊕q∈ZM q
(2n|2m) and,

by [23], § 3,

M q
(2n|2m) = Mc3(1, q

‖$3‖)⊗ Lsl(n|m)(λ(q))

as a Mc3(1)⊗ V1(sl(n|m))–module. Since $1 = $2 +$3,

M0
(2n+2|2m) =

∑
q∈Z

M q
(2|0) ⊗M

−q
(2n|2m),

so

M0
(2n+2|2m) =

∑
q∈Z

Mc2(1, q)⊗Mc3(1, −q‖$3‖)⊗ Lsl(n|m)(λ(−q))

as a Mc2(1) ⊗ Mc3(1) ⊗ V1(sl(n|m))–module. Since $1 = $2 + $3 and
$ = m−n

1+n−m$2 + 1
1+n−m$3, we obtain that

Mc2(1, q)⊗Mc3(1, −q‖$3‖) = Mc1(1, 0)⊗Mc(1,
−q
‖$‖).
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The final outcome is that

V1(sl(n+ 1|m)) = (
∑
q∈Z

Mc1(1, 0)⊗Mc(1,
−q
‖$‖)⊗ Lsl(n|m)(λ(−q)))

Mc1 (1)+

=
∑
q∈Z

Mc(1,
−q
‖$‖)⊗ Lsl(n|m)(λ(−q))

as wished. �

5.2. The conformal embedding sl(2)× spo(2|3) ↪→ G(3), k = 1. In this
section we consider g = G(3) and its subalgebra g0 = sl(2) × spo(2|3). We
will use the notation established in the proof of Theorem 3.3 (2).

Recall that g1 = Vsl(2)(ω1)⊗ Vspo(2|3)(β1 + 3/2β2).
In order to apply Theorem 2.3 we need to compute the factors occurring

in the composition series of Vspo(2|3)(β1 + 3/2β2) ⊗ Vspo(2|3)(β1 + 3/2β2).
Clearly Vspo(2|3)(2β1 + 3β2) occurs. By looking at Table 3.65 of [18] one sees
that Vspo(2|3)(2β1 + 3β2) has dimension 30. Observe that dimVspo(2|3)(β1 +
3/2β2) = 8 and its sp(2) × so(3) decomposition is Vsp(2)(ω1) ⊗ Vso(3)(ω1) +
Vsp(2)(0) ⊗ Vso(3)(3ω1), so Vsp(2)(0) ⊗ Vso(3)(6ω1) must occur in the tensor
product. The only representation of dimension less that 34 where such a
factor occurs is Vspo(2|3)(β1 + 3β2) which has dimension 20. The remaining
sp(2)× so(3)–factors in the tensor product are

Vsp(2)(2ω1)⊗ Vso(3)(0), Vsp(2)(0)⊗ Vso(3)(2ω1), Vsp(2)(ω1)⊗ Vso(3)(2ω1)

and Vsp(2)(0)⊗ Vso(3)(0) with multiplicity 2.
By searching Table 3.65 of [18] we see that the only possibility is that

the remaining spo(2|3)–factors are Vspo(2|3)(2β1 + 2β2) and Vspo(2|3)(0), the
latter with multiplicity 2.

Proposition 5.3. There is a chain of conformal embeddings

V1(sl(2))⊗V3(sl(2))⊗V−3/4(sl(2)) ↪→ V1(sl(2))⊗V−3/4(spo(2|3)) ↪→ V1(G(3)).

Proof. By Lemma 4.22 there is a conformal embedding of V−3/4(sl(2)) ⊗
V1(G2) ↪→ V1(G(3)). By using the conformal embedding of V1(sl(2)) ⊗
V3(sl(2)) in V1(G2) we conclude that there is chain of conformal embeddings

V1(sl(2))⊗ V3(sl(2))⊗ V−3/4(sl(2)) ↪→ V1(G2)⊗ V−3/4(sl(2)) ↪→ V1(G(3)),

so the embedding

V1(sl(2))⊗ V3(sl(2))⊗ V−3/4(sl(2)) ↪→ V1(G(3)

is conformal.
Since the embedding V1(sl(2))⊗V−3/4(spo(2|3)) ↪→ V1(G(3)) is conformal

we deduce that the embedding

V1(sl(2))⊗ V3(sl(2))⊗ V−3/4(sl(2)) ↪→ V1(sl(2))⊗ V−3/4(spo(2|3))

is conformal as well. �
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Theorem 5.4. Let β1, β2 be the simple roots for the distinguished set of
positive roots for spo(2|3). Then

V1(g) = V1(sl(2))⊗ V−3/4(spo(2|3))⊕ Lsl(2)(ω1)⊗ Lspo(2|3)(V8).

where V8 is the unique irreducible 8-dimensional representation of spo(2|3)
(see [18]).

Proof. Let hλ,µ be the conformal weight of the highest vector of Lsl(2)(λ)⊗
Lspo(2|3)(µ). It turns out that hλ,µ with Vsl(2)(λ) ⊗ Vspo(2|3)(µ) occuring in

the tensor product g1 ⊗ g1 is a positive integer only in the following cases
λ = 0; µ = 0 hλ,µ = 0,

λ = 0; µ = 2β1 + 3β2 hλ,µ = 0,

λ = 0; µ = β1 + 3β2 hλ,µ = 6.

The only primitive vector in V1(G(3)) with conformal weight 0 is 1, so,
in order to apply Theorem 2.3 we are reduced to check that there is no
ĝ0–primitive vector in V1(G(3)) having conformal weight 6. By Proposition
5.3, there is a conformal embedding of V1(sl(2))⊗V3(sl(2))⊗V−3/4(sl(2)) in

V1(g0). We next display the possible conformal weights of Vk(sl(2))–singular
vectors for k = 1, 3,−3/4:

k conformal weights
1 0, 1/4
3 0, 3/20, 2/5, 3/4

-3/4 0, 3/5, 8/5, 3

One cannot obtain 6 as a sum of these values. This concludes the proof. �

We are now ready to prove Theorem 4.23. The proof follows from Theo-
rem 5.4 and Proposition 4.13 by essentially repeating the argument of [13,
Proposition 6.3].

Proof of Theorem 4.23. By Lemma 4.22, V1(G(3)) is completely reducible
as a V1(g0̄) module. Thus we can write

V1(g) = V−3/4(sl(2))⊗ V1(G2)⊕
∑
λ,µ

mλ,µLsl(2)(λ)⊗ LG2(µ)

with λ ∈ {0, ω1, 2ω1, 3ω1} and µ ∈ {0, ω1}. Since the conformal weight of
the highest weight vector of LG2(ω1) is 2/5, we see that mλ,µ = 0 except
when

(λ, µ) ∈ {(3ω1, 0), (ω1, ω1), (2ω1, ω1)}.
We now check that in these cases mλ,µ = 1. We have [22]:

V1(G2) = V1(sl(2))⊗ V3(sl(2))⊕ Lsl(2)(ω1)⊗ Lsl(2)(3ω1)

while, as V1(sl(2))⊗ V3(sl(2))–module,

LG2(ω1) = V1(sl(2))⊗ Lsl(2)(2ω1)⊕ Lsl(2)(ω1)⊗ Lsl(2)(ω1),
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so

V1(g) =

V−3/4(sl(2))⊗ (V1(sl(2))⊗ V3(sl(2))⊕ Lsl(2)(ω1)⊗ Lsl(2)(3ω1))

⊕m3ω1,0Lsl(2)(3ω1)⊗ (V1(sl(2))⊗ V3(sl(2))⊕ Lsl(2)(ω1)⊗ Lsl(2)(3ω1))

⊕mω1,ω1Lsl(2)(ω1)⊗ (V1(sl(2))⊗ Lsl(2)(2ω1)⊕ Lsl(2)(ω1)⊗ Lsl(2)(ω1))

⊕m2ω1,ω1Lsl(2)(2ω1)⊗ (V1(sl(2))⊗ Lsl(2)(2ω1)⊕ Lsl(2)(ω1)⊗ Lsl(2)(ω1)).

As V−3/4(sl(2))⊗ V3(sl(2))–module,

Lspo(2|3)(β1 + 3/2β2) =
∑

ci,jLsl(2)(iω1)⊗ Lsl(2)(jω1),

with 0 ≤ i, j ≤ 3. Since the highest weight vectors occuring in Lsl(2)(ω1)⊗
Lspo(2|3)(β1 + 3/2β2) must have integral conformal weight, we have that
ci,j = 0 unless (i, j) ∈ {(1, 1), (2, 1), (0, 3), (3, 3)}.

Combining Theorem 5.4 and Proposition 4.13, we obtain

V1(g) = V1(sl(2))⊗ (V−3/4(sl(2))⊕ Lsl(2)(3ω1))⊗ V3(sl(2))

⊕ V1(sl(2))⊗ (Lsl(2)(ω1)⊕ Lsl(2)(2ω1))⊗ Lsl(2)(2ω1)

⊕ Lsl(2)(ω1)⊗ (c0,3V−3/4(sl(2))⊕ c3,3Lsl(2)(3ω1))⊗ Lsl(2)(3ω1)

⊕ Lsl(2)(ω1)⊗ (c1,1Lsl(2)(ω1)⊕ c2,1Lsl(2)(2ω1))⊗ Lsl(2)(ω1).

Comparing coefficients we obtain the result. �

Remark 5.5. As a byproduct of the above proof we also obtain that, as a
V−3/4(sl(2))⊗ V3(sl(2))–module,

Lspo(2|3)(β1 + 3/2β2) = (V−3/4(sl(2))⊕ Lsl(2)(3ω1))⊗ Lsl(2)(3ω1)

⊕ (Lsl(2)(ω1)⊕ Lsl(2)(2ω1))⊗ Lsl(2)(ω1).

6. Free field realization of osp(m|2n): a new approach

In this section we show that the free field realization of osp(m|2n), n > 0,
given in [25] fits nicely in the general theory of conformal embeddings. Here
we provide a proof based on a fusion rules argument.

Consider the superspace Cm|2n equipped with the standard supersym-
metric form 〈·, ·〉m|2n given in [21] (sometimes denoted by 〈·, ·〉 if m,n are

clear from the context) . Let V = ΠCm|2n, where Π is the parity reversing
functor. Let M(m|2n) be the universal vertex algebra generated by V with
λ–bracket

(6.1) [vλw] = 〈w, v〉.

Let {ei} be the standard basis of V and let {ei} be its dual basis with respect
to 〈·, ·〉 (i. e. 〈ei, ej〉 = δij). In this basis the λ-brackets are given by

[ehλem−k+1] = δhk, [em+iλem+2n−j+1] = −δij , [em+n+iλem+n−j+1] = δij ,

for h, k = 1, . . .m, i, j = 1 . . . , n.
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In the case m = 0 (resp. n = 0), we write M(n) := M(0|2n) (resp. F(m/2) :=
M(m|0). This notation is consistent with those used in [9] and [10]. Clearly,
we have the isomorphism:

M(m|2n)
∼= F(m/2) ⊗M(n).

Proposition 6.1. There is a non-trivial homomorphism

Φ : V 1(osp(m|2n))→M(m|2n)

uniquely determined by

(6.2) X 7→ 1/2
∑
i

: X(ei)e
i :, X ∈ osp(m|2n).

Proof. Recall that the λ–bracket of V 1(osp(m|2n)) is given by

[XλY ] = [X,Y ] + 1
2λ str(XY ).

A straightforward computation using Wick formula shows that, if X ∈
osp(m|2n) and v ∈ V ,

(6.3) [Φ(X)λv] = X(v).

Applying (6.3) and the Wick formula one obtains that

[(1
2

∑
i

: X(ei)e
i :)λ(1

2

∑
i

: Y (ei)e
i :)] = 1

2

∑
i

: [X,Y ](ei)e
i : +1

2λ str(XY ).

�

A Virasoro vector for M(m|2n) is

ω = 1
2

∑
i

: T (ei)e
i : .

If m 6= 2n+ 1, let ωosp(m|2n) be the Virasoro vector of V 1(osp(m|2n)) given
by the Sugawara construction.

Lemma 6.2. Assume m 6= 2n+ 1. Then

Φ(ωosp(m|2n)) = ω.

Proof. It is well known that M(m|2n) is simple, so it is enough to show that
v(n)(ω − Φ(ωosp(m|2n))) = 0 for all n > 0.

Since [vλω] = 1
2λv for all v ∈ V , we need only to show that

v(n)Φ(ωosp(m|2n)) = δn1
1
2v

for all n > 0. Using (6.3) and the Wick formula we see that, for n > 0,

(6.4) v(n) : Φ(X)Φ(Y ) : = δn1(−1)p(Y X)p(v)+p(Y X)+p(Y )p(X)Y (X(v)).
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Fix a basis {xi} of osp(m|2n) and let {xi} be its dual basis (i.e. 1
2str(xix

j) =
δij). By (6.4), if n > 0,∑

i

v(n) : Φ(xi)Φ(xi) : = δn1(
∑
i

(−1)p(xi)xi(x
i(v)))

= δn1(
∑
i

xi(xi(v))) = δn1Cv,

where C is the eigenvalue of the action of the Casimir
∑

i x
ixi on Cm|2n.

To compute this eigenvalue assume first m 6= 2n. We observe that

str(
∑
i

xixi) = (m− 2n)C.

On the other hand

str(
∑
i

xixi) =
∑
i

(−1)p(xi)str(xix
i)

= 2 sdim(osp(m|2n)) = (m− 2n)(m− 2n− 1).

It follows that C = m− 2n− 1, hence

v(n)ωosp(m|2n) = δn1
m− 2n− 1

2(1 +m− 2n− 2)
v = δn1

1
2v.

We now deal with the case m = 2n with a more explicit calculation: recall
that osp(2n|2n) is the simple Lie superalgebra of type C(2) if n = 1 and of
type D(n, n) if n > 1. We use the description of roots given in [21]. We
choose a set of positive roots so that δ1 ± εi and δ1 ± δi are positive roots.
With this choice δ1 is the highest weight of C(2n|2n). Calculating explicitly
(δ1, δ1 + 2ρ) one finds that C = m− 2n− 1 = −1 also in these cases. �

Lemma 6.3. If m > 1, the embedding of V1(so(m)× sp(2n)) in M(2n|m) is
conformal.

Proof. By Lemma 6.2 in case n = 0 and in case m = 0,

V1(so(m)×sp(2n)) = V1(so(m))⊗V1(sp(2n)) ⊂M(m|0)⊗M(0|2n) = M(m|2n)

is a conformal embedding. �

By (6.1) the map −Id on V induces an involution of M(m|2n). Let

M(m|2n) = M+
(m|2n) ⊕M

−
(m|2n) be the corresponding eigenspace decomposi-

tion. Since M(m|2n) is simple, M+
(m|2n) is a simple vertex algebra and M−(m|2n)

is a simple M+
(m|2n)–module.

Theorem 6.4. Assume n ≥ 1. Then the image of Φ is simple; hence there
is a conformal embedding of V1(osp(m|2n)) in M(m|2n). Moreover

M+
(m|2n) = V1(osp(m|2n)), M−(m|2n) = Losp(m|2n)(Cm|n).
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so that M(m|2n) is completely reducible as V1(osp(m|2n))–module and the
decomposition is given by

M(m|2n) = V1(osp(m|2n))⊕ Losp(m|2n)(C(m|n)).

Proof. Recall from (2.1) the definition of the dot product of two subspaces
in a vertex algebra. Set

V1(osp(m|2n)) = Φ(V 1(osp(m|2n)), V1(C(m|2n)) = V1(osp(m|2n))·C(m|2n).

Clearly V1(osp(m|2n)) ⊂M+
(m|2n) and V1(C(m|2n)) ⊂M−(m|2n). We will show

that

(6.5) V1(C(m|2n)) · V1(C(m|2n)) ⊂ V1(osp(m|2n)),

so that U = V1(osp(m|2n))⊕V1(C(m|2n)) is a vertex subalgebra of M(m|2n).
Since this vertex subalgebra contains all generators of M(m|2n), we conclude
that U = M(m|2n). This proves the statement.

Let us first prove the case m = 0.

• Let n = 1. In this case osp(0|2) = sl(2) and C(0|2) = VA1(ω1). By
using the decomposition of sl(2)–modules

VA1(ω1)⊗ VA1(ω1) = VA1(2ω1)⊕ VA1(0),

and the fact that a primitive vector vector of sl(2)-weight 2ω1 has
conformal weight h2ω1 = 2

3 /∈ Z, we conclude that (6.5) holds.

• Let n ≥ 2. In this case osp(0|2n) = sp(2n) and C(0|2n) = VCn(ω1).
Then we use the tensor product decomposition

VCn(ω1)⊗ VCn(ω1) = VCn(2ω1)⊕ VCn(ω2)⊕ VCn(0)

and the fact that primitive vectors of Cn-weight 2ω1 and ω2 have
conformal weight

h2ω1 =
2(n+ 1)

2n+ 1
/∈ Z, hω2 =

2n

2n+ 1
/∈ Z,

to conclude that (6.5) holds.

Now let us consider the case m ≥ 1. If V is a so(m)-module and W is a
sp(2n)-module we let V ⊗̂W be the corresponding so(m) × sp(2n)-module.
As so(m)× sp(2n)–module,

C(m|2n) = Cm⊗̂Vsp(2n)(0)⊕ Vso(m)(0)⊗̂C2n

(here Vso(m)(0) = C if m = 1), so

C(m|2n) ⊗ C(m|2n)

= (Cm⊗̂Vsp(2n)(0)⊕ Vso(m)(0)⊗̂C2n)⊗ (Cm⊗̂Vsp(2n)(0)⊕ Vso(m)(0)⊗̂C2n)

= (Cm ⊗ Cm)⊗̂Vsp(2n)(0) + 2(Cm⊗̂C2n) + Vso(m)(0)⊗̂(C2n ⊗ C2n).
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Let εi, δi ∈ h∗ be as in [21]. Let HW be the set of nonzero highest weights

occurring in the decomposition of C(m|2n) ⊗ C(m|2n) as so(m) × sp(2n)–
module. Then

HW =



{2δ1, δ1 + δ2, δ1} if m = 1, n > 1

{2δ1, δ1} if m = 1, n = 1

{2ε1,−2ε1, 2δ1, δ1 + δ2, ε1 + δ1,−ε1 + δ1} if m = 2, n > 1

{2ε1,−2ε1, 2δ1, ε1 + δ1,−ε1 + δ1} if m = 2, n = 1

{2ε1, ε1, 2δ1, δ1 + δ2, ε1 + δ1} if m = 3, n > 1

{2ε1, ε1, 2δ1, ε1 + δ1} if m = 3, n = 1

{2ε1, ε1 + ε2, ε1 − ε2, 2δ1, δ1 + δ2, ε1 + δ1} if m = 4, n > 1

{2ε1, ε1 + ε2, ε1 − ε2, 2δ1, ε1 + δ1} if m = 4, n = 1

{2ε1, ε1 + ε2, 2δ1, δ1 + δ2, ε1 + δ1} if m ≥ 5, n > 1

{2ε1, ε1 + ε2, 2δ1, ε1 + δ1} if m ≥ 5, n = 1

.

We choose the set of positive roots in osp(m|2n) so that

(6.6) 2ρ =
n∑
i=1

(2n−m− 2i+ 2)δi +

bm/2c∑
i=1

(m− 2i)εi.

If λ is the highest weight of a osp(m|2n) composition factor of C(m|2n) ⊗
C(m|2n) then it must occur in HW . If m > 1 and λ = 2δ1, δ1 + δ2, then,
by the first part of the proof and Lemma 6.3, we see that its conformal
weight computed using ωso(m)×sp(2n) is not an integer. If λ ∈ span(εi), then
(λ, λ+ 2ρ) = (λ, λ+ 2ρ0), hence its conformal weight is

(λ, λ+ 2ρ)

2(m− 2n− 1)
=

(λ, λ+ 2ρ0)

2(m− 2n− 1)
6= (λ, λ+ 2ρ0)

2(m− 1)
,

contradicting Lemma 6.3. If λ = ε1 + δ1 then, by Lemma 6.3, we must have
2m−2n−2

2(m−2n−1) = 1, which implies n = 0. If m = 2 and λ = −ε1 + δ1 then the

conformal weight is −2n+2
2(−2n+1) /∈ Z if n > 1 and it is 0 if n = 1. Finally, if

m = 1, then the conformal weight of the elements of HW computed using
ωosp(1|2n) is not an integer.

�

7. The conformal embedding so(2n+ 8)× sp(2n) ↪→ osp(2n+ 8|2n)
at k = −2

7.1. Semi-simplicity of the embedding. In this subsection we prove the
semi-simplicity of the embedding so(2n+ 8)× sp(2n) ↪→ osp(2n+ 8|2n) at
k = −2. The corresponding decomposition will be obtained in Subsection
7.3.

Theorem 7.1. (1). The vertex algebra V−2(g0̄) is simple and isomorphic
to V−2(so(2n+ 8))⊗ V1(sp(2n)).
(2). V−2(g) is semi-simple as V−2(g0̄)–module.
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Proof. Let ` = n + 4 and R−2(D`) be the vertex algebra defined in [10,
Section 6.1] (denoted there by V−2(D`)) as the quotient of V −2(D`) by the
ideal generated by singular vector w1 defined by formula (23) in [6]. Recall
that highest weight R−2(D`)–modules in KL−2 must have highest weight
rω1 with respect to D` where r ∈ Z≥0. Let θ′ be the maximal root in
sp(2n) and let e−θ′ be the root vector corresponding to the root −θ′. Then
V1(sp(2n)) is the quotient of V 1(sp(2n)) by the ideal generated by singular
vector e−θ′(−1)21. Using the Fock-space realization of osp(2n + 8, 2n) at
level k = −2, we conclude from Proposition 7.2 that w1 and e−θ′(−1)21
vanish on a certain quotient of V −2(g). In particular, these vectors must
vanish on the simple quotient V−2(g).

We deduce that there is a surjective homomorphism

R−2(D`)⊗ V1(sp(2(`− 4)))→ V−2(g0̄).

In order to prove that V−2(g0̄) s simple, it suffices to prove the vanishing
of the singular vector

w` =
(∑̀
i=2

eε1−εi(−1)eε1+εi(−1)
)`−3

1.

(It is proved in [10] that w` generates a unique non-trivial ideal in R−2(D`)).
Denote by h[r, s] the conformal weight of any ĝ0̄–singular vector vr,s in

V−2(g) of g0̄–weight (rω1, ωs). By direct calculation we see that

h[r, s] :=
r(2n+ 6 + r) + (2n+ 2− s)s

4(n+ 2)
.

In particular:

(1) h[2n+ 2− r, r] = 2n+ 2− r ∈ Z≥0 for every r ∈ {0, . . . , n},
(2) h[2n+2−r, r−2] = 2n+1−r+ r

2+n /∈ Z≥0 for every r = 0, . . . , n+1,

(3) h[2n+2−r, r+2] = 3+2n− 2+r
2+n−r /∈ Z≥0 for every r = 0, . . . , n−1.

(4) h[r, r] = r for every r ∈ Z≥0.
(5) h[r + 1, r − 1] = r + 1+r

2+n /∈ Z≥0 for every r = 0, . . . , n.

(6) h[r − 1, r + 1] = r − 1+r
2+n /∈ Z≥0 for every r = 0, . . . , n.

By using the tensor product decomposition of D`–modules

VD`
(ω1)⊗ VD`

(iω1) = VD`
((i+ 1)ω1)⊕ VD`

((i− 1)ω1)⊕ VD`
(ω2)(7.1)

and the classification of irreducible R−2(D`)–modules we get the following
fusion rules for R−2(D`):

L−2(ω1)× L−2(iω1) ⊂ L−2((i+ 1)ω1) + L−2((i− 1)ω1) (i ≥ 1).(7.2)

It is well known that the fusion ring for V1(Cn) is isomorphic to the fusion
ring for Vn(sl(2)) (the so-called rank-level duality). Note that V1(ωn) is a
simple current V1(Cn)–module. We have the following fusion rules

L1(ω1)× L1(ωi) = L1(ωi+1) + L1(ωi−1) (1 ≤ i ≤ n− 1),

L1(ω1)× L1(ωn) = L1(ωn−1).(7.3)
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Assume now that there is a ĝ0̄–singular vector v2n+2,0 in V−2(g) of g0̄–
weight ((2n+2)ω1, 0), i.e., that w` 6= 0. We prove by induction that there is a
non-trivial ĝ0̄–singular vector v2n+2−r,r of weight ((2n+2−r)ω1, ωr) for each
r = 1, . . . , n. Using the fusion rules described above we see that V−2(g) must
contain non-trivial ĝ0̄–singular vector v2n+1,1 of g0̄–weight ((2n + 1)ω1, ω1)
and conformal weight h[2n+ 1, 1] = 2n+ 1. This gives the induction basis.
The inductive assumption says that there is a non-trivial singular ĝ0̄–singular
vector v2n+2−r,r of g0̄–weight ((2n + 2 − r)ω1, ωr) for 1 ≤ r ≤ n − 1. Its
conformal weight is h[2n + 2 − r, r] = 2n + 2 − r. Using fusion rules and
simplicity of V−2(g) we conclude that at least one of three following ĝ0̄–
singular vectors must occur:

v2n+1−r,r+1, v2n+1−r,r−1, v2n+3−r,r+1.

Since h[2n+ 1− r, r− 1], h[2n+ 3− r, r− 1] are not integers, we deduce that
v2n+1−r,r+1 must occur. This completes the induction step.

In particular, taking r = n we get a singular vector vn+2,n of g0̄–weight
((n+ 2)ω1, ωn) having conformal weight n+ 2. Using fusion rules again we
get a ĝ0̄–singular vector vn+1,n−1 of g0̄–weight ((n + 1)ω1, ωn−1). But the
conformal weight of this singular vector is

h[n+ 1, n− 1] = 1 + n− 1

2 + n
/∈ Z.

A contradiction. This proves that w` = 0 in V−2(g). Therefore V−2(g0̄) is a
simple vertex algebra isomorphic to V−2(D`)⊗V1(Cn). This proves assertion
(1). Claim (2) follows from the fact that V1(Cn) is a rational vertex algebra
and that the category KL−2 for the vertex algebra V−2(D`) is semi–simple
(cf. [10]). �

7.2. Realization of osp(2n + 8|2n) at level k = −2. Combining Theo-
rem 7.2 (2) of [9] with Proposition 6.1 of [10] we can construct a chain of
embeddings

(7.4) R−2(Dm) = V−1/2(so(2m)) ⊂ V−1/2(sp(4m)) ↪→M(0|4m),

By the Symmetric Space Theorem (see e.g. [9], [11]) we have also the chain
of embeddings

(7.5) V1(sp(2n)) = V1(sp(2n)) ⊂ V1(so(4n)) ↪→M(4n|0).

These embeddings give rise to an embedding

Φ0 : R−2(Dm)⊗ V1(sp(2n))→M(4n|4m).

Consider the superspace C0|2 ⊗ C2m|2n ' C4n|4m. It is equipped with
the supersymmetric form 〈v ⊗ w, u ⊗ z〉 = (−1)p(w)p(u)〈v, u〉0|2〈w, z〉2m|2n.
Since the form is obviously invariant for sp(2) × osp(2m|2n) we obtain an
embedding

sl(2)× osp(2m|2n) ↪→ osp(4n|4m)



38 ADAMOVIĆ, MÖSENEDER, PAPI, PERŠE

hence a homomorphism

Φ:V −2(osp(2m|2n))→ V1(sl(2)×osp(2m|2n))⊂ V1(osp(4n|4m)) ↪→M(4n|4m).

Proposition 7.2. There exists a vertex algebra homomorphism

Φ : V −2(osp(2n+ 8|2n))→M(4n|4n+16)

such that

Φ(V −2(so(2n+ 8)× sp(2n)) = R−2(Dn+4)⊗ V1(sp(2n)).

Proof. The action of sp(2n) on C0|2⊗C0|2n defines the embedding sp(2n) ⊂
so(4n) and in turn the chain of embeddings in (7.5).

Likewise the action of so(2m) on C0|2 ⊗ C2m|0 defines the embedding
so(2m) ⊂ sp(4m) and the chain of embeddings in (7.4). Thus the map Φ0

is just the restriction to V1(so(2m)× sp(2n)) of the embedding

V1(osp(2m|2n)) ⊂ V1(osp(4n|4m)) ⊂M(4n|4m) = M(4n|0) ⊗M(0|4m).

�

We now provide explicit formulas for the odd generators of osp(2m|2n).

Let {ej}j=1,2 be the standard basis of C0|2 and {fj}j=1,2m+2n the standard

basis of C2m|2n. By our choice of the forms 〈·, ·〉r|s, the corresponding dual

bases are, respectively, {e1, e2} with e1 = e2, e2 = −e1 and {f j} with

f j = f2m−j+1, (j = 1, · · · , 2m), f2m+j = f2m+2n−j+1, (j = 1, · · · , n),

f2m+n+j = −f2m+n−j+1, (j = 1, · · · , n).

Let Ei,j be the elementary matrix in the chosen basis {fj} of C2m|2n, i.e.
Eij(fr) = δrjfi. Then Ei,2n+2m−j+1 − E2m+j,2m−i ∈ osp(2m|2n)1̄ for 1 ≤
i ≤ 2m, 1 ≤ j ≤ n.

Set vi,j = ei ⊗ fj and vi,j = (−1)p(fj)ei ⊗ f j . Clearly 〈vi,j , vr,s〉 = δirδjs.
Since X ∈ osp(2m|2n) embeds in osp(4n|4m) letting X act as I ⊗ X on

C0|2 ⊗ C2m|2n, we obtain from (6.2) that

Φ(Er,2n+2m−s+1 − E2m+s,2m−r)

= 1/2
∑
ij

: (I ⊗ (Er,2n+2m−s+1 − E2m+s,2m−r+1))(vi,j)v
i,j :

= 1/2
∑
i=1,2

(: vi,rv
i,2n+2m−s+1 : − : vi,2m+sv

i,2m−r+1 :).

We now rewrite these odd elements in terms of the standard generators
of M(4n|4m). Set

φi =



√
−1√
2

(v1,2m+i + v2,2m+2n−i+1) i = 1, · · ·n,
1√
2
(v1,2m+i−n − v2,2m+3n−i+1) i = n+ 1, · · · 2n,

1√
2
(v1,2m+i−n + v2,2m+3n−i+1) i = 2n+ 1, · · · 3n,

√
−1√
2

(v1,2m+i−2n − v2,2m+4n−i+1) i = 3n+ 1, · · · 4n,
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so that

(7.6) [φiλφj ] = 〈φj , φi〉 = δij .

Set also
a+
i = v2,i, a

−
i = v1,2m−i+1, i = 1, . . . , 2m

so that

(7.7) [(a±i )λa
±
j ] = 0, [(a+

i )λa
−
j ] = −[(a−i )λa

+
j ] = 〈a−j , a

+
i 〉 = δij .

Since

v2,2m−r+1 = −v1,r = −a−2m−r+1,

v1,2n+2m−s+1 = v2,2m+s = 1√
2
(φ3n−s+1 +

√
−1φ4n−s+1),

and

v1,2m−r+1 = v2,r = a+
r , v

2,2n+2m−s+1 = −v1,2m+s = − 1√
2
(φn+s −

√
−1φs),

we have

Φ(Er,2n+2m−s+1 − E2m+s,2m−r)

= 1
2
√

2
(: a−2m−r+1(φ3n−s+1 +

√
−1φ4n−s+1) : − : (φn+s −

√
−1φs)a

+
r :)

− 1
2
√

2
(: a+

r (φn+s −
√
−1φs) : + : (φ3n−s+1 +

√
−1φ4n−s+1)a−2m−r+1 :)

= 1√
2
(: a−2m−r+1(φ3n−s+1 +

√
−1φ4n−s+1) : − : a+

r (φn+s −
√
−1φs) :).

Recall that, if 1 ≤ r ≤ m, 1 ≤ s ≤ n, then Er,2n+2m−s+1 − E2m+s,2m−r is
the root vector xα with α = εr + δs. Set

vi = Φ(xε1+δi)

= 1√
2
(: a−2m(φ3n−i+1 +

√
−1φ4n−i+1) : − : a+

1 (φn+i −
√
−1φi) :).

Proposition 7.3. Set Wi =: vivi−1 . . . v1 :. Then the vectors Wi are singu-

lar vectors in M(4n|4m) for ̂so(2m)× sp(2n).

Proof. We need to show that
(7.8)
[(xεj−εj+1)λWi], [(xεm−1+εm)λWi], [(xδj−δj+1

)λWi], [(x2δn)λWi] ∈ λM(4n|4m)

and that

(7.9) [(x−ε1−ε2)λWi] = x−ε1−ε2(0)Wi, [(x−2δ1)λWi] = x−2δ1(0)Wi.

These formulas are proven by induction on i. The base of the induction
is i = 1, where the formulas are satisfied since v1 is a highest weight vector
for the action of so(2m)× sp(2n) on osp(2m|2n)1̄.

If i > 1, then, by Wick formula

[(xα)λWi] =: [(xα)λ(xε1+δi)]Wi−1 : + : xε1+δi [(xα)λWi−1] :

+

∫ λ

0
[[(xα)λ(xε1+δi)]µWi−1]dµ.
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In order to check (7.8), by the induction hypothesis and the fact that

[(xεj−εj+1)λxε1+δi ] = [(xεm−1+εm)λxε1+δi ] = [(x2δn)λxε1+δi ] = 0,

[(xδj−δj+1
)λxε1+δi ] = δi,j+1Nδj−δj+1,ε1+δixε1+δi−1

,

we need only to show that : x−ε2+δiWi−1 := 0 and this follows readily since
xε1+δi−1

(−1)xε1+δi−1
(−1) = 0

In order to check (7.9), by the induction hypothesis and the fact that

[(x−2δ1)λxε1+δi ] = 0, [(x−ε1−ε2)λxε1+δi ] = N−ε1−ε2,ε1+δix−ε2+δi

we need only to show that [(x−ε2+δi)µWi−1] = 0. An easy induction on r
shows that [(x−ε2+δi)µWr] = 0 for 1 ≤ r < i.

It remains to show that Wi 6= 0 in M(4n|4m). By the defining relations
(7.6)–(7.7) of M(4n|4m), we can write

Wi = : (a−m)i(φ3n−i+1 +
√
−1φ4n−i+1) . . . (φ3n +

√
−1φ4n) :

+
i∑

j=1

: (a−m)i−j(a+
1 )jcj(φ) :

with cj(φ) ∈M(4n|0). The result follows. �

7.3. Decomposition. Let ωsug be the Sugawara Virasoro vector in
V−2(osp(2n+8|2n)) ⊂ V1(osp(4n|4n+16)), ω1 the Sugawara Virasoro vector
in R−2(Dn+4) and ω2, the Sugawara Virasoro vector in V1(Cn). We want
to investigate the embedding

R−2(so(2(n+ 4)))⊗ V1(sp(2n)) ↪→ V−2(g).

Define

Ω = ωsug − ω1 − ω2.

Set for shortness g = osp(2n+ 8|2n).

Proposition 7.4. Assume that n ≥ 2.

(1) The embedding R−2(so2(n+4))⊗ V1(sp(2n)) ↪→ V−2(g) is not confor-
mal for n ≥ 2.

(2) Ω is a non-trivial Virasoro vector of central charge c = 0.
(3) There exists a non-trivial singular vector in V−2(g) of g0̄–weight

(0, ω2) and conformal weight 2.

Proof. Assume that Ω = 0 in V−2(g), so we have a conformal embedding
R−2(so2(n+4))⊗V1(sp(2n)) ↪→ V−2(g). Assume that L(i, j) is an irreducible
highest weight V−2(g)–module with g0̄–weight (iω1, ωj), where i, j ∈ Z≥0,
1 ≤ j ≤ n. Recalling from (6.6) the expression of 2ρ, we compute that the
conformal weight is given by

∆i,j =
i2 + j + (2n+ 6)i+ 6j + j(j − 1)

8
.
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We have

∆i,j = h[i, j](7.10)

⇐⇒ (2n+ 6 + i)i+ j(j + 6)

8
=
i(2n+ 6 + i) + (2n+ 2− j)j

4(n+ 2)

⇐⇒ n(2n+ 6 + i)i+ (n+ 2)j(j + 6) = 2j(2n+ 2− j)

Assume that i ≥ 1. Since n(2n + 6) > 2n(n + 2) ≥ 2j(2n + 2 − j) for
j = 0, . . . , n we conclude that there are no solutions of the equation (7.10).
Assume that i = 0. We have the equation

j((n+ 2)(j + 6)− 2(2n+ 2− j)) = 0 ⇐⇒ j(j + 2)(n+ 4) = 0.

Therefore, the only solution of the equation (7.10) is (i, j) = (0, 0). But using
the free-field realization it is easy to see that there exist representations of
V−2(g) in KL−2 with highest weight different from (0, 0). Therefore, the
embedding R−2(so(2(n+ 4)))⊗ V1(sp(2n)) ↪→ V−2(g) cannot be conformal.
This proves assertions (1) and (2).

Let us prove assertion (3). Since Ω 6= 0, V−2(g) contains a singular
vector of conformal weight 2. The classification of R−2(so(2(n + 4))) and
V1(sp(2n))–modules implies that such singular vector has g0̄–weight (iω1, ωj)
for certain i ∈ Z≥0, 1 ≤ j ≤ n. We see that ∆i,j = 2 ⇐⇒ i = 0, j = 2. �

Remark 7.5. We have proved in [10], using quantum reduction, that the
vertex algebra V−2(g) has a unique irreducible module in KL−2. Note that
the proof of the previous proposition gives a new proof of this result. More
precisely, each irreducible V−2(g)–module in KL−2 has g0̄–highest weight
(iω1, ωj). The pair (i, j) satisifes (7.10), and the calculation in the proof
of Proposition 7.4 gives that (i, j) = (0, 0). Therefore, V−2(g) is the unique
irreducible V−2(g)–module in KL−2.

Lemma 7.6. For 1 ≤ i ≤ n, the vectors Wi are not ĝ–singular.

Proof. Assume that Wi is singular for ĝ. Then it generates the highest
weight module with highest weight λi = iε1 + δ1 + · · · + δi. The conformal
weight of Wi is

hλi =
(λi, λi + 2ρ)

2(k + h∨)
=

(λi, λi + 2ρ)

8
=
i2 + i+ (2n+ 6)i+ 6i+ i(i− 1)

8

=
i(i+ 2n+ 6)

4
.

So (ωsug)0Wi = hλiWi. On the other hand, Wi has conformal weight i in
V−2(g) ⊂M(4n|4n+16), which is different from hλi , and this is a contradiction.

�

Proposition 7.7. For 1 ≤ i ≤ n, the vectors Wi are nonzero in V−2(g) and

Wi = V−2(g0̄) ·Wi
∼= L−2(iω1)⊗ L1(ωi).(7.11)
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Proof. Assume that there is j ∈ {1, . . . , n} so that Wj = 0 and that there
are no non-trivial singular vectors in V−2(g) of weight (iω1, ωi) for i < j.
By using fusion rules, we conclude that Wj is singular in V−2(g). This
contradicts Lemma 7.6. Using the formulas given in Proposition 7.3 we get
(7.11). �

Theorem 7.8. We have the following decomposition of V−2(g):

V−2(g) =
n⊕
i=0

L−2(iω1)⊗ L1(ωi).

Proof. By [10], the irreducible V−2(so(2(n+ 4)))–modules in KL−2 are

L−2(iω1), i = 1, . . . , n.

Therefore the irreducible V−2(g0̄)–modules which can appear in the decom-
position of V−2(g) have the form

Viω1,ωj := L−2(iω1)⊗ L1(ωj), i, j = 1, . . . , n.

Note also that Wj = Vjω1,ωj , and that all components in the decomposition
of V−2(g) appear in the fusion products

W1 · · ·W1︸ ︷︷ ︸
k times

,

where k is a positive integer. Using fusion rules we get that

W1 · Viω1,ωi ⊂ V(i+1)ω1,ωi+1
+ V(i−1)ω1,ωi−1

+ V(i+1)ω1,ωi−1
+ V(i−1)ω1,ωi+1

.

But since h[i + 1, i − 1], h[i − 1, i + 1] /∈ Z, the components V(i+1)ω1,ωi−1
,

V(i−1)ω1,ωi+1
can not appear. Therefore we can not get components Viω1,ωj

for i 6= j. This implies that

V−2(g) =
n⊕
i=0

miL−2(iω1)⊗ L1(ωi)

for certain multiplicities mi ∈ Z≥0. From Proposition 7.7 we have that
V−2(g) contains Wi, which is a ĝ0̄–singular vector of g0̄–weight (iω1, ωi) for
1 ≤ i ≤ n. So, all mi are greater or equal than 1. Clearly m1 = 1. Assume
now that there is j ∈ Z≥2 such that mj ≥ 2 and mi = 1 for i < j. Using
the fact that V−2(g) is strongly generated by g, we conclude that a singular
vector vj,j of g0̄–weight (jω1, ωj) must appear in the fusion product

W1 · · ·W1︸ ︷︷ ︸
j times

.

Using the associativity of the fusion product, we get that

vj,j ∈ W1 · Wj−1.

But if vj,j and Wj are linearly independent, we conclude that the component
VDn+4(jω1)⊗ VCn(ωj) in the tensor product

(VDn+4((j − 1)ω1)⊗ VCn(ωj−1))⊗ (VDn+4(ω1)⊗ VCn(ω1))
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has multiplicity strictly greater than 1. This contradicts the fusion/tensor
product decomposition rules (7.1)–(7.3). So mj = 1 for j = 0, . . . , n. The
claim follows. �

The case n = 1 is slightly different. We present a direct proof.

Theorem 7.9. In the case n = 1, V−2(g) is a simple–current extension of
V−2(g0̄).

Proof. By using classification of irreducible V−2(so(10))–modules from [10]
and tensor product decomposition

VD5(ω1)⊗ VD5(ω1) = VD5(2ω1)⊕ VD5(ω2)⊕ VD5(0),

we get that V−2(ω1) is a simple–current V−2(so(10))–module. Since L1(ω1)
is also a simple–current V1(sl(2))–module, we get that V−2(osp(10, 2)) is a
simple–current extension of V−2(so(10))⊗ V1(sl(2)) and that

V−2(g) = V−2(so(10))⊗ V1(sl(2))
⊕

L−2(ω1)⊗ L1(ω1),

hence the claim holds. �

For n ≥ 2, V−2(g) is not a simple–current extension of V−2(g0̄). This
follows from the following fusion rules:

Corollary 7.10. We have the following fusion product inside of V−2(g):

W1 · Wi = Wi−1 ⊕Wi+1 (1 ≤ i ≤ n− 1)

W1 · Wn = Wn−1.

Finally, our result implies the following coset realization of V−2(so(2(n+
4))):

Corollary 7.11. We have

V−2(so(2(n+ 4))) ∼=
osp(2n+ 8|2n)−2

sp(2n)1
:= ComV−2(osp(2n+8|2n))(V1(sp(2n))).
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[5] D. Adamović, O. Perše, Fusion Rules and Complete Reducibility of Certain Modules
for Affine Lie Algebras, Journal of algebra and its applications 13, 1350062 (2014)
(18 pages)
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beddings of affine vertex algebras in minimal W -algebras I: Structural results, J.
Algebra, 500, (2018), 117-152.
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