
Fuzzy Time in Linear Temporal Logic

ACHILLE FRIGERI, Politecnico di Milano
LILIANA PASQUALE, Lero—The Irish Software Engineering Research Centre
PAOLA SPOLETINI, Università dell’Insubria

In the past years, the adoption of adaptive systems has increased in many fields of computer science, such 
as databases and software engineering. These systems are able to automatically react to events by collecting 
information from the external environment and generating new events. However, the collection of data is 
often hampered by uncertainty and vagueness. The decision-making mechanism used to produce a reaction is 
also imprecise and cannot be evaluated in a crisp way, as it depends on vague temporal constraints expressed 
by humans. Logic has been extensively used as an abstraction to express vagueness in the satisfaction of 
system properties, as well as to enrich existing modeling formalisms. However, existing attempts to fuzzify 
the temporal modalities still have some limitations. Existing fuzzy temporal languages are generally obtained 
from classical temporal logic by replacing classical connectives or propositions with their fuzzy counterparts. 
Hence, these languages do not allow us to represent temporal properties, such as “almost always” and 
“soon,” in which the notion of time is inherently fuzzy. To overcome these limitations, we propose a temporal 
framework, fuzzy-time temporal logic (FTL), to express vagueness on time. This framework formally defines 
a set of fuzzy temporal modalities that can be customized by choosing a specific semantics for the connectives. 
The semantics of the language is sound, and the introduced modalities respect a set of mutual relations. 
We also prove that under the assumption that all events are crisp, FTL reduces to linear temporal logic 
(LTL). Moreover, for some of the possible fuzzy interpretations of the connectives, we identify adequate sets 
of temporal operators, from which it is possible to derive all of the other ones.

1. INTRODUCTION

In the past years, the adoption of adaptive systems has increased in many fields of 
computer science. Adaptive systems must automatically react to achieve or maintain 
their requirements, depending on their internal state and the changes that can take

Author’s addresses: Achille Frigeri, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, 
Italy; email: achille.frigeri@polimi.it; Liliana Pasquale, Lero - the Irish Software Engineering Research 
Centre, University of Limerick, Limerick, Ireland; email: liliana.pasquale@lero.ie; Paola Spoletini, Di-
partimento di Scienze Teoriche e Applicate Università dell’Insubria, Via Mazzini 5, 21100 Varese, Italy; 
email: paola.spoletini@uninubria.it



place in the surrounding environment. Examples of such systems are active databases
[Paton and Dı́az 1999], active sensor networks [Levis et al. 2005], and smart grids
[SmartGrids 2013].

Event-driven architectures [Mühl et al. 2006] are a common architectural paradigm
to design adaptive systems. This paradigm is based on the idea that the actions per-
formed by the system are generated as a reaction to the events occurred inside and
outside it. In many cases, providing such active functionality requires detection of the
occurrence of other relevant events, according to a set of inference rules. These rules are
generally defined by domain experts and are formalized by designers. Domain experts
must provide the set of basic events to be collected, which serve as input to the rules,
their interrelationships, and parameters, for identifying the occurrence of new events.

However, the collection of data is often hampered by uncertainty and vagueness that
can arise from the imprecision of the monitoring infrastructure, as well as unreliable
data sources and networks. The inference rules that are used to produce a reaction are
also imprecise. They often depend on the evaluation of untimed or temporal properties
that are vague, since they are expressed by humans, or they must provide a certain
degree of flexibility. For all of these reasons, such rules cannot be formalized in a crisp
way, using traditional crisp (temporal) logic. For example, in the customer’s domain,
a smart grid might have to satisfy the following property: “all appliances must be
available almost always.” This rule is vague since the concept of availability cannot be
assessed precisely, as it may depend on the customers’ perception. The temporal period
(“almost always”), during which the availability property must be satisfied, is vague
as well. For these reasons, it becomes fundamental to identify a suitable formalism to
represent vague properties as suitable untimed or temporal formulae.

Fuzzy logic has been adopted as a mathematical abstraction to express vagueness
in the satisfaction of formulae and can be used to represent the properties mentioned
previously. However, although propositional fuzzy logic has been deeply investigated
and has even been used to extend and enrich typical modeling formalisms, such as
Petri nets [Looney 1988; Cardoso and Camargo 1998] and UML [Ma et al. 2012], the
fuzzy version of the temporal modalities has often been neglected and requires further
investigation. Few attempts [Thiele and Kalenka 1993; Lamine and Kabanza 2000;
Dutta 1988; Dubois and Prade 1989; Moon et al. 2004; De Alfaro et al. 2009; Mukherjee
and Dasgupta 2013] to manage time have been made, but all of these approaches mainly
focus on the uncertainty of the information and do not take into account the truth
degree of temporal expressions. The semantics of existing fuzzy temporal operators is
based on the idea of replacing classical connectives or propositions with their fuzzy
counterparts. Indeed, existing fuzzy languages do not allow us to represent additional
temporal properties, such as “almost always” or “soon.” This kind of modality may be
useful when we need to specify situations in which a formula is slightly satisfied, since
an event happens a little bit later than expected, a property is always satisfied except
for a small set of time instants, or a property is maintained for a time interval that is
slightly smaller than the one requested.

To overcome the limitations of existing formalisms, we propose fuzzy-time temporal
logic (FTL), a temporal framework to express vagueness on time. This framework
formally defines a set of fuzzy temporal modalities that can be customized by choosing
a specific semantics for the connectives. Indeed, the semantics of connectives is not
defined univocally, as with the term fuzzy logic, we do not refer to a specific formal
system, but to some form of many-valued logic. In this article, we focus on the three basic
continuous t-norms: Łukasiewicz, Gödel-Dummett, and Product [Hájek 1998b]. This
choice is motivated by the fact that several metamathematical properties (completeness
theorems, deduction theorems, complexity) were proved for these t-norms (e.g., see Baaz
et al. [2001] and Aguzzoli et al. [2005]), and more important, any continuous t-norm
is an ordinal sum construction of them. For historical and practical reasons, we also



consider the fuzzy logic introduced by Zadeh [1965], which although is not a t-norm–
based logic, has been broadly used in artificial intelligence and in the analysis of fuzzy 
control systems.

The semantics of the language is sound, and the introduced modalities respect a 
set of mutual relations. We also prove that under the assumption that all events 
are crisp, FTL reduces to linear temporal logic (LTL). Finally, for some of the fuzzy 
interpretations of the connectives, we identify an adequate set of temporal operators, 
from which it is possible to derive all of the others. Moreover, our framework is well 
suited for representing adaptive rules and properties, as demonstrated through the 
proposed example. The main contribution of this article is to provide a formalism for 
modeling temporal properties of systems characterized by vagueness and for which LTL 
may not be appropriate. Therefore, to encourage the use of FTL by nonlogicians, the 
syntax of the language was intentionally kept as intuitive as possible. Furthermore, 
we provide evidence that the semantics of FTL is appropriate, as it preserves LTL 
properties and operators—from which FTL operators often derive naturally.

The article is organized as follows. Section 2 discusses related work. Section 3 pro-
vides some background knowledge about fuzzy logic and points out its differences with 
regard to probability theory. Section 4 presents the FTL framework by illustrating 
some interesting properties of its operators. Section 5 shows some relationships be-
tween FTL and LTL, and provides some adequate sets of connectives for the considered 
interpretations. Section 6 provides some examples of possible FTL specifications in the 
smart grids domain, and Section 7 concludes the article.

2. RELATED WORK

In computer science, fuzzy logic has mainly been used to represent the uncertainty 
due to the unpredictability of the environment or the imprecision of the measure-
ments. Many attempts have been made to use fuzzy logic to monitor the satisfaction 
of temporal properties of the system and/or the environment. For example, for each 
classic temporal operator (always, eventually, until, etc.), Lamine and Kabanza [2000] 
add a corresponding fuzzy temporal one. These operators keep the same semantics of 
their crisp counterparts, with the only difference that the Boolean connectives (not, 
and, or) are replaced with the corresponding operations in Zadeh’s interpretation 
(see operations respectively associated with negation, t-norm, and t-conorm later in 
Table II). The authors evaluate a fuzzy proposition over a history (i.e., a sequence of 
states) and associate a weight with the evaluation made at each state. The weights 
and the extent to which the history is needed to evaluate a proposition are defined em-
pirically, depending on the application and the properties expressed by the proposition 
itself. Similarly, Thiele and Kalenka [1993] define a fuzzy “interpretation” of the classi-
cal temporal operators. They also introduce new fuzzy temporal operators to represent 
the short or long time distance in which a specific property must be satisfied, both in 
the future or in the past. Despite that the aforementioned approaches represent a first 
step toward the fuzzification of time, they do not associate a specific fuzzy semantics 
with the temporal modalities. Instead, temporal modalities have a fuzzy semantics that 
only depends on the interpretation given to their (sub-)argument, which is an untimed 
fuzzy formula. De Alfaro et al. [2009] provide some metric extensions of the classical 
linear and branching relations such as trace inclusion, trace equivalence, simulation, 
and bisimulation. They consider a quantitative setting in which propositions are not 
interpreted as Boolean values, but as elements of arbitrary metric spaces. They show a 
full logical characterization of the induced distances in terms of quantitative versions 
of LTL and μ-calculus, together with an algorithm for computing the distances over 
finite systems.

Other work ([Dutta 1988; Dubois and Prade 1989; Moon et al. 2004]) uses fuzzy 
temporal logic to express uncertainty on the time instant at which some specific events



may occur and on the temporal relationships among events and states. Dutta [1988]
defines the occurrence of an event as the possibility of its occurrence in any time
interval. In this way, the author can evaluate a set of temporal relations between a
pair of events: if an event precedes/follows another one, the degree an event overlaps
another one, or whether an event immediately follows another one. Similarly, Dubois
and Prade [1989] represent dates as a possibility distribution. Hence, it is possible
to express different situations: whether a date is precisely known or not (i.e., it is
within an interval), whether a date is fuzzily known (i.e., the interval boundaries that
contain the date are not clearly known), or whether a date is attached to an event
that may not occur. Indeed, the authors use fuzzy sets to represent time points that
are possibly/necessarily after or before a date, and use fuzzy comparators to express
relations between time instants. Moon et al. [2004] do not consider uncertainty on
the time instants, but fuzzify temporal events and states and define an order relation
among events and states, represented as a directed graph. A recent contribution related
with the notion of vagueness on time is Mukherjee and Dasgupta [2013]. The authors
introduce a notion of fuzzy time able to extend a real-time logic based on interval
relevant in software engineering (MITL) to “fuzzy” intervals in a spirit similar to
Thiele and Kalenka [1993]. In this case, the use of a dense real-time temporal logic is
proved to be important in determining the quality of satisfaction of a formula.

In requirements engineering, fuzzy logic has been adopted to perform trade-off anal-
ysis [Liu and Yen 1996] among conflicting functional requirements. In particular, ag-
gregation functions are used to combine correlated requirements into high-level ones.
Fuzzy logic has also also been exploited to express uncertain requirements [Liu et al.
2007; Whittle et al. 2009; Baresi et al. 2010]. Liu et al. [2007] introduce a method-
ology to elicit nonfunctional requirements through fuzzy membership functions that
allow representing the uncertainty about the human perception. RELAX [Whittle et al.
2009] is a notation to express uncertain requirements, whose assessment is affected
by the imprecision of the measurement. Finally, FLAGS [Baresi et al. 2010] extends
traditional LTL by adding new operators to represent transient/small violations in the
temporal domain. Its main purpose is to provide a notion of satisfaction level of re-
quirements in the temporal domain. In particular, the authors use this approach to
tolerate small deviations of the satisfaction of the requirements during or within a
temporal interval. Despite that the purpose of FLAGS is similar to our approach, the
syntax and the semantics of the language are not formally described, and the relations
among temporal operators are not provided.

3. BACKGROUND

This section provides a general definition of fuzzy logic and points out the differences
between a fuzzy and a probabilistic approach for the evaluation of temporal properties.
Finally, the section introduces Fuzzy Linear-Time Temporal Logic (FLTL) [Lamine
and Kabanza 2000], which is the only attempt of introducing fuzzyness in LTL, and
discusses its limitations.

3.1. General Formalization of Fuzzy Logic

The term fuzzy was explicitly used for the first time in the seminal work of Zadeh [1965]
about fuzzy sets, where he presented the theory of classes with unsharp boundaries. In
this work, the logical formalism of fuzzy sets shares the same syntax of propositional
logic (PL), but its formulae have a truth value comprised between 0 and 1. Conjunction
and disjunction are interpreted as min and max operations, respectively.

As pointed out by Zadeh [1994], two main directions in fuzzy logic have to be distin-
guished. In a broad sense, fuzzy logic has been used to support fuzzy control and express
the vagueness of natural languages, without demonstrating its formal properties. In



Table I. General Properties of the Interpretations of Connectives

Boundary Value Commutativity Associativity Monotonicity

Negation
�0 = 1
�1 = 0

- - α ≤ β ⇒ �α ≥ �β

t-Norm
α ⊗ 0 = 0
α ⊗ 1 = α

yes yes
β ≥ γ ⇒ α ⊗ β ≥ α ⊗ γ

α ⊗ β ≤ α

t-Conorm
α ⊕ 0 = α

α ⊕ 1 = 1
yes yes

β ≥ γ ⇒ α ⊕ β ≥ α ⊕ γ

α ⊕ β ≥ α

Implication
1 � β = β

0 � β = α � 1 = 1
α � 0 = � α

no no
α ≤ β ⇒ α � γ ≥ β � γ

β ≤ γ ⇒ α � β ≤ α � γ

α � β ≥ max{�α, β}

Table II. Examples of Interpretation for Connectives

Zadeh
[Zadeh 1965]

Gödel-Dummett
[Gödel 1933; Dummett 1959]

Łukasiewicz
[Łukasiewicz 1920, 1970]

Product
[Hájek et al. 1996]

�α 1 − α

{
1, α = 0
0, α > 0

1 − α

{
1, α = 0
0, α > 0

α ⊗ β min{α, β} min{α, β} max{α + β − 1, 0} α · β

α ⊕ β max{α, β} max{α, β} min{α + β, 1} α + β − α · β

α � β max{1 − α, β}
{

1, α ≤ β

β, α > β
min{1 − α + β, 1}

{
1, α ≤ β

β/α, α > β

a narrow sense, “fuzzy logic is a logical system which is an extension of multivalued 
logic and is intended to serve as a logic of approximate reasoning.” In this article, we 
use the term fuzzy logic to refer both to Zadeh logic [Zadeh 1965], which in computer 
science is often called fuzzy logic, and to continuous t-norm fuzzy logics [Hájek 1998b].

Although Zadeh logic has been applied extensively in soft computing, in the past 
few years, new families of fuzzy logics with strong logical characterization arose. 
Among them, the t-norm–based fuzzy logics attract our interest, as they are often 
axiomatizable and, indeed, have a strong algebraic characterization and can support 
the demonstration of the results about completeness and complexity [Hájek 1998b; 
Baaz et al. 2001].

In this article, we conceive fuzzy logic as a many-valued logic [Łukasiewicz 1970], 
whose formulae have a truth value comprised between 0 and 1 and the semantics of 
the connectives satisfies some monotonicity laws. The semantics of a fuzzy logic must 
also be coherent with PL, which means that fuzzy logic and PL must share the same 
syntax, fuzzy logic must reduce to PL when all predicates assume value 0 or 1, and 
conjunction and disjunction must be commutative and associative connectives. The 
semantics of the conjunction (∧), disjunction (∨), negation (¬), and implication (⇒) is
inferred by considering a continuous t-norm (⊗) [Klement et al. 2000], its associated 
t-conorm (⊕), a negation function (�), and an implication function (�), respectively. In
case of a t-norm fuzzy logic, the negation is the pseudocomplement (i.e., �α = max{β ∈
[0, 1] | α ⊗ β = 0}), whereas the implication function becomes the residuum of the
t-norm (i.e., α � β = max{γ ∈ [0, 1] | α ⊗ γ ≤ β}). In the rest of the article, we will
refer to these functions as the interpretation of connectives. Note also that the family
of (continuous) t-norm fuzzy logics is infinite, as demonstrated by the infinite class of
Dubois-Prade [Dubois and Prade 1982] and Yager [1980] t-norms and t-conorms.

Table I summarizes some useful properties of the connectives of a fuzzy logic, and 
Table II provides the interpretation of these connectives for the Zadeh logic and three 
other well-known t-norm fuzzy logics.



Once an interpretation of the connectives is identified, the evaluation of a (fuzzy)
formula can be represented as a function vi from the set of well-formed formulae to
[0, 1], which extends the interpretation i : AP → [0, 1] used to evaluate an atomic
proposition in AP.

The following proposition describes some well-known properties of t-norms and
t-conorms.

PROPOSITION 3.1. Let ⊗ be a t-norm and ⊕ be a t-conorm, α, β ∈ [0, 1], and d+, d× :
[0, 1]2 → {0, 1} be the drastic sum and the drastic product defined respectively by

d+(α, β) = 1 ⇔ α + β > 0,

d×(α, β) = 1 ⇔ α · β = 1.

Then,

max{α, β} ≤ α ⊕ β ≤ d+(α, β),

d×(α, β) ≤ α ⊗ β ≤ min{α, β}.
For a continuous t-norm, it is possible to define two connectives referred to as lattice

(or weak) conjunction (�) and lattice disjunction (�). The semantics of these connectives
is given by

p � q ≡ p ∧ (p ⇒ q), (1)

p � q ≡ ((p ⇒ q) ⇒ q) � ((q ⇒ p) ⇒ p). (2)

Nevertheless, they reduce respectively to the max and min operations, as stated in the
following well-known proposition.

PROPOSITION 3.2. Let pα, pβ ∈ AP such that i(pα) = α, and i(pβ) = β, then, for each
continuous t-norm,

vi(pα � pβ) = min{α, β},
vi(pα � pβ) = max{α, β}.

3.2. Fuzzy Logic and Probability

In general, software engineering solutions [Calinescu and Kwiatkowska 2009] use
probability-based approaches to deal with uncertainty and vagueness. They focus on
observable events, whose occurrence is uncertain, and neglect those events that are
vague and cannot be clearly assessed.

For example, the statement “tomorrow there will be a power outage” is uncertain,
since it is not possible to know the truth value of the formula. However, by applying
probability theory (e.g., by analyzing the frequency of power outages during the last
month), it is possible to state that, for example, the probability that the aforemen-
tioned statement will be true is 3.8%. When a direct observation can be performed (i.e.,
tomorrow), it is still possible to assess whether an outage took place or not, and, indeed,
the probability value can collapse either to 0 or 1.

Instead, the statement “tomorrow the number of power outages will be low” is not
tractable from a probabilistic point of view if the event is not clearly measurable—that
is, if the concept of “low” is not defined in an observable way. In this case, we are
not facing the problem of uncertainty of an event but the vagueness of its definition.
Indeed, assigning the truth degree of 0.038 to the aforementioned statement means
that tomorrow it will be necessary to face a “high number of outages.” Even a direct
observation of the number of outages will not necessarily cause this value to collapse
to 0 or 1.



3.3. Fuzzy Linear-Time Temporal Logic

This section briefly describes FLTL [Lamine and Kabanza 2000], which is an extension
of Zadeh logic with temporal operators. FLTL has the same syntax of LTL. In particular,
let � be the set of well-formed formulae and AP the set of propositional letters, then
ϕ ∈ � if and only if

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Xϕ | Gϕ | ϕUϕ,

where p ∈ AP. The semantics of a formula φ ∈ � is defined with regard to a linear time
structure πσ = (S, w0, w, L), where S is a set of states, w0 is the initial state, w ∈ w0Sω

is an infinite path, and L : S → [0, 1]AP is a fuzzy labeling function. The evaluation
v(ϕ,wi) of a formula ϕ ∈ � along the path w from the i-th instant is a real number in
[0, 1] recursively defined by

v(p, wi) = L(wi)(p),
v(¬ϕ,wi) = 1 − v(ϕ,wi),
v(ϕ ∧ ψ,wi) = min{v(ϕ,wi), v(ψ,wi)},
v(Xϕ,wi) = v(ϕ,wi+1),
v(Gϕ,wi) = min{v(ϕ,wi), v(Gϕ,wi+1)},
v(ϕUψ,wi) = max{v(ψ,wi), min{v(ϕ,wi), v(ϕUψ,wi+1)}}.

It is easy to see that FLTL extends LTL in the sense that if for all s ∈ S and p ∈ AP is 
L(s)( p) ∈ {0, 1}, then  v(ϕ, wi ) = 1 if and only if wi |= ϕ.

However, FLTL cannot represent the vagueness in the temporal dimension. Fuzzifi-
cation just addresses Boolean connectives and keeps a crisp semantics for the temporal 
modalities. For example, when we evaluate the “globally” (always) operator, it may not 
be suitable to consider the minimum truth value encountered. This semantics does not 
allow us to tolerate transient violations that take place for a small number of times 
compared to a long time interval. For example, if we assess the truth of the statement 
“this week no power outage happened,” by using FLTL we cannot tolerate any power 
outage, and even one power outage is enough to drop to zero the truth value of this 
formula. Furthermore, even if FLTL allows us to express some statements about the 
future, such as “tomorrow power outages will take place,” we cannot express other 
statements such as “soon a power outage will happen.” For these reasons, the lan-
guage that we propose in this article, although partially inspired by FLTL, introduces 
a completely new approach to fuzzify the temporal domain.

4. FUZZY-TIME TEMPORAL LOGIC

This section describes the syntax and semantics of FTL. In a narrow sense, FTL is 
not a logic, but it is a general formalism whose properties depend on an underlying 
propositional (fuzzy) logic, such as the ones introduced in Section 3.1. Since the choice 
of the underlying PL can have consequences both on the theoretical and practical levels, 
a designer should be fully aware of these impacts when he or she selects a proper PL 
for FTL.

4.1. Syntax

FTL extends LTL to include fuzziness in time. Let AP be a numerable set of atomic 
propositions, ¬, ∧, ∨, ⇒ be the (fuzzy) connectives, and O and T be the sets of unary 
and binary (fuzzy) temporal modalities, respectively. Then, ϕ belongs to the set � of 
well-formed FTL formulae (from now on, formulae) if it is defined as follows:

ϕ := p | ¬ϕ | ϕ ∼ ϕ | Oϕ | ϕT ϕ,

where p ∈ AP, ∼ is a binary connective, O ∈ O, and  T ∈ T . As unary operators, we 
consider X (next), Soon (soon), F (eventually), Ft (eventually in the next t instants), G



(always), Gt (always in the next t instants), AG (almost always), AGt (almost always in
the next t instants), Lt (lasts t instants), Wt (within t instants), where t ∈ N. Binary
operators are U (until), U t (bounded until), AU (almost until), and AU t (bounded almost
until). We admit the use of X j(·) as a shorthand for j applications of X . For example,
X 2(·) ≡ X (X (·)). We also set X 0ϕ ≡ ϕ. From now on, operators Soon, AG, AGt, Lt, Wt,
AU , and AU t will be indicated as “almost” operators.

4.2. Semantics

The semantics of a formula ϕ is defined with regard to a linear time structure
(S, s0, π, L), where S is the set of states, s0 is the initial state, π is an infinite path
π = s0s1 · · · ∈ Sω, and L : S → [0, 1]AP is the (fuzzy) labeling function that assigns to
each state an evaluation for each atomic proposition in AP. π i indicates the suffix of
π , by starting from the i-th position and si is the first state of π i. Besides, we adopt
an avoiding function η : Z → [0, 1]. We assume that η(i) = 1 for all i ≤ 0, and there
exists nη ∈ N such that η is strictly decreasing in {0, . . . , nη} and η(n′) = 0 for all n′ ≥ nη.
Function η expresses the penalization assigned to the number of events that we want
to ignore in evaluating the truth degree of a formula that contains an “almost” op-
erator. For example, we interpret the formula “almost always p” as “always p except
for a small number of cases,” and we evaluate the formula according to the number of
avoided events. Hence, the evaluation of a formula that contains the operator AG re-
alizes a trade-off between the number of avoided events and the penalization assigned
to this number.

Since we are dealing with a multivalued logic, it makes no sense to define a crisp
satisfiability relation. Instead, to define the semantics of a formula ϕ along a path,
we express a fuzzy satisfiability function v : Sω × � → [0, 1], where vπ (ϕ) = ν ∈ [0, 1]
means that the truth degree of ϕ along π is ν. We say that two formulae ϕ and ψ in �
are logically equivalent, in symbols ϕ ≡ ψ , if and only if vπ (ϕ) = vπ (ψ) for each linear
time structure, for each path π , and for each avoiding function.

The truth degree of a formula is defined, as usual, recursively on its structure. Let
p ∈ AP and π i be a path, then,

vπ i (p) = L(si)(p),
vπ i (¬ϕ) = �vπ i (ϕ),
vπ i (ϕ ∧ ψ) = vπ i (ϕ) ⊗ vπ i (ψ),
vπ i (ϕ ∨ ψ) = vπ i (ϕ) ⊕ vπ i (ψ),
vπ i (ϕ ⇒ ψ) = vπ i (ϕ) � vπ i (ψ),

where p ∈ AP, i ∈ N, and �, ⊗,⊕,� are the operations, between real numbers, defining
the chosen semantics of the connectives (¬, ∧, ∨,⇒). We are now able to introduce the
semantics of the temporal operators provided by FTL.

Next. Operator “next” (X ) has the same semantics of its corresponding LTL operator
X:

vπ i (Xϕ) = vπ i+1 (ϕ).

Soon. Operator “soon” (Soon) extends the semantics of the “next” operator by tol-
erating at most nη time instants of delay. In other words, the greater the number of
tolerated instants, the greater the penalization will be:

vπ i (Soon ϕ) =
i+nη⊕
j=i+1

vπ j (ϕ) · η( j − i − 1).



PROPOSITION 4.1. From the monotonicity of the t-conorm ⊕ (see Table I), it naturally
follows that

vπ i (Xϕ) ≤ vπ i (Soon ϕ).

Example 1. This operator can be used to express requirements on the response time
of a software service. For example, the formula rp ⇒ Soon rr could express the fact that
if a request is performed (rp), a response should be received (rr) as soon as possible.
The sooner a response is received, the higher the requirement satisfaction will be.

Eventually. Operator “eventually” (F) and its bounded version (Ft) also maintain the
same semantics of their corresponding LTL operator F. Namely,

vπ i (Ftϕ) =
i+t⊕
j=i

vπ j (ϕ),

vπ i (Fϕ) =
⊕
j≥i

vπ j (ϕ) = lim
t→+∞ vπ i (Ftϕ).

Observe that for Ft the equivalences F0ϕ ≡ ϕ and Ftϕ ≡ ϕ ∨ XFt−1ϕ hold, for t ≥ 0.
The semantics of F requires a passage to the limit, whose existence is ensured by the
fact that the sequence vπ i (Ftϕ)t∈N is increasing, as the t-conorm ⊕ is monotonic. These
properties are summarized in the following proposition.

PROPOSITION 4.2. For all ϕ ∈ � and t ≤ t′,

vπ i (ϕ) ≤ vπ i (Ftϕ) ≤ vπ i (Ft′ϕ) ≤ vπ i (Fϕ).

Within. Operator “within” (Wt) is inherently bounded, and its semantics is defined
by

vπ i (Wtϕ) =
i+t+nη−1⊕

j=i

vπ j (ϕ) · η( j − t − i).

Formula Wt p states that subformula p is supposed to hold in at least one of the next t
instants or, possibly, in the next t+nη instants. In the last case, we apply a penalization
for each instant after the t-th.

PROPOSITION 4.3. The semantics of operator Wt can be expressed by only using opera-
tors X and Soon. More formally, for all ϕ ∈ � and t > 0,

Wtϕ ≡ Ftϕ ∨ X t+1 Soon ϕ,

and

W0ϕ ≡ Soon ϕ.

COROLLARY 4.4. For all ϕ ∈ � and t ∈ N,

vπ i (Wtϕ) ≥ vπ i (Ftϕ),
lim

t→+∞ vπ i (Wtϕ) = vπ i (Fϕ).

PROOF. The first property follows immediately from the previous proposition. For the 
second property, observe that vπi (Fnη ϕ) ≥ vπi (Soon ϕ), and then actually

vπi (Ft+nη ϕ) ≥ vπi (Wtϕ) ≥ vπi (Ftϕ),
and applying the squeeze theorem, we demonstrate the thesis.



Example 2. This operator can be used to specify requirements on the maximum
response time required for a specific request and allows tolerating small delays. Con-
sider a meeting scheduler application that requires each participant i to provide
his or her availabilities (api) within a certain time (e.g, within 5 days) after the
request for availability is sent (ari). This requirement can be expressed by the for-
mula

⊗
i∈P(ari ⇒ W5 api), where P is the set of participants and the time unit is a

day.

Always. Operator “always” (G) and its bounded version (Gt) extend the semantics of
their corresponding LTL operator G. Namely,

vπ i (Gtϕ) =
i+t⊗
j=i

vπ j (ϕ),

vπ i (Gϕ) =
⊗
j≥i

vπ j (ϕ) = lim
t→+∞ vπ i (Gtϕ).

As for Ft, observe that for Gt the equivalences G0ϕ ≡ ϕ and Gtϕ ≡ ϕ ∧ XGt−1ϕ hold, for
t ≥ 0. Similarly to F , the semantics of G also requires a passage to the limit, whose
existence is ensured by the fact that the sequence vπ i (Gtϕ)t∈N is decreasing, as the
t-norm ⊗ is monotonic (see Table I). These properties are summarized in the following
proposition.

PROPOSITION 4.5. For all ϕ ∈ � and t′ ≤ t,

vπ i (Gϕ) ≤ vπ i (Gtϕ) ≤ vπ i (Gt′ϕ)
≤ vπ i (G1ϕ) = vπ i (ϕ ∧ Xϕ) ≤ vπ i (G0ϕ) = vπ i (ϕ).

From Propositions 4.1, 4.3, and 4.5, we obtain the following corollary.

COROLLARY 4.6. For all ϕ ∈ � and t, t′ ∈ N,

vπ i (Gϕ) ≤ vπ i (Fϕ),
vπ i (Gtϕ) ≤ vπ i (Ft′ϕ),
vπ i (Gtϕ) ≤ vπ i (Wt′ϕ).

Almost Always. Operator “almost always” (AG) and its bounded version (AGt) allow
us to evaluate a property over the path π i, by avoiding at most nη evaluations of this
property, and, at the same time, introducing a penalization for each avoided case. If
more cases are avoided, penalization will be more severe. Hence, a trade-off should
be identified between the number of avoided cases and the assigned penalization.
Formally, for t > 0, let It be the initial segment of N of length t+1 (i.e., It = {0, 1, . . . , t})
and Pk(It) the set of subsets of It of cardinality k, then

vπ i (AG0 ϕ) = vπ i (ϕ),

vπ i (AGt ϕ) = max
j∈It

max
H∈P t− j (It)

⊗
h∈H

vπ i+h(ϕ) · η( j),

vπ i (AG ϕ) = lim
t→+∞ vπ i (AGt ϕ).

As we will see later, the sequence vπ i (AGt ϕ)t∈N is not monotonic. Nevertheless, we can
still prove that the semantics of AG is well defined.



PROPOSITION 4.7. The semantics of AG is well defined.

PROOF. We prove that given ϕ ∈ �, it is possible to recursively define n propositional
letters p0, . . . , pnη−1 such that

vπ i (AG ϕ) = max
j≤nη−1

{G pj · η( j)}.

Let us define p0 as

∀i ∈ N, vπ i (p0) = vπ i (ϕ).

Then, for all 0 < m ≤ nη, we recursively obtain pm from pm−1 in the following way. Let
hm be the minimum in N ∪ {∞} such that for all k ∈ N, vπh(pm) ≤ vπk(pm). Then, we set

{
vπ j (pm) = vπ j (pm−1), j < h;

vπ j (pm) = vπ j+1 (pm−1), j ≥ h.

Hence, for all t ≥ j,

vπ i (Gt− j pj) ≤ max
H∈P t− j (It)

⊗
h∈H

vπ i+h(ϕ).

The first term corresponds to choose H = It \ {h1, . . . , hj}. The converse inequality also
holds, since it derives from the monotonicity of the operation ⊗. Then, the passage to
the limit

lim
t→+∞ vπ i (AGt ϕ) = lim

t→+∞ max
j∈N

{Gt− j pj · η( j)} = max
j∈N

{G pj · η( j)}
implies the thesis.

Note that the maximum in preceding definition can be expressed in any of the fuzzy
logic that we are considering. Indeed, in the Zadeh logic the maximum is simply the
(standard) ∨, and in a t-norm fuzzy logic it is the lattice disjunction �. We decide to
use the maximum to find the best matching between the number of avoided cases and
the penalization due to η. Indeed, if we define the semantics of AG via the (strong)
disjunction as

vπ i (AGt ϕ) =
t⊕

j=0

⊕
H∈P t− j (It)

⊗
h∈H

vπ i+h(ϕ) · η( j)

and consider the Łukasiewicz’s interpretation for the connective ∨, then a formula 
AG p will often evaluate to 1 due to the high number of considered cases, and (almost) 
independently from the evaluations of p at each time instant.

In the following proposition, we show how to reduce the complexity of the evaluation 
of operator AG by exploiting the monotonicity of the t-conorm.

PROPOSITION 4.8. It is possible to evaluate the truth degree of formula AGt p by  
performing O(nη(log(t) + 1)) comparisons, O(t) applications of the norm ⊗, and O(nη) 
multiplications.

PROOF. We consider the same technique applied in the proof of Proposition 4.7. 
Let (ak)k≤n be a finite sequence of indices such that ∀k ≤ n, ak ≤ t, and  ∀h ≤ k ≤ n,



Table III. Example of Definition of a Predicate
p and an Avoiding Function η

i 0 1 2 3
vπ i (p) 0.1 0.2 1 0.1
η(i) 1 0.5 0.3 0

vπah (p) ≤ vπak (p), then

vπ i (AGt p) = max
j≤nη

⎧⎪⎪⎨
⎪⎪⎩

⊗
h/∈{a1,...,aj }

h≤nη

vπ i+h(p) · η( j)

⎫⎪⎪⎬
⎪⎪⎭

= max
1≤ j≤nη

⎧⎪⎪⎨
⎪⎪⎩vπ i (Gt p),

⊗
h/∈{a1,...,aj }

h≤nη

vπ i+h(p) · η( j)

⎫⎪⎪⎬
⎪⎪⎭ .

(3)

Finding the indices ai requires at most O(nη log(t)) comparisons (e.g., by applying the 
heapsort algorithm), and extra O(nη) comparisons are used to evaluate the maximum. 
O(t) applications of ⊗ are needed, observing that the operation is associative, and 
indeed, the value obtained at one step can be used for calculating the value for the 
following step.

From equality (3), we also infer the following corollary.

COROLLARY 4.9. For all ϕ ∈ � and t ∈ N,

vπ i (AGt ϕ) ≥ vπ i (Gtϕ),
vπ i (AG ϕ) ≥ vπ i (Gϕ).

Observe that in general it is not possible to establish a priori that inequality holds
between vπ i (AGt ϕ) and vπ i (AGt′ ϕ), with t �= t′, as this also depends on function η. For
example, let us consider a predicate p together with an avoiding function η, whose
behaviors are described in Table III. If we consider Zadeh’s interpretation of connec-
tives, then vπ0 (AG1 p) = 0.1, vπ0 (AG2 p) = 0.3, and vπ0 (AG3 p) = 0.06, and the sequence
vπ i (AGt p)t∈N is not monotonic.

Example 3. This operator can be used to specify requirements related to the avail-
ability of a software service. For example, the formula AG(rp ⇒ X rr) could express
that almost always a software service should be responsive. In particular, the more
times the service is responsive—that is, a response is received (rr) right after a request
is performed (rp)—the more the requirement expressed by the formula will be satisfied.

Lasts. Operator “lasts” (Lt) is bounded and expresses a property that lasts for t
consecutive time instants from the current one, possibly avoiding some evaluations
of the events at the end of the considered time interval. Then, the semantics of this
operator is defined as follows:

vπ i (Ltϕ) = max
0≤ j≤min{t,nη−1}

{vπ i (Gt− jϕ) · η( j)}.

PROPOSITION 4.10. Let ϕ ∈ � and t ∈ N, then the sequence vπ i (Ltϕ)t∈N is decreasing,
and its limit is vπ i (Gϕ). Moreover, the following inequalities hold:

vπ i (Gtϕ) ≤ vπ i (Ltϕ) ≤ vπ i (AGt ϕ).



PROOF. The fact that the sequence vπ i (Ltϕ)t∈N is decreasing follows immediately from
the definition and from Proposition 4.5. Again, from definition

vπ i (Gtϕ) ≤ vπ i (Ltϕ) ≤ vπ i (Gt−nη
ϕ),

and then passing to the limit, the sequence vπ i (Ltϕ)t∈N converges to vπ i (Gϕ). The in-
equality vπ i (Ltϕ) ≤ vπ i (AGt ϕ) is a straightforward consequence of Proposition 4.8.

Example 4. This operator can be used to express requirements related to the session
duration of a software service, which can have an impact on other properties, such as
system usability. For example, the formula L2(¬ disconnect) could express that the
closer to at least two time units (e.g., hours) is the duration of a session, the higher the
requirements formalized by the formula will be satisfied.

Until. The semantics of operator “until” (U) and its bounded version (U t) naturally
extends the one assigned to the corresponding LTL operator U, for t > 0:

vπ i (ϕ U0 ψ) = vπ i (ψ),

vπ i (ϕ U t ψ) = max
i≤ j≤i+t

(
vπ j (ψ) ⊗ vπ i (G j−1ϕ)

)
,

vπ i (ϕ U ψ) = lim
t→+∞ vπ i (ϕ U t ψ),

Analogously to AG, the maximum is used to find the best matching between the eval-
uation of ψ and ϕ.

PROPOSITION 4.11. The semantics of operator U is well defined. Moreover, vπ i (ϕ U ψ) ≤
vπ i (Fψ).

PROOF. For the first part, it is sufficient to prove that the sequence vπ i (ϕ U t ψ)t∈N is
increasing. This is obvious, as for all t > 0,

vπ i (ϕ U t ψ) = max{vπ i (ϕ U t−1 ψ), vπ i (Gt−1ϕ ∧ X tψ)}.
For the second part, let p ∈ AP be such that ∀ j ≥ i, vπ j (p) = 1. Then, vπ i (ϕ U ψ) ≤
vπ i (pU ψ), and from Proposition 3.1, we have

vπ i (ϕ U ψ) ≤ vπ i (pU ψ) = max
j≥i

(π j |= ψ) ≤ vπ i (Fψ).

In particular, for all t ∈ N, we can state

vπ i (ψ) = vπ i (ϕ U0 ψ) ≤ vπ i (ϕ U t ψ) ≤ vπ i (ϕ U ψ) ≤ vπ i (Fψ). (4)

Almost Until. Operator “almost until” (AU) and its bounded version (AU t) are ob-
tained by replacing operator Gt with its relaxed version AGt in the definition of U
(U t):

vπ i (ϕ AU0 ψ) = vπ i (ψ),

vπ i (ϕ AU t ψ) = max
0≤ j≤t

(
vπ i+ j (ψ) ⊗ vπ i (AG j ϕ)

)
,

vπ i (ϕ AU ψ) = lim
t→+∞ vπ i (ϕ AU t ψ),

for t > 0. Similarly to U , we can state the following.

PROPOSITION 4.12. The semantics of operator AU is well defined. Moreover, for all
t ∈ N,

vπ i (ψ) = vπ i (ϕ AU0 ψ) ≤ vπ i (ϕ U t ψ) ≤ vπ i (ϕ AU t ψ) ≤ vπ i (ϕ AU ψ). (5)



PROOF. As for U , we can observe that for all t > 0,

vπ i (ϕ AU t ψ) = max
{
vπ i (ϕ AU t−1 ψ), vπ i (AGt−1 ϕ ∧ X tψ)

}
.

The sequence vπ i (ϕ AU t ψ)t∈N is increasing, and the semantics of AU is well defined.
The latter part follows from Corollary 4.9.

Mutual relations between FTL operators can be subsumed from the propositions
stated previously. In particular, for all O ∈ O, vπ i (Gϕ) ≤ vπ i (Oϕ) ≤ vπ i (Fϕ). Notice that
all the inequalities are always not strict, as in general the values of all operators may
coincide—that is, it is possible to define a formula ϕ such that vπ i (Gϕ) = vπ i (Fϕ) for
some path π. However, this can happen only in the following special case.

PROPOSITION 4.13. Let ϕ ∈ � and i ∈ N, then vπ i (Gϕ) = vπ i (Fϕ) if and only if (π j |= ϕ)
is constant for all j ≥ i.

PROOF. For the first implication, observe that if vπ j (ϕ) is constant for all j ≥ i, then
for all j, j ′ ≥ i, vπ j (Fϕ) = vπ j′ (Gϕ) = vπ i (ϕ). Conversely, suppose h, k ≥ i exist such that
vπh(ϕ) = a < vπk(ϕ) = b. Then, from Proposition 3.1, it follows that

vπ i (Gϕ) ≤ min
j≥i

{vπ j (ϕ} ≤ a < b ≤ min
j≥i

{vπ j (ϕ)} ≤ vπ i (Fϕ).

Example 5. This operator can be used to express conditional requirements on a
service response time. For example, the formula (rp ⇒ W200 rr)AU (num requests ≥
100) could express that a service must almost always exhibit a response time less than
equal 200 time units (e.g., milliseconds) while the load is lower than 100 requests per
second.

4.3. COMMENTS

Note that we can consider a different avoiding function for each occurrence of operators.
For example, in the formula of Example 5, we may prefer to tolerate a long delay in
evaluating W200, but we accept to avoid only a few number of events in evaluating
AU . In this case, we can define two functions, ηW and ηAU , such that for all i ∈ N,
ηW (i) ≥ ηAU (i).

Moreover, notice that the semantics we have chosen for our operators is arbitrary,
and many other variants can be proposed. However, the preceding properties show
that our choice is reasonable. For example, the “almost ” operators are more lax, since
their evaluation has a greater value compared to that of their traditional counterparts,
exactly as one would expect.

Finally, as we have already stated at the beginning of this section, the underlying
propositional fuzzy logic has a deep impact on the evaluation of FTL formulae. Then,
in describing a complex system, the designer should carefully take into account its
properties to choose the most suitable interpretation. This can be done considering
that the three t-norm–based fuzzy logics that we studied admit a complete set of
axioms.

A set of formulae (actually, schemata) is a complete set of axioms for a t-norm fuzzy
logic, if a formula is a t-tautology (i.e., its evaluation is 1 for any interpretation of
the atomic propositions) if and only if it can be proved from the axioms using some
deduction rules.

Gödel-Dummett, Łukasiewicz, and Product logic extend the basic fuzzy propositional
logic (BL), which is the logic of continuous t-norms [Hájek 1998b]. Hájek’s standard
completeness theorem states that A1–A7 (Table IV) is a complete set of axioms for BL
by using modus ponens (i.e., from ϕ and ϕ ⇒ ψ infer ψ) as the only deduction rule
(Cignoli et al. [2000], first proved in Hájek [1998a] with a greater set of axioms).



Table IV. Axiom Schemata for BL, Gödel-Dummett,
Łukasiewicz, and Product Logic

A1 (ϕ ⇒ ψ) ⇒ ((ψ ⇒ χ ) ⇒ (ϕ ⇒ χ )) suffixing
A2 (ϕ ∧ ψ) ⇒ ϕ integrality
A3 (ϕ ∧ ψ) ⇒ (ψ ∧ ϕ) commutativity of ∧
A4 (ϕ ∧ (ϕ ⇒ ψ)) ⇒ (ψ ∧ (ψ ⇒ ϕ)) conjunction
A5a (ϕ ⇒ (ψ ⇒ χ )) ⇒ ((ϕ ∧ ψ) ⇒ χ )
A5b ((ϕ ∧ ψ) ⇒ χ ) ⇒ (ϕ ⇒ (ψ ⇒ χ ))
A6 (ϕ ⇒ (ψ ⇒ χ )) ⇒ ((ψ ∧ ϕ) ⇒ χ ) ⇒ χ ) arrow prelinearity
A7 ⊥ ⇒ ϕ ex falso quodlibet
AG ϕ ⇒ (ϕ ∧ ϕ) idempotence of ∧
AŁ ¬¬ϕ ⇒ ϕ double negation
A� ¬¬ϕ ⇒ ((ϕ ⇒ (ϕ ∧ ψ)) ⇒ (ψ ∧ ¬¬ψ))

Gödel-Dummett, Łukasiewicz, and Product logic are (completely) axiomatized re-
spectively by (A1–A7, AG) [Dummett 1959; Horn 1969a, 1969b], (A1–A7, AŁ) [Cignoli
and Torrens 2003], and (A1–A7, A�) [Cintula 2001].

If in the real model each property is equivalent to its double negation, the designer
should choose the Łukasiewicz interpretation. Moreover, in the Łukasiewicz case, idem-
potence of entailment fails, in particular ϕ �≡ ϕ ∧ ϕ (which, on the other hand, holds
in Gödel-Dummett logic). This can be useful if we are interested in putting emphasis
on resource boundedness or on simultaneous occurrence of resources. For example,
consider a vending machine and let the proposition 20¢ mean “a coin of twenty cents is
inserted.” Then, formula 20¢∧20¢ should not be equivalent to the former, as it actually
means that 40 cents were inserted. When linearity is requested, Gödel-Dummett logic
is the best choice, as it is actually equivalent to intuitionistic logic [Glivenko 1929]
with the prelinearity schema (ϕ ⇒ ψ) ∨ (ψ ⇒ ϕ). Despite Product logic being more
difficult to understand, it is characterized by some interesting properties: both formu-
lae ¬¬ϕ ⇒ ϕ (double negation) and ϕ ⇒ (ϕ ∧ ϕ) (idempotency) fail to be t-tautologies,
formulae ¬ϕ ⇒ (¬ϕ ∧ ¬ϕ) (weak idempotency), (ϕ ⇒ ψ) ∨ (ψ ⇒ ϕ) (prelinearity),
and ¬¬χ ⇒ (((ϕ ∧ χ ) ⇒ (ψ ∧ χ )) ⇒ (ϕ ⇒ ψ)) (cancelation by a nonzero element) are
theorems.

5. REDUCTIONS AND EQUIVALENCES

This section proves that under the assumption that all events are crisp, FTL reduces to
LTL and provides some adequate sets of connectives, from which it is possible to infer
all others.

Reduction to LTL. We can prove that the semantics of FTL extends, in some sense,
that of LTL, as stated in the following two propositions.

PROPOSITION 5.1. Let p, q ∈ AP such that for all j ≥ i, (π j |= p), (π j |= q) ∈ {0, 1},
then

vπ i (Fp) = 1 ⇔ π i |= Fp,

vπ i (Gp) = 1 ⇔ π i |= Gp,

vπ i (pU q) = 1 ⇔ π i |= pUq.

PROOF. It follows, through straightforward calculation, by applying the boundary 
value in Table I.

PROPOSITION 5.2. Given any p ∈ AP and i ∈ N, let  vπ i ( p) ∈ {0, 1}, and  η(1) = 0, then  
FTL reduces to LTL.



PROOF. Notice that by definition, Soon reduces to X , Wt to Ft, AGt and Lt to Gt, and
AU t to U t. Then, the thesis follows by applying an argument similar to the one used in
the previous proposition.

Adequate Sets. An adequate (or functionally complete) set of connectives for a given
logic is a set of connectives that is sufficient to equivalently express any formula of
the logic. For example, it is well known that X and U, together with ∧ and ¬, form an
adequate set of connectives for LTL. An adequate set is not necessarily a subset of the
original set of operator—for example, {NAND} and {�, �←} are adequate sets for PL,
and none of the included connectives is primitive. Clearly, adequate sets also depend
on the interpretation of the connectives. We denote by FTL(Z), FTL(G), FTL(Ł), and
FTL(�) the logics whose semantics are based on Zadeh, Gödel-Dummett, Łukasiewicz,
and Product interpretation, respectively.

To find small adequate sets of connectives for FTL(Z), FTL(G), FTL(Ł), and FTL(�),
we introduce

—nη special atomic propositions �, p̃1, . . . , p̃nη−1,⊥ such that vπ i (�) = 1, vπ i (⊥) = 0,
and vπ i ( p̃j) = η( j), for all i ∈ N, and 1 ≤ j < nη,

—nη−1 extra operators � j , for 1 ≤ j < nη, whose semantics is

vπ i (� jϕ) = vπ i (ϕ) · η( j).

We are now able to find a finite adequate set of connectives for each considered
interpretation in Table II.

THEOREM 5.3. Let ⊥ ∈ AP, then the set {∧,¬,X ,U ,AG,AU ,�1, . . . ,�nη−1} is an
adequate set for FTL(Z).

PROOF. Observe that in FTL(Z), ϕ ∨ ψ ≡ ¬((¬ϕ) ∧ (¬ψ)) and ϕ ⇒ ψ ≡ (¬ϕ) ∨
ψ . Moreover, Fϕ ≡ ⊥U ϕ and Gϕ ≡ ϕ U ⊥. For the other operators, the reductions
follow directly from the definition, using the new operators � j . For example, Soon ϕ is
equivalent to

∨nη

j=1 � j(X jϕ).

THEOREM 5.4. Let ⊥ ∈ AP, then the set {∧,⇒,X ,U ,AG,AU ,�1, . . . ,�nη−1} is an
adequate set for FTL(G).

PROOF. On the one hand, in FTL(G), connective ∨ is interpreted as the maximum
and coincides with the lattice disjunction � (see Proposition 3.2). On the other hand,
� is defined in terms of only ∧ and ⇒. Moreover, it is easy to see that ¬ϕ ≡ ϕ ⇒ ⊥,
and then both ∨ and ¬ can be expressed with connectives ∧ and ⇒. Operators F and G
are not dual in FTL(G), nevertheless, as for FTL(Z), the equivalences Fϕ ≡ ⊥U ϕ and
Gϕ ≡ ϕ U ⊥ hold. The other operators follow the same reduction rule used for FTL(Z).
For example,

AGt ϕ ≡
∨
j∈It

∨
H∈P t− j (It)

∧
h∈H

� j(X hϕ),

and

ϕ U t ψ ≡
∨

0≤ j≤t

⎛
⎝ψ ∧

⎛
⎝ ∧

0≤h< j

X hϕ

⎞
⎠

⎞
⎠.

THEOREM 5.5. Let ⊥ ∈ AP, then the set {∧,⇒,X ,F,U ,AG,AU ,�1, . . . ,�nη−1} is an
adequate set for FTL(Ł).

PROOF. Differently from Gödel-Dummett logic, in Łukasiewicz logic De Morgan’s
laws hold—that is, ϕ ∨ ψ ≡ ¬((¬ϕ) ∧ (¬ψ)) and ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), and this clearly



extends to FTL(Ł), and, moreover, ¬ϕ ≡ ϕ ⇒ ⊥. Then, it follows that ∨ and ¬ can be
expressed in terms of only ∧ and ⇒, and operators F and G are dual in FTL(Ł)—that
is, Gϕ ≡ ¬F¬ϕ and Fϕ ≡ ¬G¬ϕ, so we can always rewrite G in terms of F . This last
result does not hold in the Gödel-Dummett case: even if the connectives ∨ and ¬ can
be expressed in terms of ∧ and ⇒, this is possible only considering lattice connectives
and Proposition 3.2; as for this logic, De Morgan’s laws do not hold, due to the different
definition of negation.

For the other operators, we can proceed similarly to the previous case, observing
that (again from Proposition 3.2) the min/max operators are expressible as lattice
conjunction/disjunction, which are defined in terms of ∧ and ⇒. For example, for the
formula AGt ϕ, we proceed as in Theorem 5.4 but considering the lattice disjunction
� instead of the standard disjunction ∨ to correctly evaluate the maximum of the
considered subformulae—that is,

AGt ϕ ≡
∨

j∈It

∨
H∈P t− j (It)

∧
h∈H

� j(X hϕ).

Analogously, we have

Ltϕ ≡
∨

0≤ j≤min{t,nη−1}
� j

⎛
⎝ ∧

0≤h≤t− j

X hϕ

⎞
⎠,

but

Ftϕ ≡
∨

0≤ j≤t

X jϕ,

as in this last case, the operation ⊕ is correctly replaced by the connective ∨ in
Łukasiewicz logic.

THEOREM 5.6. Let {�, p̃1, . . . , p̃nη−1,⊥} ⊆ AP, then the set {∧,∨,⇒,X ,F,G,U ,
AG,AU} is an adequate set for FTL(�).

PROOF. As for Łukasiewicz logic, in Product logic the equivalence ¬ϕ ≡ ϕ ⇒ ⊥
holds. Nevertheless, when considering disjunction, we must observe that, differently
from Gödel-Dummett and Łukasiewicz logics, ∨ cannot be expressed in terms of ∧
(see Hájek [1998b]). Then, it is easy to see that F and G are not dual and cannot be
expressed by using only operator U . Indeed, no unbounded operator (except Soon) can
be expressed in terms of another one. For bounded operators, we can proceed as in
the previous cases using lattice conjunction/disjunction for min/max operations, but
avoiding the use of the operator �i, as �i(ϕ) ≡ ϕ ∧ p̃i. Then, for example, we have

Wtϕ ≡
∨

0≤ j≤t+nη−1

(
X jϕ ∧ p̃j−t

)
,

Ltϕ ≡
∨

0≤ j≤min{t,nη−1}

⎛
⎝

⎛
⎝ ∧

0≤h≤t− j

X hϕ

⎞
⎠ ∧ p̃j

⎞
⎠,

and
AGt ϕ ≡

∨
j∈It

∨
H∈P t− j (It)

∧
h∈H

(X hϕ ∧ p̃j),

and again observe the correct use of lattice/standard disjunction.



Table V. Adequate Sets for FTL(Z), FTL(G),
FTL(Ł), and FTL(�)

Logic Adequate Set
FTL(Z) ∧,¬,X ,U,AG,AU, �1, . . . , �nη−1

FTL(G) ∧,⇒,X ,U,AG,AU, �1, . . . , �nη−1

FTL(Ł) ∧,⇒,X ,F ,U,AG,AU, �1, . . . , �nη−1

FTL(�) ∧,⇒, ∨,X ,F ,G,U,AG,AU

The results of the four previous theorems are summarized in Table V. Finally, note
that the adoption of the adequate sets in Table V can possibly cause a superexponential
blow-up of the length of the formulae. For example, expanding the lattice disjunctions
as showed in equivalences (1) and (2), it is easy to see that the simple formula AGt p,
with p ∈ AP, is equivalent in FTL(�) to a formula of length O(32t+1 ·t) that only contains
connectives ∧, ⇒, and X .

6. EXAMPLES OF PROPERTIES AND SPECIFICATIONS

This section illustrates how FTL can be applied in practice on a smart grid. In particu-
lar, we use FTL to formalize a set of properties that a smart grid should satisfy. Smart
grids exploit information about the behavior of suppliers and consumers in an electri-
cal grid to improve the efficiency, reliability, and sustainability of the use of electricity.
They can operate on different domains, from the provider level to the customer level.
In general, in the customer domain, smart grids are designed to maximize the avail-
ability of appliances to ensure that all the required tasks are performed and optimize
the consumption of energy to achieve economical and ecological benefits.

Typically, smart grids rely on the Energy Management System (EMS) to periodically
compute metering data regarding energy consumption, and they use these data to bal-
ance the work load of the appliances. In particular, the EMS sends proper operational
control data to the appliances to schedule their tasks and tune their functioning to
avoid outages. Such control data are computed by analyzing the metering data. Hence,
it becomes important to express requirements about the amount of energy consumed
and the availability of appliances. However, to ensure a proper behavior of the overall
system, it might be preferable to tolerate a few number of outages or the transient
unavailability of some appliances instead of stating strict constraints that would be
unrealistic.

The following example defines a set of formulae, under the assumption that the
smart grid controls a single appliance (A1). However, the provided formulae can be
easily modified to cover the cases when more than one appliance must be controlled.

The first requirement (R1), which the smart grid should satisfy, is the following: “A1
must be available almost always during the day.” To state this property, we need to
introduce the (fuzzy) proposition a, which measures whether the availability of A1 is
high. More precisely, if π is the path of the daily minutes, vπ i (a) expresses the truth
degree of proposition “at the i-th minute of the day, the availability of A1 is high.”
Availability is, in general, measured as the time difference between the instant when
a request is issued and the instant when the appliance is active. This time difference
can be estimated in seconds, and this makes reasonable the choice of minutes as time
granularity. Using this definition of availability, the predicate a can be evaluated as
follows. If Ai is the actual time delay at the i-th minute, Mi the mean time delay of
the i-th minute of the day computed daily over the last month, and σ 2

i the variance, let
�i = Ai − Mi, then

vπ i (a) =
{

min
{
1, 1

σ 2
i

(
�i + 3

2σ 2
i

)}
, �i ≥ − 3

2σ 2
i ;

0, otherwise.



An appropriate avoiding function could be

η(n) =
{

e−(n/20)2
, n ≤ 20

0, otherwise.

Hence, once a and η are defined, the first requirement can be expressed as

AG1440 a. (R1)

This formula evaluates the availability of A1 during the day, tolerating exceptions for no
more than 20 minutes during the day. Indeed, if the availability is below the average for
no more than 4 minutes, then the evaluation of AG1440 a is, at least, e−(16/20)2 ∼ 0.53,
independently of the worst value of the availability. Observe that if we consider the
mean delay calculated all over the day, we may obtain less expressive results, since in
case of one big delay, the evaluation of the daily availability will dramatically decrease.
Notice also that the proposed formula is more suitable for this context than G1440 a,
which gives a value corresponding to at most the worst availability, when it is evaluated
along π .

The second requirement (R2) is that “as soon as new metering data are available,
a new operational control data must be sent by the EMS to A1.” To formalize R2, we
consider the crisp propositions d and c. The former is satisfied if new metering data
are available, whereas the latter is satisfied if an operational control signal is sent by
the EMS to A1. Using these propositions, R2 can be expressed as

d ⇒ W1c. (R2)

This formula allows us to tolerate small delays in the transmission of operational
control data, differentiating the evaluation of small delays from big ones, which can
be considered equivalent to the absence of transmission. Instead, this delay cannot be
tolerated by using LTL, in which the same proposition would be expressed as d ⇒ c
or d ⇒ Xc. Notice that if we do not evaluate the formula from the first minute, R2
can also be written as d ⇒ Soon c. Observe that R2 is implicitly universally quantified
over the time (G(d ⇒ W1c)). This means that always, as soon as new metering data are
available, a new operational control data must be sent.

The last requirement (R3) specifies the following property: “there is no outage in the
day until the energy consumption is low or moderate.” Let s be a crisp proposition, whose
evaluation is 0 if the appliance is disconnected, and let p be the (fuzzy) proposition “the
energy consumption is low or moderate.” This fuzzy proposition can be evaluated to 1
if the consumed energy is below a given threshold C. Its value can decrease linearly
to 0, when the consumed energy is between C and C + x, where C + x is the maximal
energy that can be tolerated before evaluating p as 0. Clearly, both C and x have to be
assigned considering the parameters of the system. Hence, the third requirement can
be formalized as

sU1440 ¬p. (R3)

If this formula is evaluated at the beginning of each day and holds, it guarantees
that there is no outage in case the energy consumption is not high. Notice that if the
requirement is modified in “there is no outage until the energy consumption is low or
moderate,” R3 can be expressed as

G(sU ¬p). (R3mod)

Moreover, in case this requirement is relaxed to “the outages of the day are negligible 
until the energy consumption is low or moderate,” then it can be formalized by using



the fuzzy temporal operator AU as follows:

sAU1440 ¬p. (R3rel)

The choice of operator AU1440 is suitable because it tolerates (i.e., its satisfaction does
not drop to 0) a few numbers of outages of the appliance that occur during the day.

Finally, as we have already noticed in Section 4.3, the choice of a specific interpre-
tation for the connectives is highly important to get more precise results, although all
of the inequalities that we proved are still valid independently of the interpretation. If
we consider formula AG1440 s (“the daily number of outages is negligible”), then for the
evaluation of formula

AG1440 s ∨ X 1440 AG1440 s

it is quite natural to choose the Zadeh or Gödel-Dummett interpretation instead of
the Łukasiewicz interpretation, namely, the truncated sum of their evaluations. This
choice avoids the predicates of this formula to “saturate,” since a long sequence of days
with many outages cannot be equivalent to a day with no outages.

Notice that this is just a simple example to show the characteristics of FTL and
the benefits derived by using it to model the requirements of adaptive systems. How-
ever, the framework is suitable to represent much more complex (adaptive) systems,
especially if they should satisfy relaxed temporal constraints.

7. CONCLUSIONS

This article introduces FTL, which is used to express vagueness on time. The semantics
of the temporal operators provided by FTL is highly flexible, as it allows us to select a
particular interpretation for the connectives, which best suits the kind of property to
be formalized. We prove that FTL extends LTL, since under the assumption that all
events are crisp, FTL reduces to LTL. We show that the temporal operators introduced
by our logic respect a set of interesting relations, and we also identify some adequate
sets of connectives. In future work, we are investigating verification techniques for
checking the truth degree of the FTL formulae of the system under analysis both via
an automata-based model [Fiorentini et al. 2012; Frigeri et al. 2012] and via the re-
duction to a problem tractable by an SMT solver, as done in Bersani et al. [2011]. This
technique will modify the traditional reachability analysis, according to the peculiar-
ities of the FTL language. Finally, considering that FTL is particularly suitable for
describing requirements of adaptive system, in which vagueness is often embedded
with uncertainty, we are planning to investigate the relationship between FTL and
probabilistic languages.

REFERENCES

Stefano Aguzzoli, Brunella Gerla, and Zuzana Haniková. 2005. Complexity issues in basic logic. Soft Com-
puting 9, 12, 919–934.

Matthias Baaz, Petr Hájek, Franco Montagna, and Helmut Veith. 2001. Complexity of t-tautologies. Annals
of Pure and Applied Logic 113, 1–3, 3–11.

Luciano Baresi, Liliana Pasquale, and Paola Spoletini. 2010. Fuzzy goals for requirements-driven adaptation.
In Proceedings of the 18th International Requirements Engineering Conference. IEEE, Los Alamitos, CA,
125–134.

Marcello M. Bersani, Achille Frigeri, Matteo Rossi, and Pierluigi San Pietro. 2011. Completeness of the
bounded satisfiability problem for constraint LTL. In Reachability Problems, Lecture Notes in Computer
Science, Vol. Springer, 58–71.

Radu Calinescu and Marta Z. Kwiatkowska. 2009. Using quantitative analysis to implement autonomic
IT systems. In Proceedings of the 31st International Conference on Software Engineering (ICSE’09).
100–110.

Janette Cardoso and Heloisa Camargo. 1998. Fuzziness in Petri Nets. Studies in Fuzziness and Soft Com-
puting, Vol. 22. Physica-Verlag, Heidelberg.



Roberto Cignoli, Francesc Esteva, Lluı́s Godo, and Antoni Torrens. 2000. Basic fuzzy logic is the logic of
continuous t-norms and their residua. Soft Computing 4, 2, 106–112.

Roberto Cignoli and Antoni Torrens. 2003. Hájek basic fuzzy logic and Łukasiewicz infinite-valued logic.
Archive for Mathematical Logic 42, 4, 361–370.

Petr Cintula. 2001. About axiomatic systems of product fuzzy logic. Soft Computing 5, 3, 243–244.
Luca De Alfaro, Marco Faella, and Mariëlle Stoelinga. 2009. Linear and branching system metrics. IEEE

Transactions on Software Engineering 35, 2, 258–273.
Didier Dubois and Henri Prade. 1982. A class of fuzzy measures based on triangular norms. International

Journal of General Systems 8, 1, 43–61.
Didier Dubois and Henri Prade. 1989. Processing fuzzy temporal knowledge. IEEE Transactions on Systems,

Man, and Cybernetics 19, 4, 729–744.
Michael Dummett. 1959. A propositional calculus with denumerable matrix. Journal of Symbolic Logic 25,

97–106.
Soumitra Dutta. 1988. An event based fuzzy temporal logic. In Proceedings of the 18th International Sym-

posium on Multiple-Valued Logic. IEEE, Los Alamitos, CA, 64–71.
Nicholas Fiorentini, Achille Frigeri, Liliana Pasquale, and Paola Spoletini. 2012. Time modalities over many-

valued logics. In Proceedings of the 13th Italian Conference on Theoretical Computer Science (ICTCS’12).
Achille Frigeri, Liliana Pasquale, and Paola Spoletini. 2012. An Approach for Evaluating Fuzzy-Time Tem-

poral Properties. Retrieved July 6, 2014, from https://sites.google.com/site/ftlmodelchecking/.
Valery Glivenko. 1929. Sur quelques points de la logique de M. Brouwer. Bulletin de la Classe des Sciences

de l’Academie Royale de Belgique 15, 183–188.
Kurt Gödel. 1933. Zum intuitionistischen Aussagenkalkül. Ainzeger Akademie der Wissenschaften Wien,

Mathematische-naturwissensch 69, 65–66.
Petr Hájek. 1998a. Basic fuzzy logic and BL-algebras. Soft Computing 2, 124–128.
Petr Hájek. 1998b. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht.
Petr Hájek, Lluı́s Godo, and Francesc Esteva. 1996. A complete many-valued logic with product conjunction.

Archive of Mathematical Logic 35, 3, 191–208.
Alfred Horn. 1969a. Free L-algebras. Journal of Symbolic Logic 34, 475–480.
Alfred Horn. 1969b. Logic with truth values in a linearly ordered Heyting algebra. Journal of Symbolic Logic

34, 395–408.
Erich P. Klement, Radko Mesiar, and Endre Pap. 2000. Triangular Norms. Kluwer, Dordrecht.
Khaled Ben Lamine and Froduald Kabanza. 2000. Using fuzzy temporal logic for monitoring behaviour-based

mobile robots. In Proceedings of the IASTED International Conference on Robotics and Applications.
116–121.

Philip Levis, David Gay, and David Culler. 2005. Active sensor networks. In Proceedings of the 2nd Sympo-
sium on Networked Systems Design and Implementation, Volume 2. 343–356.

Xiaoqing F. Liu, Manooch Azmoodeh, and Nektarios Georgalas. 2007. Specification of non-functional re-
quirements for contract specification in the NGOSS framework for quality management and product
evaluation. In Proceedings of the 5th International Workshop on Software Quality. 36–41.

Xiaoqing F. Liu and John Yen. 1996. An analytic framework for specifying and analyzing imprecise require-
ments. In Proceedings of the 18th International Conference on Software Engineering. 60–69.

Carl G. Looney. 1988. Fuzzy Petri nets for rule-based decisionmaking. IEEE Transactions on Systems, Man,
and Cybernetics 18, 1, 178–183.

Jan Łukasiewicz. 1920. O logice trójwarkościoewj. Ruch Filozoficzny 6, 170–171.
Jan Łukasiewicz. 1970. Three-valued logic. In Selected Works by Jan Łukasiewicz. North-Holland, 87–88.
Zhiming Ma, Li Yan, and Fu Zhang. 2012. Modeling fuzzy information in UML class diagrams and object-

oriented database models. Fuzzy Sets and Systems 186, 1, 26–46.
Seong-ick Moon, Kwang Hyung Lee, and Doheon Lee. 2004. Fuzzy branching temporal logic. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B 34, 2, 1045–1055.
Gero Mühl, Ludger Fiege, and Peter Pietzuch. 2006. Distributed Event-Based Systems. Springer-Verlag.
Subhankar Mukherjee and Pallab Dasgupta. 2013. A fuzzy real-time temporal logic. International Journal

of Approximate Reasoning 54, 9, 1452–1470.
Norman W. Paton and Oscar Dı́az. 1999. Active database systems. ACM Computing Surveys 31, 1, 63–103.
SmartGrids. 2013. Smart Grids European Technology Platform. Retrieved July 6, 2014, from http://www.

smartgrids.eu/.

https://sites.google.com/site/ftlmodelchecking/.
http://www.smartgrids.eu/
http://www.smartgrids.eu/


Helmut Thiele and Susanne Kalenka. 1993. On fuzzy temporal logic. In Proceedings of the 2nd International
Conference on Fuzzy Systems. IEEE, Los Alamitos, CA, 1027–1032.

Jon Whittle, Pete Sawyer, Nelly Bencomo, and Betty H. C. Cheng. 2009. RELAX: Incorporating uncertainty
into the specification of self-adaptive systems. In Proceedings of the 17th International Requirements
Engineering Conference. IEEE, Los Alamitos, CA, 79–88.

Ronald R. Yager. 1980. On a general class of fuzzy connectives. Fuzzy Sets and Systems, 235–242.
Lofti A. Zadeh. 1965. Fuzzy sets. Information and Control 8, 3, 338–353.
Lofti A. Zadeh. 1994. Fuzzy logic (abstract): Issues, contentions and perspectives. In Proceedings of the 22nd

Annual Computer Science Conference on Scaling Up: Meeting the Challenge of Complexity in Real-World
Computing Applications. ACM, New York, NY, 407.




