Microgravity Exposure Alters Sympathetic Modulation of Ventricular Repolarization Quantified from the ECG via Periodic Repolarization Dynamics

> Saúl Palacios¹, Enrico Gianluca Caiani², Juan Pablo Martínez^{1,3}, Esther Pueyo^{1,3}

1 BSICoS Group, Universidad de Zaragoza, Spain

2 Electronics, Information, and Bioengineering Department, Politecnico di Milano, Italy 3 CIBER-BBN, Spain

MILANO 1863 Ciber-66n Zaragoza

Biomedical Signal Interpretation & Computational Simulation

Introduction

Effects after microgravity exposure

Muscular

Bone

Autonomic Nervous System

Cardiac

Introduction

Effects after microgravity exposure

Muscular

Bone

Autonomic Nervous System

Cardiac

Hypothesis

Microgravity-induced changes in cardiac electrical activity and the Autonomic Nervous System could be quantified from ECG ventricular repolarization

Periodic Repolarization Dynamics (PRD) [*]

Novel index to assess sympathetic modulation of ventricular repolarization by measuring lowfrequency oscillations in the T-wave morphology

Periodic Repolarization Dynamics (PRD) [*]

Novel index to assess sympathetic modulation of ventricular repolarization by measuring lowfrequency oscillations in the T-wave morphology

Our goal

Quantify PRD in ECGs before and after prolonged simulated microgravity, both at baseline and following increased sympathetic activity

^[*] Rizas et al. 2014.

Simulated microgravity

- 60-day -6^o Head-Down Best Rest (HDBR) experiment
- ESA bed rest studies
- DLR, Köln, Germany

Population

- 22 healthy male volunteers
- Two groups: Control (CTRL) and Countermeasure (JUMP)

Population

- 22 healthy male volunteers
- Two groups: Control (CTRL) and Countermeasure (JUMP)

Population

- 22 healthy male volunteers
- Two groups: Control (CTRL) and Countermeasure (JUMP)

Tilt-Table Test (TTT)

Tilt-Table Test (TTT)

Population

- 22 healthy male volunteers
- Two groups: Control (CTRL) and Countermeasure (JUMP)

• 12-lead ECG during TTT (1000 Hz, 3.75 μV resolution)

9

Preprocessing

Noise and artifacts removal

QRS detection and multilead wavelet-based delineation ^[1]

^[1] Martínez et al. 2004.

11

Preprocessing

Noise and artifacts removal

QRS detection and multilead wavelet-based delineation ^[1]

Preprocessing

Noise and artifacts removal

QRS detection and multilead wavelet-based delineation ^[1]

Methods

PRD index^[2]

1. Convert into orthogonal leads

^[2] Rizas et al. 2014.

2. Transformation into spherical coordinates

Methods

3. Calculation of weight-averaged azimuth (WAA) and weight-averaged elevation (WAE)

$$WAA = \frac{\sum_{t=T_{start}}^{T_{end}} (r_t \cdot \phi_t)}{\sum_{t=T_{start}}^{T_{end}} r_t}$$
$$WAA = -42.45^{\circ}$$
$$WAE = \frac{\sum_{t=T_{start}}^{T_{end}} (r_t \cdot \theta_t)}{\sum_{t=T_{start}}^{T_{end}} r_t}$$

 $WAE = 56.16^{\circ}$

4. Computation of angle dT^o

Methods

4. Computation of angle dT^o

17

5. Time series smoothing and interpolation

6. Continuous Wavelet Analysis

$$F_a = \frac{F_c}{a \cdot \Delta}$$

7. Definition of **PRD** *The average squared wavelet coefficient in the frequency range 0.025 and 0.1 Hz*

Periodic variations in ventricular repolarization

Results

Tilt test effect on PRD

Computing in Cardiology 2018 – Maastricht, Netherlands

22

Microgravity effect on PRD

Baseline

Microgravity effect on PRD Beginning of tilt

End of tilt

Results

Countermeasure effect on PRD

Conclusions

Implementation of an algorithm for PRD computation adapted to non-stationary cases

PRD index increases in response to Tilt Test

PRD index increases in response to Tilt Test

Simulated microgravity induces notable increases in PRD

PRD index increases in response to Tilt Test

Simulated microgravity induces notable increases in PRD

PRD follows changes in sympathetic modulation of ventricular repolarization induced by tilt test and microgravity exposure

PRD index increases in response to Tilt Test

Simulated microgravity induces notable increases in PRD

PRD follows changes in sympathetic modulation of ventricular repolarization induced by tilt test and microgravity exposure

A jump-based countermeasure is not completely effective in counteracting microgravity effects

Microgravity Exposure Alters Sympathetic Modulation of Ventricular Repolarization Quantified from the ECG via Periodic Repolarization Dynamics

Saúl Palacios¹, Enrico Gianluca Caiani², Juan Pablo Martínez^{1,3}, Esther Pueyo^{1,3}

1 BSICoS Group, Universidad de Zaragoza, Spain

2 Electronics, Information, and Bioengineering Department, Politecnico di Milano, Italy 3 CIBER-BBN, Spain

MILANO 1863 **Ciber-66n The Universidad** Zaragoza

Biomedical Signal Interpretation & Computational Simulation

