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Abstract

A semi-analytical method is developed for the analysis of composite stiffened panels,

where stiffness variability is achieved through a combination of fiber steering and

curvilinear stringers. The approach relies upon a 2D plate model for the skin and

a 1D beam description for the stiffeners, according to first-order shear deformation

theory. The approach is developed in the framework of a displacement-based formula-

tion, where Legendre polynomials are used for approximating the displacement field,

and the Ritz method is used for the solution strategy. The resulting tool is character-

ized by its excellent computational efficiency, and allows problems in free-vibrations,

buckling and thermal buckling to be solved with reduced effort. The quality of the

results is assessed by an extensive set of comparison against results from the litera-

ture, demonstrating the potential of the tool as a means for performing preliminary

parametric studies for these variable-stiffness, variable-geometry structures.

Keywords: Variable-stiffness; curvilinear stiffeners; Ritz method; buckling;

free-vibrations.
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1. Introduction

New manufacturing techniques, such as automated fiber placement (AFP), auto-

mated tape laying (ATL) and addictive manufacturing, offer the chance of exploring

novel structural configurations and concepts, that in the past were hardly realizable,

with the benefits of improved efficiency. This is of particular interest for primary

load-carrying structures of aerospace vehicles, for which structural efficiency is among

main concerns. In this context, structural panels, such as those employed in wings

and fuselages, are classically realized in metallic or straight-fiber composite mate-

rials, with architecture based on orthogonal stiffening elements, i.e. stringers and

frames or ribs. Taking advantage of technologies now available, major gains could

be achieved through a variable-stiffness (VS) design philosophy, where a variable-

stiffness skin – obtained by changing the fiber orientation as function of the planar

position – is combined with stiffeners running along arbitrarily curvilinear paths. In-

deed, the possibility of arranging non-straight stiffeners can be seen as an alternative

way for designing the load paths through localized stiffness distribution. In other

words, curvilinear stiffeners can be interpreted as a special case of variable-stiffness

panels, where stiffness distribution is achieved by means of Dirac delta functions.

The advantages offered by VS laminates are well-known, and have been extensively

studied with respect to their behavior in terms of mechanical buckling [1–10], ther-

mal buckling [11–13], fundamental frequencies [14–16] and failure loads [5, 17]. One

side-effect of variable-stiffness configurations is the exponentially growing number of

degrees of freedom, which requires special consideration. Therefore, efficient tools are

of paramount importance to support the design phase, even more than in the case of

classical straight-fiber configurations. With this aim in mind, Ritz-based approaches
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were proposed as a valuable mean for achieving accurate results with a relatively

few degrees of freedom. Examples can be found in Refs. [6, 7], where buckling and

post-buckling analyses are performed in the framework of a mixed formulation along

with thin-plane theory. Displacement-based formulations are developed referring to

first-order shear deformation theory (FSDT) in Refs. [13, 18] and high-order theories

in Ref. [19]. An example of a fast design optimization process of VS panels based on

a Ritz-like approach can be found in Ref. [20].

Regarding unconventional stiffening arrangements, an early study due to Gürdal

and Grall [21] discusses the modeling of geodesically stiffened panels, an extension of

which is given by curvilinear stiffeners, presented in pioneering works due to Kapania

and co-workers [22, 23]. Successive studies indicated that reduction of static stresses,

improvement of buckling load [24] and weight reduction [25] can be achieved, high-

lighting the importance of gathering understanding through design optimization.

Modeling of curvilinearly stiffened panels represents a challenge owing to inherent

geometrical complexity. Special care is needed to realize finite element models, as

possible issues due to element distortion and skin-stringer continuity enforcement

have to be taken into account. To overcome this issue, finite element procedures

were proposed in Refs. [26–28], where stiffeners displacements are expressed as func-

tion of those of the skin reference surface using finite element shape functions. In

doing so, the generation of the models is made simpler: skin and stiffener elements

can be generated independently from one another, and requirements in terms of

shared nodes at the skin/stiffener interface need not be fulfilled.

Mesh-free methods are another strategy particularly suited to handle the modeling

issues associated with curvilinearly stiffened panels. Tamijani and Kapania devel-

oped element-free Galerkin [29, 30] and Ritz-based approaches [31, 32] for analyzing
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isotropic panels under various boundary and loading conditions. The methods were

applied to free-vibration [29, 31, 32], bending and buckling [30, 32] problems, and

proved to be an effective way for performing parametric and sensitivity studies, allow-

ing insight into the potential offered by curvilinear stiffeners to be gained. Recently,

the Ritz approach was extended to composite panels to assess the flutter response of

curvilinearly stiffened panels [33].

In the last two years, new studies introduced the idea of combining variable-stiffness

skins with curvilinear stiffeners, aiming at exploiting the improved design flexibil-

ity to achieve better structural response [34–36]. Singh and Kapania [34] employed

NASTRAN analyses and Particle Warm Optimization (PSO) optimization to demon-

strate that, under certain loading conditions, a 200% increase is possible in terms of

buckling load, compared to classical composite configurations with straight stiffen-

ers. Special purpose finite element models were developed to illustrate advantages

in terms of free-vibration response [36], with or without pre-stresses, and thermal

buckling behavior [35].

As it turns out, previous studies dealing with combined stiffness variability due to

VS skin and curvilinear stiffeners are restricted to finite element procedures. How-

ever, the availability of a mesh-free strategy – which is the aim of the present effort

– is believed to be beneficial for accurate yet fast predictions, thus facilitating the

realization of sensitivity and parametric studies, as well as preliminary design opti-

mizations.

This work illustrates a semi-analytical approach based on the Ritz method, where,

following Tamijani and Kapania [31, 32], stiffened panels are described as an assem-

bly of plate and beam elements for modeling skin and stringers, respectively. The

approach is developed in the framework of a displacement-based formulation, where
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the generalized displacement components are expanded by means of orthogonal poly-

nomials. Specifically, Legendre polynomials are used due to their excellent properties

in terms of convergence, stability and sparsity of the resulting matrices [6, 37, 38].

Relatively high number of trial functions, which can be necessary for capturing local

modes, are easily handled thanks to the efficiency of the implementation. The numer-

ical tool allows linear static problems to be solved, including static, free-vibration,

buckling and thermal buckling ones. Flexibility in design is guaranteed by account-

ing for any boundary conditions and multiple loads, in terms of prescribed forces and

displacements. The quality of the results is assessed by comparison against finite el-

ement calculations, illustrating the promise of the proposed tool as a valuable mean

for performing preliminary parametric studies and assessing the potential benefits of

VS panels with curvilinear stringers.

The paper is organized first by illustrating the variational framework, along with

kinematic models used for modeling skin and stiffeners. Then, the Ritz method is

introduced, and the approximate expressions for the energy contributions are de-

rived, leading to a final set of discrete governing equations to be solved numerically.

Starting from the analysis of unstiffened panels, examples of increasing complexity

are illustrated up to the case of variable-stiffness panels with straight and curvilinear

stringers.

2. Formulation

The semi-analytical approach described herein allows the fast analysis of flat

panels stiffened by an arbitrary number of curvilinear stringers, a sketch of which

is shown in Figure 1. The total dimensions of the panel along the longitudinal and

transverse dimensions are denoted with a and b, respectively, while the thickness is
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t. Blade stiffeners are considered, each one characterized by height hi and width ti.

The panels are made of composite material, the fiber orientation of the plate having

the possibility of varying their orientation across the domain. Therefore, variable-

stiffness skins can be modeled, where the stiffnesses of the laminated plate are a

function of the planar position. On the contrary, blade stiffeners are realized by

stacking straight-fiber plies along the direction normal to the stiffener height. Thus,

the ply orientation remains constant along the stiffener axis. Furthermore, the stiff-

ener stacking sequence is assumed to be specially orthotropic.

The loading conditions can be in the form of forces per unit length, applied at any

of the four edges, according to the conventions of Figure 1. The components along x

and y are indicated as Nxi and Nyi for a generic edge i, and they are positive when

directed along the positive direction of the axes x and y. The index i varies between

1 and 4 accordingly, as reported in the figure, which also defines the edge numbering

scheme used for specifying boundary conditions. For an edge at x = const, the ten-

sile/compressive contribution is Nxi, while the shear is Nyi. Note that the forces in

the figure are depicted as constant, but any arbitrary distribution can be modeled.

Also, it should be noted that they do not represent a self-balanced system of forces,

as they are presented according to their positive directions. In addition, the panel

can be loaded by prescribing the edge displacements ui and vi for both the plate and

the stiffeners according to the conventions of Figure 1 . Pressure loads with arbitrary

distribution and intensity denoted with p are also considered. Thermal loads, if any,

are modeled in the form of uniform temperature changes, where positive values of

∆T denote heating and negative ones cooling.

Any combination of free, simply-supported and clamped conditions at the four edges

can be accounted for. The approach allows for the assessment of the linear static,
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free-vibration – with or without pre-stresses – and buckling response in the presence

of the aforementioned thermo-mechanical loads. The formulation is developed in

the context of a variational framework, where the stiffened panel is modeled as an

assembly of a plate element representative of the skin, and beam elements for the

stiffeners. Firstly, the variational principle is presented. Then, the kinematics and

energy contributions for the plate and the stiffeners are discussed, illustrating the

conditions necessary for guaranteeing the compatibility of the displacements at the

plate/stiffener interface. Finally, the governing equations are derived by using the

Ritz method.

2.1. Variational approach

The formulation is developed by referring to an energy approach, presented here

to consider various types of analyses into a unique, compact expression [39]. The

relevant functional is denoted as F and can be written as:

F = Fp +
Ns∑
i=1

F i (1)

As shown, the functional is obtained as the sum of the contributions due to the plate,

Fp, and those of the Ns stiffeners, F i. Note, hereinafter the superscript i is used to

denote any quantity referred to the generic i-th stiffener. The two terms entering

the functional of Eq. (1) are available as:

Fp = U − β1W − β2Wb − β3K (2)

and:

F i = U i − β1W
i − β2W

i
b − β3K

i (3)

where βi are Boolean flags, whose values are chosen according to Table 1, and leading

to different interpretations for F : for the linear static case, it is the total potential
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energy, Π; for free-vibration analysis, it is the maximum potential energy during the

harmonic oscillation; in case of buckling, the functional F is the second variation of

the potential energy, δ2Π.

The terms W and W i of Eqs. (2) and (3) are the negative potentials of external

loads and account for mechanical and thermal effects, whilst Wb is the pre-load

contribution to δ2Π in case of buckling analysis.

Irrespective of the type of analysis, the governing equations are available by imposing

the stationary condition as:

δF = 0 (4)

and, considering a Ritz approximation, where the N generalized coordinates are

denoted as ai, the set of discrete equations corresponding to Eq. (4) are written as:

∂F

∂ai
δai = 0 ∀δai (5)

2.2. Skin

A two-dimensional plate model is employed for representing the skin of the stiff-

ened panel. A sketch is reported in Figure 2 where dimensions, fiber orientations and

conventions for the kinematic variables are provided. A Cartesian reference system

xyz is taken over the plate midsurface, with the origin located in the middle of the

plate. The x and y axes define the longitudinal and transverse directions, while z

runs along the thickness. The dimensions of the plate are a and b, and correspond

to the total dimensions of the stiffened panel.

Variable-stiffness configurations are considered by assuming that the fibers are ori-

ented with different angles at given locations of the plate domain. In particular,

a grid of arbitrarily distributed M × N points is considered, where the orientation

angles are specified as θmn over one quarter of the plate, as illustrated in Figure 2(a).
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These angles are interpolated by means of Lagrange polynomials, and the function

describing the ply orientation over the plate domain is obtained as [6]:

θ(x, y) =
M−1∑
m=0

N−1∑
n=0

θmn
∏
m 6=i

(
|x| − xi
xm − xi

)∏
n6=j

(
|y| − yj
yn − yj

)
(6)

In general, the description is non-linear with respect to the x and y coordinates. A

linear variation can be retrieved as a special case by considering just two points at

the center and the edge of the plate. If so, the corresponding orientations θ0 and

θ1, along with the rotation Φ of the local reference system, are summarized in the

compact notation [Φ < θ0|θ1 >].

It is worth mentioning that the representation of Eq. (6) can be inadequate whenever

orientation angles are prescribed in several points due to Runge’s phenomenon. In

the present work all comparisons are discussed against reference results based on the

description of Eq. (6), which is then retained for consistency. To a more general

extent, alternative representations based on Chebyshev nodes or Legendre interpo-

lating functions should be considered as valuable alternatives to avoid the above

mentioned issue.

Kinematics

The kinematic model of the plate is developed on the basis of the First Order

Shear Deformation Theory (FSDT), such that the formulation is not restricted to

thin plate analysis. In this context, the displacement field is described as:

u(x, y, z) = u0(x, y) + zLϕ(x, y)

= [I zL]

u0

ϕ

 = [I zL] d0

(7)
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where:

L =


1 0 0

0 1 0

0 0 0

 (8)

and the vector d0 collects the generalized displacement components u0 and ϕ of the

kinematic model, whose components are:

u0 = {u0 v0 w0}T ϕ =
{
ϕx ϕy ϕz

}T
(9)

The positive directions for the generalized displacement parameters are depicted in

Figure 2(b). In view of the next steps, it is noted that the rotations ϕi are not positive

according to the right-hand rule convention, but they are rotation parameters based

on the usual notation of FSDT [40]. The rotation parameter ϕz is associated with

zero plate stiffness, but is introduced here with the purpose of enforcing compatibility

conditions with the stiffener beam elements.

Consistently with Eq. (7), the vector of in-plane strain components is organized as:

ε =
{
εxx εyy 2εxy

}T
= ξ + zk + η (10)

where ξ and k are the vectors of membrane strains and curvatures, respectively ,

defined as ξ = {u,x v,y u,y + v,x}T and k = {w,xx − w,yy − 2w,xy}T; the term

η = {1

2
w2
,x

1

2
w2
,y w,xw,y}Taccounts for the non-linear contributions on the basis of

von Kármán assumptions and is retained only for buckling analysis.

In view of successive derivations, it is useful to define a vector collecting the strain

parameters as:

e =
{
ξT kT γT

}T

(11)

where γ =
{
γyz γxz

}T
=
{
w,y + ϕy w,x + ϕx

}T
are the transverse shear compo-

nents.
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The thermo-elastic constitutive relation is based on the assumption that the only

non-zero components of thermal expansion are those associated with the in-plane

behavior, and it is given as:

σ(k) = Q
(k)

(x, y)
(
ε(k) − ε(k)

th

)
τ (k) = Q

(k)

s (x, y)γ (12)

where Q
(k)

and Q
(k)

s are referred to the generic ply k and expressed in the global ref-

erence system. Note, the elastic coefficients are functions of the position because the

fibers are, in general, non straight; the term ε(k) is the total deformation, accounting

for the mechanical and thermal contributions, the latter available as:

ε
(k)
th = α(k)(x, y)∆T (13)

where α(k) is the ply coefficient of thermal expansion, expressed in the laminate

reference system. The force resultants are:

N =

∫
t

σ(k) dz = A(x, y)ξ + B(x, y)k− N̂(x, y)∆T

M =

∫
t

zσ(k) dz = B(x, y)ξ + D(x, y)k− M̂(x, y)∆T

Q =

∫
t

τ (k) dz = As(x, y)γ

(14)

The matrices A, B, D and As are the usual membrane, coupling, bending and trans-

verse shear stiffness contributions [40], where dependence on the in-plane position

is explicitly indicated; the terms N̂ and M̂ are the unit thermal stress resultants,

which are available as:

N̂(x, y) =

∫
t

Q
(k)
α(k)(x, y) dz

M̂(x, y) =

∫
t

zQ
(k)
α(k)(x, y) dz

(15)
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The vector collecting the unit thermal resultants is defined as:

R̂ =
{

N̂
T

M̂
T

Q̂
T
}T

(16)

where the third contribution refers to the transverse shear thermal forces, which are

identically null as implied by Eq. (12), i.e Q̂ = 0.

Energy contributions

Based on the aforementioned kinematic model and the corresponding constitutive

relations, the plate strain energy is written as:

U =
1

2

∫
A


ξ

k

γ



T 
A B 0

B D 0

0 0 As



ξ

k

γ

 dA =
1

2

∫
A

eTDpe dA (17)

where vector e is defined by Eq. (11), while the matrix Dp provides a compact de-

scription of the plate constitutive behavior. The strain energy can be re-written in

terms of the generalized displacement components by recalling Eq. (7) and intro-

ducing the differential matrix B1, whose expression is available in the Appendix, so

obtaining:

U =
1

2

∫
A

(B1d0)T DpB1d0 dA (18)

The contribution due the external loads W reads:

W =

∫
A

wp dA +
4∑
i=1

∫
∂Ai

(
u0Nxi + v0Nyi

)
d∂Ai +

∫
A

eTR̂(x, y) dA ∆T (19)

where the first term refers to the external pressure p, and the second accounts for

prescribed forces along the four edges, following the conventions of Figure 1. The

last term accounts for temperature variations and use is made of Eqs. (11) and (16)
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when introducing the unit thermal resultants.

The fourth contribution of Eq. (2) stems from the linearization of the non-linear

terms of the strain-displacement relation according to von Kármán assumptions,

and is written as:

Wb =
1

2

∫
A

[
Nxx(x, y)w2

0,x + 2Nxy(x, y)w0,xw0,y +Nyy(x, y)w2
0,y

]
dA (20)

It is important to note that, in general, the pre-buckling force resultants Nik are

a function of the position (x, y), which are determined by means of an initial pre-

buckling analysis.

The last contribution in the functional in Eq. (2) is associated with the kinetic

energy, and is relevant in the context of free-vibration problems. Within the present

kinematic assumptions and referring to Eq. (7), the kinetic energy is obtained as:

K =
1

2

∫
A

u0

ϕ


T ∫

t

ρ0

 I zL

zL z2L

 dz

ü0

ϕ̈

 dA =
1

2

∫
A

dT
0 md̈0 dA (21)

where m is the mass matrix obtained by performing the thickness integral on the

right-hand side of Eq. (21).

2.3. Stiffeners

The second structural component of the stiffened panel is given by the stiffeners.

The model is restricted here to the case of blade stiffeners, obtained in the form of

laminates with constant ply orientations. The geometry is described using Bézier

curves, while the kinematic model refers to first order beam theory.

Geometry

The stiffener path is parameterized using a Bézier description. Specifically, the

stiffener coordinates x = {x y z}T are expressed by the vector-valued function
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x = R (q), defined as:

R(q) =
n∑
i=0

n
i

Pi (1− q)n−i qi with q ∈ [0 1] (22)

where Pi are the coordinates of the control points.

Numerical integration is needed within the present Ritz-based procedure, therefore

it is useful to express the curve parameterization as function of a parameter p ∈

[−1 1]. This is done by operating a change of variable in Eq. (22), where p = 2q−1.

According to this transformation, third-order Bézier curves can be represented as:

R(p) =
1

4
(1− p)2 P0 +

1

2

(
1− p2

)
P1 +

1

4
(1 + p)2 P2 with p ∈ [−1 1] (23)

where the three control points are used for expressing the path.

Once the stiffener path is available, the unit tangent vector to the stiffener path can

be evaluated as:

t = x,s =
x,p
||x,p||

(24)

where s is the arc-length coordinate. From Eq. (24) it can be observed that, in

general, ||x,p|| 6= 1, unless a parameterization is available with respect to the arc-

length s. In this regard, the relation between the parameter p and the arc-length

differentials is:

ds = ||x,p|| dp = Js dp (25)

with Js representing the Jacobian of the transformation between p and s. From

Eq. (25) any derivative with respect to the arc-length parameter is obtained as:

(·),s =
1

Js

(·),p (26)

The normal vector to the stiffener axis, n, can be obtained by rotating the vector

t of π/2 radians along the counterclockwise direction. This approach ensures that
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the binormal vector b points toward the plate normal positive direction, avoiding

undesirable sudden inversions of the binormal direction along the stiffener path.

Kinematics

A sketch of the stiffener is reported in Figure 3, where the height and width are

denoted with hi and ti, respectively. A local reference system snb is taken with the

origin on the plate midsurface, allowing for simple enforcement of the compatibility

conditions between plate and stiffener. The sketch also illustrates also the positive

conventions for the parameters of the kinematic model discussed below. Hereinafter

the stiffener path is referred to as Γi.

Referring to well-known first-order beam theory, the beam displacement components

are represented as:

ui(s, n, b) = ui0(s) + (d×)T θi(s) (27)

where d = nn + bb, and d× is the second-order tensor such that d×a = d × a for

any arbitrary vector a. The generalized displacement parameters of the kinematic

model are collected in the vectors ui0 and θi, whose components are:

ui0 =
{
ui0t ui0n ui0b

}T

θi =
{
θit θin θib

}T

(28)

The positive directions are indicated in Figure 3, where the rotations θi are positive

according to right hand rule.

Following Refs. [31, 41], the strains are evaluated as:

εi =


εitt

γitn

γitb

 =


ui,s · t + ηitt

ui,s · n + ui,n · t

ui,s · b + ui,b · t

 (29)
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or, in compact form, they can be written as:

εi = ξi + (d×)T ki + ηi (30)

with:

ξi =


ξitt

2ξitn

2ξitb

 =


ui0,s · t

ui0,s · n− θi · b

ui0,s · b + θi · n

 ki =


kitt

kitn

kitb

 =


θi,s · t

θi,s · b

θi,s · n

 (31)

where ξi is a vector collecting the axial strain and the transverse shear components,

while ki collects the beam curvatures. The contribution ηi accounts for geometri-

cally non-linear terms, and is retained only in the case of buckling analysis.

The kinematic relation of Eq. (27) and the strains of Eq. (30) are expressed as a func-

tion of the beam generalized displacement components ui0 and θi. However, these

latter are not free parameters, as they are related to the plate displacement compo-

nents via compatibility conditions. In particular, the displacement at the intersection

between the plate and the beam is subjected to a C0 continuity requirement, which

is expressed as: 
ui0 = u0|Γi

θi = J Tϕ|Γi

(32)

where the beam and plate displacement components are expressed in a common

reference system, taken as the global one, unless otherwise stated. The matrix J is

defined as:

J =


0 1 0

−1 0 0

0 0 1

 (33)
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and accounts for the different conventions employed for describing plate and beam

rotations (see Figures 2(b) and 3).

To avoid cumbersome expressions, the notation is simplified by indicating the dis-

placement components along the stiffener path by introducing a tilde, i.e. ũi0 ≡ u0|Γi

and θ̃
i

0 ≡ θ0|Γi .

The enforcement of the compatibility conditions of Eq. (32) allows to express all the

stiffener kinematic parameters as function of the plate ones. The relation in terms

of generalized displacements is inherently given by Eq. (32), while the one in terms

of generalized strain parameters is obtained as:

ξ̃
i

=


tTũi0,s + η̃itt

nTũi0,s − bTJ Tϕ̃i

bTũi0,s + nTJ Tϕ̃i

 k̃
i

=


tTJ Tϕ̃i,s

nTJ Tϕ̃i,s

bTJ Tϕ̃i,s

 (34)

where the derivatives with respect to the arc-length parameter are readily available

by projecting the gradients onto the tangent direction:

ũi0,s = ∇ũi0 · t ϕ̃i,s = ∇ϕ̃i · t (35)

Energy contributions

The stiffener strain energy is available as:

U i =
1

2

∫
Γi

ξ̃
i

k̃
i


T

Ci

ξ̃
i

k̃
i

 ds (36)

where the matrix Ci defines the beam section properties. The derivation of its

expression is presented in the Appendix. The strain vectors are given by Eq. (34)

and embed the compatibility of the displacements between the plate and the stiffener.
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The potential of external loads is written as:

W i = ũi0P|s=Γi

s=0 +

∫
Γi

ξ̃
i

k̃
i


T F̂

i

M̂
i

 ds∆T (37)

where P is a vector collecting the forces applied at the beam ends. Note that in

Eq. (37) thermal loads F̂
i

and M̂
i

depend upon the stiffener thermal properties as

illustrated in the Appendix.

In case of buckling analysis, the energy contribution is:

W i
b =

1

2

∫
Γi

P iη̃itt ds =
1

2

∫
Γi

P iũi
2

0b,s ds (38)

where Pi is the pre-buckling axial force carried by the stiffener.

The kinetic energy reads:

Ki =
1

2

∫
Γi

uiρüi ds (39)

and, upon substitution of Eq. (27) into Eq. (39):

Ki =
1

2

∫
Γi

`u
i
0

`θ
i


T ∫

A

ρ

 I (d×)T

(d×) (d×) (d×)T

 dA

`ü
i
0

`θ̈
i

 ds

=
1

2

∫
Γi

`u
i
0

`θ
i


T Muu Muθ

MT
uθ Mθθ


`ü

i
0

`θ̈
i

 ds

(40)

The definition of the matrices Mik is implicit in the expression of Eq. (40); a left

subscript ` is introduced to highlight that the vectors of generalized displacements

are expressed in the stiffener local reference system. Recalling the compatibility

conditions of Eq. (32) and introducing the rotation matrix R from the global to

stiffener local system, the local displacements can be expressed as:

`u
i
0 = Rui0 = Ru0|Γi

`θ
i = Rθi = RJ Tϕ|Γi

(41)
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Substitution of Eq. (41) into Eq. (40) allows the kinetic energy to be expressed as a

function of the plate’s generalized displacement components.

2.4. Ritz approximation

The variational formulation derived so far allows the energy functional to be

expressed in terms of the six generalized displacement components u0 and ϕ of the

plate. An approximate solution is sought by expanding the unknowns by means

of Ritz trial functions. Once the approximation is achieved at functional level, the

governing equations are easily retrieved by imposing the stationarity of F through

Eq. (5).

The displacements u0 are expanded as:

u0 =


φT

u (ξ, η)

φT
v (ξ, η)

φT
w (ξ, η)




cu

cv

cw

+


φu(ξ) +ψu(η)

φv(ξ) +ψv(η)

0

 = Φuau + Φu

(42)

where φi are column vectors of dimension Ri × Si collecting the trial functions for

the generalized displacement component i ∈ {u0, v0, w0}, expressed in terms of the

nondimensional coordinates (ξ, η) ∈ [−1 1], with ξ = 2/a and η = 2/b; Φu is the

matrix which includes the three sets of trial functions, while au are the corresponding

unknown amplitudes; the overline is introduced to denote the trial functions associ-

ated with any prescribed displacement along the plate boundaries. Specifically, they

are expressed as linear functions of the coordinates ξ and η as:

φu =
u3 − u1

2
ξ ψu =

u4 − u2

2
η

φv =
v3 − v1

2
ξ ψv =

v4 − v2

2
η

(43)
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Similarly to the expansion operated in Eq. (42), it is possible to approximate the

rotational degrees of freedom as:

ϕ =


φT
ϕx

(ξ, η)

φT
ϕy

(ξ, η)

φT
ϕz

(ξ, η)




cϕx

cϕy

cϕz

 = Φϕaϕ (44)

Grouping Eqs. (42) and (44) into one single expression and recalling Eq. (7), it is

possible to express the six unknown displacement components as:

d0 =

Φu 0

0 Φϕ


au

aϕ

+

Φu

0

 = Φa + Φ (45)

where a is the vector of the Ritz unknown amplitudes, whose dimension is equal to

the number of degrees of freedom of the problem. Among the various choices for

representing the trial functions φi of Eqs. (42) and (44), Legendre polynomials are

employed here due to their excellent stability and convergence properties [38, 42].

Specifically, the expansion is performed as:

φi (ξ, η) = bi (ξ, η)
[
Pr(ξ)⊗ Ps(η)

]
with r = 0, ..., R; s = 0, ..., S

i ∈
{
u0, v0, w0, ϕx, ϕy, ϕz

} (46)

In the expression above, Pk is the k-th Leegndre polynomial, whilst bi is the boundary

function relative to the generalized displacement component i, whose expression

reads:

bi(ξ, η) = (1− ξ)a1(1 + ξ)a2(1− η)a3(1 + η)a4 (47)

The coefficients ai can take zero or unitary values following Table 2, depending on

the specified boundary conditions.
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2.5. Plate contributions

The Ritz approximation of the energy contributions is derived by introducing

the expansion of Eq. (45) into the relevant terms and performing the corresponding

surface and line integrals. With this aim in mind, numerical integration is carried

out according to a Gauss-Legendre scheme.

The strain energy is available referring to Eq. (18), and can be written as:

U =
1

2
aT

∫ 1

−1

∫ 1

−1

(B1Φ)T DB1ΦJ dξ dη a + aT

∫ 1

−1

∫ 1

−1

(
B1Φ

)T

DB1ΦJ dξ dη a

=
1

2
aTK̆a− aTF̆u

(48)

where J = ab/4 is the Jacobian of the transformation from (x, y) to the nondimen-

sional system (ξ, η).

The first contribution on the right-hand side highlights the plate stiffness matrix K̆;

the second one depends upon the presence of prescribed displacements at the bound-

aries and is in the form of the forcing vector denoted as F̆u; whenever displacements

are not prescribed, the functions Φ are identically null, and the contribution F̆u van-

ishes.

The energy term due to thermo-mechanical loads is determined by referring to

Eqs. (19), (42) and (44) and is:

W = cT
w

∫ 1

−1

∫ 1

−1

pΦT
wJ dξ dη +

4∑
i=1

aT
u

∫
∂A

ΦT
u Ni d∂A+

+ aT

∫ 1

−1

∫ 1

−1

(B1Φ)T R̂ dξ dη∆T = cT
wFw

f + aT
u Fu

f + aTF̆th = aTF̆

(49)

The geometric stiffness of the plate is derived referring to Eq. (20) and is:

Wb =
1

2
aT

∫ 1

−1

∫ 1

−1

(B2Φ)T

Nxx (ξ, η) Nxy (ξ, η)

Nxy (ξ, η) Nyy (ξ, η)

B2ΦJ dξ dη a =
1

2
aTK̆ga (50)
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where B2 is a differential matrix, whose expression is reported in the Appendix,

and the pre-buckling force resultants Nik are determined with an initial pre-buckling

analysis.

The last plate contribution regards kinetic energy, which is obtained referring to

Eqs. (21) and (45), and is:

K =
1

2
aT

∫ 1

−1

∫ 1

−1

ΦTmΦJ dξ dη ä =
1

2
aTM̆ä (51)

where the term M̆ is the mass matrix of the plate.

2.6. Stiffener contributions

The evaluation of the stiffener contributions is relatively straightforward as far as

the energy terms derived in the previous sections are already available as a function

of the generalized displacement components of the plate. This consideration implies

that the Ritz expansion of Eq. (45) can be directly substituted into the relevant

energy terms. However, an intermediate step is necessary to express the generalized

strains, i.e. ξ̃
i

and k̃
i
, as a function of the Ritz unknown amplitudes. Referring

to Eqs. (32), (35), (42) and (44), the derivatives of the generalized displacement

components with respect to the arc-length coordinate s are:

ũi0,s =

(
2

a
Φ̃
i

u,ξtx +
2

b
Φ̃
i

u,ηty

)
au +

2

a
Φu,ξtx +

2

b
Φu,ηty = duau + du

ϕ̃i,s =

(
2

a
Φ̃
i

ϕ,ξtx +
2

b
Φ̃
i

ϕ,ηty

)
aϕ = dϕaϕ

(52)

where the terms Φ̃
i

·,· indicate the trial function derivatives for the i-th stiffener.

Note, according to Eq. (43), the contributions associated with prescribed edge dis-

placements are linear with ξ and η, thus the first derivatives are constant and inde-

pendent of the position. For this reason, the stiffener index i is unnecessary over the
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corresponding terms Φ·,·.

From Eq. (52) and recalling Eq. (34), the stiffener generalized strains can be ex-

pressed as:

ξ̃
i

k̃
i

 =



tTdu 0

nTdu −bTITΦ̃
i

ϕ

bTdu 0

0 tTdϕ

0 tTnϕ

0 tTbϕ



au

aϕ

+



tTdu

nTdu

bTdu

0

0

0


= H1a + e (53)

Introducing Eq. (53) into Eq. (36) leads to the expression for the stiffener strain

energy, which is:

U i =
1

2
aT

∫ 1

−1

HT
1 CiH1Js dp a + aT

∫ 1

−1

HT
1 CieJs dp =

1

2
aTKia− aTFi

u (54)

with Js defined by Eq. (25), and Ki and Fi
u representing the stiffness matrix and

the contribution to the vector of external forces due any prescribed displacement,

respectively.

External loads are accounted for by Eq. (37), and referring to Eq. (53):

W i = aTFi
f + aT

∫ 1

−1

HT
1

 F̂
i

M̂
i

 Js dp∆T = aTFi (55)

which provides the projection of the stiffener thermal loads onto the Ritz trial func-

tions.

The geometric stiffness matrix is available from Eq. (38):

W i
b =

1

2
aT

∫ 1

−1

HT
2 P

iH2Js dp a =
1

2
aTKi

ga (56)
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where the vector H2 allows to determine the derivative of the stiffener out-of-plane

deflections with respect to the arc-length coordinate s. Analogously to Eq. (52), H2

is obtained as:

H2 =

{
0 0 bT

(
2

a
Φ̃
i

u,ξtx +
2

b
Φ̃
i

u,ηty

)
0 0 0

}
(57)

The last term to be determined is the kinetic energy of the stiffener, whose expression

is given by Eq. (40). Recalling Eqs. (41), (42) and (44), the Ritz approximation is:

Ki =
1

2
aT

∫ 1

−1

 ΦT
u RTMuuRΦu ΦT

u RTMuθRJ TΦθ

ΦT
θJRTMθuRΦu ΦT

θJRTMθθRJ TΦθ

 Js dp ä =
1

2
aTMiä (58)

2.7. Stiffened panel governing equations

The set of discrete governing equations for the stiffened panel can be derived

after substitution of the energy terms derived in the preceding sections into Eq. (1)

and by application of the stationarity condition of Eq. (5). The final equations are

obtained in the form:

(
K + β2λKg − β3ω

2M
)

a = β1F (59)

where K, Kg and M are the assembled stiffness, geometric stiffness and mass matrices

of the stiffened panel, while F is the vector of the external loads.

It is worth noting that the assembly of the terms entering Eq. (59) is particularly

straightforward, as far as plate/stiffener compatibility conditions are enforced in

strong-form manner (see Eq. (32)). It follows that the stiffened-panel’s assembled

matrices are available by summing the various contributions as:

K = K̆ +
Ns∑
i=1

Ki Kg = K̆g +
Ns∑
i=1

Ki
g M = M̆ +

Ns∑
i=1

Mi (60)
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and:

F = F̆u + F̆ +
Ns∑
i=1

Fi
u + Fi (61)

Referring to Eq. (59) and Table 1, it can be gleaned that a static analysis implies

the solution of a linear system, while a free-vibration problem requires the solution

of an eigenvalue problem. On the contrary, buckling analyses and pre-stressed free-

vibration problems require a two-step procedure, where the linear static problem

is solved first to determine Kg, and the resulting eigenvalue problem is solved in a

second step.

In most cases, a reduced number of degrees of freedom is needed to guarantee con-

verged solutions, therefore the solution of Eq. (59) is carried out in a highly efficient

way. It is worth mentioning that the assembled matrices are generally fully populated

as a result of the numerical integration process, which is necessary when variable-

stiffness configurations are of concern. In the particular case of composite panels

with straight fiber orientations, the Ritz integrals can be carried out analytically,

leading to an increased degree of sparsity of the assembled matrices, with beneficial

effects on the time required for the solution.

3. Results

In this section, the semi-analytical formulation is applied to the analysis of dif-

ferent test cases aimed at demonstrating the capabilities of the present modeling

strategy. The results are presented for VS panels of increasing level of complexity:

starting from unstiffened plates, the analyses are then presented for stiffened panels

with straight and curvilinear stiffeners. The panels investigated in the section are

made of typical aerospace carbon/epoxy materials, whose thermo-elastic properties
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are summarized in Table 3. Free-vibration, with or without pre-stresses, mechani-

cal and thermal buckling problems are considered. The comparisons are illustrated

against results from the literature, obtained using different numerical techniques.

The computations are conducted by retaining the same number of terms for all the

displacement components and the corresponding expansion is indicated as R × S.

The number of functions is specified from case to case on the basis of preliminary

convergence tests, while the number of integration points, unless otherwise specified,

is taken to be equal to R+ 5 and S + 5 for the directions ξ and η, respectively. Line

integrals are performed using R + S + 5 points, this choice motivated by a set of

preliminary studies.

3.1. Unstiffened panels

Example 1: Pre-buckling and buckling analysis

The first example deals with the analysis of the elastic instability of a VS un-

stiffened plate, previously studied by Wu et al. [6]. The plate is square and has

side dimension equal to 254 mm, while the material properties are those of Mat

A in Table 3. The stacking sequence is in the form [±θ1/ ± θ2]s with a non-linear

fiber orientation varying according to Eq. (6). The fiber paths were determined in

Ref. [43] to maximize the buckling load under compression, and the corresponding

stacking sequences are summarized in the Appendix for three designs. The first

one is based on a fiber variation along the y direction, while the second and third

lay-ups consider a non-linear law prescribed by means of a grid of three and five

points, respectively. The load is introduced through the end shortening of the two

parallel edges at x=const, while the two others are free to deform. Simply-supported

conditions are assumed at the four edges, where rotations around the axis normal to
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edges are set to zero, consistently with the thin-plane formulation of Ref. [6]. A point

constraint is introduced in the form of a penalty term to avoid stiffness matrix singu-

larity when solving the pre-buckling problem. A number of 15 functions along both

directions was found as adequate for guaranteeing convergence of the results, which

are reported in terms of the nondimensional buckling coefficient K̆cr = N̆ cr
xx

a2

E11t3
,

where:

N̆ cr
xx =

1

b
λ

∫ b/2

−b/2
Nxx|x=±a/2 dy (62)

is the average axial force per unit length, while Nxx = Nxx (x, y) is evaluated in a

post-processing phase, after introducing the constitutive law and differentiating the

displacement components. In this regard, it is noted that highest accuracy was found

by performing the integral of Eq. (62) not exactly at the edge, but in correspondence

of the first integration point of the in-plane integration scheme.

The distribution of pre-buckling membrane resultants is shown in Figure 4, and the

comparison is presented against the results obtained by Wu et al. [6] using a Ritz ap-

proach formulated in terms of stress function. For consistency with reference results,

the values are scaled to achieve a unitary maximum value for Nxx, corresponding to

an axial shortening of 1.6× 10−3 mm. Similarly, the force resultants are taken pos-

itive in compression. The contour plot in the figure reveals the good quality of the

pre-buckling predictions, which confirms the validity of the linear static formulation.

The patterns of the membrane forces are highly similar, and the slight discrepancies

observed can be ascribed to different visualization of the plots.

The buckling values of the first two modes are reported in Table 4 along with Ritz

and Abaqus finite element calculations from Ref. [6]. The first two eigenvalues are

almost coincident in all the cases, as typical for VS plates designed to maximized the

buckling load. Excellent agreement is obtained for the three designs, with maximum
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percent differences, calculated with respect to the FE results, of approximately 0.5%.

3.2. Stiffened panels with straight stiffeners

Example 2: Buckling analysis and pre-stressed vibrations

The example proposed by Zhao and Kapania [36] is considered to illustrate the

case of a stiffened panel with variable-stiffness skin.

The panel is square, with dimension of 300 mm, and is made of Mat A, whose density

is 1800 kg/m3. The skin is obtained by the stacking of 8 plies of thickness 0.1272 mm

and oriented at [±θ]2s. The variation of the fiber orientation is obtained by assigning

the orientation angles in a grid of 3 × 3 points, as reported in the Appendix. Two

equally spaced stiffeners of Mat A, having height equal to 5t and obtained by the

stacking of 8 plies at 0 degrees, are located at y = ±b/6. They are assumed to be

symmetrically located with respect to the skin midplane, thus the effects due to ec-

centricity are not accounted for. The edges are free to deform along their tangential

direction, while they are prevented from the motion along the normal direction, when

this latter is not prescribed. Different sets of flexural boundary conditions are ac-

counted for, namely SSSS, SCSC and CCCC (the order of the edges is available from

Figure 1). Note, a simply-supported edge is intended here to prevent out-of-plane

displacement only, while no constraints are introduced regarding the two rotation

components. All simulations are performed using an expansion of 20×20 functions.

Firstly, the buckling response is investigated by considering a uniform compression

imposed by means of a prescribed end shortening at the two edges at x = ±a/2. The

pre-buckling stress distribution is illustrated in Figure 5 for the fully-clamped panel,

where the comparison is presented with the results derived by Zhao and Kapania

[36] using a finite element approach. It is noted that reference finite element models
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are realized using shell elements for the skin and beam elements for the stiffeners.

Therefore, they provide a comparison in terms of equivalent structural idealization of

the panel components, and any difference can be ascribed to the numerical solution

strategy of the problem. As seen, the agreement is close, showing the ability of the

present Ritz approach to capture even relatively complex patterns. The membrane

stress gradients are relatively strong, but the good convergence properties of Legen-

dre polynomials allow this behavior to be well-represented. The panel was designed

to maximize the buckling response, therefore the typical mechanism of stress redis-

tribution toward the edges is clearly observed when examining the membrane stress

Nxx.

The buckling results are summarized in Table 5 for the three sets of boundary con-

ditions at hand. The nondimensional buckling load accounts for the contributions

carried by the skin and the stiffeners, and is expressed as:

Kcr = λ

N̆ cr
xx +

1

b

2∑
i=1

P i

 a2

E11t3
(63)

where N̆ cr
xx is defined by Eq. (62), and P i is the axial force carried by the stiffeners.

The results of Table 5 reveal good agreeent even in terms of buckling loads, the

maximum percent different being close to 2% in the SCSC case, while it is less than

1% for the two other sets of boundary conditions.

The same panels are analyzed in terms of free-vibration response in the presence of a

pre-stress state. Specifically, the load is initially introduced by prescribing the axial

displacement, measured as a fraction of that of a quasi-isotropic skin configuration

with lay-up [±45/0/90]s and free to deform laterally. For the three set of boundary

conditions considered here, the critical displacements are 0.021 mm, 0.031 mm and

0.059 mm, respectively.
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The dimensional frequencies are compared with those reported in Ref. [36] in Table 6.

As shown, the Ritz predictions are accurate and closely resemble those obtained using

finite elements, the maximum difference being well below 2%.

3.3. Stiffened panels with curvilinear stiffeners

Example 3: Buckling analysis and pre-stressed vibrations

Results are now presented for panels stiffened by curvilinear stiffeners. The lit-

erature in this field is relatively scarce, but useful results to be used as a benchmark

can be found in Ref. [36]. Square panels of dimension 300 mm are considered. The

material for the skin and the stiffeners is the one denoted as Mat A in Table 3. The

skin lay-up has sequence [±θ1/ ± θ2]2s, corresponding to 16 plies and a total thick-

ness of 2.032 mm. The four curvilinear stiffeners are characterized by a width equal

to the skin thickness, and a five-times-larger height. All the plies are oriented at 0

degrees. The stiffener paths are taken from Ref. [36], where the parameterization

is performed using Hobby splines. A minimum least square fitting is performed in

order to transform the paths into the third-order Bézier description implemented in

the present formulation. For completeness, the coordinates of the so obtained control

points are provided in the Appendix.

Simply-supported boundary conditions are assumed, with the four edges prevented

from out-of-plane displacements, but free to rotate. The transverse edges are con-

strained along the normal direction, thus any expansion or contraction is prevented.

Consistently with Ref. [36], the buckling results are presented in terms of buckling

multipliers associated with a pre-buckling axial shortening of 0.02 mm in Table 7.

This implies that buckling displacements are available as the product between 0.02

mm and the values in the table. Computations are conducted with and without
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accounting for the stiffener eccentricity.

Given the relatively complex configuration of the panel under investigation, it is in-

teresting to illustrate a preliminary convergence study – see Table 7 – with respect to

the predicted first buckling eigenvalue. The goal of the analysis is twofold. Firstly,

motivating the choice for the number of functions used in subsequent analyses; sec-

ondly, highlighting the difference of requirements between pre-buckling and buckling

analysis. A grid of 30 integration points is considered, irrespective of the number

of trial functions, so that the number of points remains larger than the order of the

expansions considered in the table. In the present analysis, the solution is referred

to as converged when two successive analyses differ from each other by less than 1%.

The number of trial functions is reported in Table 7 with respect to the pre-buckling

and the buckling analyses. In particular, the convergence of the pre-buckling solu-

tion can be inspected moving along the rows of the table, while that of the buckling

solution is available by moving along the column-wise direction. As shown, faster

convergence is observed for pre-buckling than for buckling. The pre-buckling prob-

lem is essentially a membrane problem – slight bending effects exist due to stiffener

eccentricity, but their role is not primary –, and the presence of stress gradients,

due to continuous skin stiffness variability, is relatively straightforward to capture.

Therefore, adding more than 15 functions has no effect on the buckling prediction.

More functions are needed for solving the buckling problem. Specifically, R has to

be taken equal to 20 and 25 in the concentric and eccentric case, respectively. As a

matter of fact, the buckled shape can be more difficult to represent, especially when

the presence of stiffeners is responsible for the onset of local buckles. Owing to the

requirements outlined previously, the solution of the problem can be optimized in

terms of computational efficiency, and the two steps for the buckling prediction can
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be performed by considering different numbers of degrees of freedom. It is empha-

sised that the required enlargement of the basis for the buckling analysis does not

demand a full re-computation of the stiffness matrix, but just the additional terms

need to be evaluated. This is a peculiar aspect of the Ritz method, which can not

be exploited in the context of a finite element procedure.

The comparison against reference results (see Table 7) reveals that close agreement

is obtained with the finite element technique proposed in Ref. [36], as well as with

NASTRAN predictions. These conclusions hold for both the concentric and eccen-

tric cases, demonstrating that the effect due to the stiffener eccentricity is correctly

captured. It can be noted that larger predictions are obtained, for some results,

with respect to the FEM ones, while in others they are smaller. The same is true

referring to the NASTRAN values. This behavior is explained by the non-monotonic

convergence of the three numerical techniques in the table, primarily due to the dis-

cretization of the fiber path. Furthermore, the path of the stiffeners considered here

is not exactly the same as the reference models due to different spline descriptions,

which leads to small, but non-null, source of errors. However, the quality of the pre-

dictions is good, and reveals the ability of the present approach to effectively handle

the case of curvilinear stiffeners. The comparison of the first two buckled shapes is

provided in Figure 6 in terms of contour plots of the out-of-plane deflections. In all

cases, the modes are of global type, with stringers lifting from the surface and un-

dergoing bending deformation. However, interactions with localized buckles is noted

when eccentricity effects are accounted for, which explains the stricter requirements

in terms of trial functions observed from Table 7. It is interesting to highlight the

difference of the buckled shapes with or without accounting for the stiffener eccen-

tricity: the first mode is characterized by one single half-wave along both directions
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when e = 0, while a local buckle is observed for e 6= 0. This effect is mainly driven

by the different pre-buckling stress distributions – eccentric stiffeners promote pre-

buckling out-of-plane deflections, and alter the pre-stress distribution in the skin and

the stiffeners –, and is confirmed by the free-vibration analysis presented next. In

particular, the same panel is studied with regard to its free-vibration response, and

the pre-stress state induced by a 0.02 mm compressive displacement is introduced.

The first ten frequencies are summarized in Table 8, while the first two eigenmodes

are plotted in Figure 7. Converged results are achieved by taking R = 20, as local-

ization effects are milder with respect to the buckling case. Again, the comparison

against the results of Ref. [36] demonstrates the capabilities of the present approach

to appropriately capture the expected response. Very good accuracy can be noticed

in terms of predicted frequencies as well as modal shapes. In this case, the pre-

stresses play a minor role, as the 0.02 mm prescribed displacement corresponds to

1/10 of the buckling shortening, approximately. Therefore, the main distinction be-

tween concentric and the eccentric cases is to be identified in the different bending

stiffness of the stringers with respect to the panel midplane. As shown, this effect

itself does not promote the drastic change of modal shape observed in the buckling

analysis (see Figures 6 and 7).

To complete the discussion of results, it is useful to highlight the computational ad-

vantages of the present formulation. In particular, one useful metric to consider is

given by the number of degrees of freedom involved for the solution of the problem.

In the two examples just considered, R was taken equal to 25 and 20, leading to

problem sizes of 2400 and 3750, respectively. The comparison with a similar strat-

egy based on a FE approach can be performed by considering the mesh used for

obtaining the results reported in Ref. [36], previously used for the comparison. They
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are based on 32 × 32 biquadratic elements with eight nodes, leading to a number

of degrees of freedom which is, approximately, 6 to 10 times higher. It is useful to

present the computational times for constructing the stiffness matrix for the exam-

ples at hand, which is the most critical aspect from an implementation perspective.

As a matter of fact, the surface integrals of the present Ritz formulation must be

carried out numerically due to the planar variability of the laminate’s elastic coeffi-

cients. This operation can restrict the maximum number of trial functions that can

be used due the time needed to perform the integrals. Specifically, the current – yet

not optimized – version of the Matlab code implementing the formulations leads to

CPU times (on a standard PC with Intel i7 Core, 4.00 GHz, 32 GB RAM) of, ap-

proximately, 0.25, 2, 10 and 30 s when the number of functions is taken as 10 × 10,

15 × 15, 20 × 20, 25 × 25, respectively. One can observe that the computational time

tends to diverge if the expansion is raised up to several tens of functions. However,

in most cases of practical interest, a maximum number of 20 to 25 functions suffices

for achieving accurate results and, in these cases, the total time is relatively small.

Also, it should be noted that the matrices obtained using the present formulation do

not offer the matrix band structure and the sparsity typical of FEM, although the

orthogonality properties of Legendre polynomials tend to guarantee a non negligible

degree of sparsity – in this example the number of not-null terms is around 30%.

Irrespective on this, the significantly smaller dimensions of the problem balance the

mentioned disadvantages, leading to an overall attractive computational effectiveness

of the method. These considerations are even more noteworthy when straight-fiber

configurations are analyzed, as far as in-plane integrals can be conducted analyti-

cally, and high matrix sparsity achieved due to the orthogonality properties of the

trial functions employed.
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Example 4: Thermal buckling analysis

A final example is discussed to provide a complete overview of the features of the

present approach, which include the thermal buckling solver. To meet this aim, the

example taken from Ref. [35] is considered. To the best of the authors’ knowledge,

the referenced one is the only work in the literature concerning thermal buckling of

VS panels with curvilinear stiffeners.

The panel is square and has size equal to 150 mm, with material properties of

Mat B. The skin is layered by 8 plies of thickness 0.127 mm with orientation [± <

69|−5.705 >]2s. Therefore, plies are oriented at ±69 degrees at the panel center, and

they rotate linearly with the coordinate x up to ∓5.705 at the edges at x = ±a/2.

The panel is stiffened by two curvilinear stringers with height 5.08 mm, and obtained

by the stacking of 8 plies at 0 degrees. The stiffener paths, which are taken from the

Hobby spline description of Ref. [35], are converted into a Bézier-type representation

using a minimum least-square fitting approach. The coordinates of the control points

are provided in the Appendix. A uniform temperature increase ∆T is considered,

with the panel prevented from in-plane motion at the four edges. Flexural boundary

conditions are of simply-support type, with out-of-plane deflections set to zero and

rotation components left free along the overall boundary.

The first ten critical temperatures are reported in Table 9 and the first two buckled

shapes are depicted in Figure 8. The comparison is taken against the finite element

results of Ref. [35], based on a mesh of 24 8-node elements, and leading to a problem

size 5 to 6 times greater than the present approach. Indeed preliminary analyses,

not reported here for the sake of brevity, revealed that 20 × 20 functions provide

converged results. Indeed, the presence of just two stringers avoids the onset of

highly localized modes, as seen from Figure 8.
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The agreement with the finite element strategy developed by Zhao and Kapania [35] is

satisfying, the maximum difference between predicted and reference eigenvalues being

smaller than 1.5% in the worst cases, and well below 0.5% in the vast majority of

cases. Close similarity is revealed even in terms of buckled mode shape. As discussed

previously, a clear distinction exists between concentric and eccentric stiffeners, the

latter responsible for higher buckling loads.

4. Conclusions

A novel semi-analytical strategy for the analysis of stiffened panels character-

ized by VS skin and curvilinear stringers has been introduced and presented. The

approach relies on the combined use of first-order theories for the plate and beam

elements, along with the Ritz method for seeking an approximate solution.

The formulation has been developed for several solution procedures, including static,

free-vibration, buckling and thermal-buckling analyses. A wide set of design con-

ditions is guaranteed by accounting for different boundary and loading conditions.

In the examples presented, orientation angles are described by using Lagrange poly-

nomials, which allowed to replicate results from the literature. Other representa-

tions – Legendre polynomials or Chebyshev points – are possible, and this can be

particularly useful to prevent Runge effects when orientation angles are prescribed

at several points.

The main goal of the study was to illustrate the approach, comparing the results

against the few available in the literature, especially for the variable-stiffness case.

In this regard, different test cases were discussed, demonstrating the validity of the

proposed formulation and the accuracy of the predictions.

One of the main advantages of the method is that no mesh needs to be generated.
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This is particularly convenient when the stiffeners are not straight, as the generation

of finite element models requires special care to enforce skin/stiffener continuity. Fur-

thermore, the arbitrary fiber paths can be defined straightforwardly, thus the analysis

of panels characterized by VS skins is particularly straightforward to pursue. The

use of the present formulation is thus suggested in the context of preliminary studies

and optimizations for innovative configurations characterized by VS skins and curvi-

linear stiffeners.

The results illustrate that requirements in terms of degrees of freedom are influenced

by the number of stiffeners, as they may trigger local modes, and, in turn, improved

spatial descriptions are required. However, the choice of Legendre polynomials allows

large sets of functions to be considered with relative ease with no observable stability

or numerical issues. In the cases presented, polynomials up to the order of 25 were

considered, and proved to be capable of capturing difficult to model, highly localized

modes. Overall, the number of degrees of freedom tends to be much smaller when

compared to finite element models with similar accuracy, suggesting the adoption of

the present strategy as a robust alternative to finite elements.
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Table 1: Scalar coefficients of the energy function for different analysis types.

Analysis β1 β2 β3

static 1 0 0

buckling 0 1 0

free-vibration 0 0 1

pre-stressed free-vibration 0 1 1
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Table 2: Coefficients of the boundary functions.

Position Free Fixed

ξ=1 a1 = 0 a1 = 1

ξ=-1 a2 = 0 a2 = 1

η=1 a3 = 0 a3 = 1

η=-1 a4 = 0 a4 = 1
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Table 3: Material thermo-elastic properties.

Mat A Mat B

E11 (MPa) 181000 147000

E22 (MPa) 10270 10300

G12 (MPa) 7170 7000

G13 (MPa) 4000 7000

G23 (MPa) 4000 7000

ν12 0.28 0.27

α11 (1/◦C) / -0.9×10−6

α22 (1/◦C) / 27×10−6
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Table 4: Nondimensional buckling parameter K̆cr for simply-supported unstiffened VS plates under

prescribed axial shortening.

Design n. Mode n. Ritz ([6]) FEM ([6]) Ritz (15×15)

1 1 3.4991 3.4990 3.5209

2 3.5026 3.5058 3.5250

2 1 3.7112 3.6750 3.6865

2 3.7227 3.6973 3.7075

3 1 3.7849 3.7341 3.7558

2 3.8054 3.7607 3.7822
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Table 5: Nondimensional buckling parameter Kcr for VS panels stiffened by two straight stiffeners

under prescribed axial shortening.

FEM ([36]) Ritz (20 × 20)

SSSS 2.88 2.87

SCSC 4.68 4.79

CCCC 9.55 9.64
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Table 6: Dimensional frequencies (Hz) with and without pre-stress for VS panels stiffened by two

straight stiffeners.

FEM ([36]) Ritz (20 × 20)

∆u/∆uqi = 0 0.1 0.5 1.0 0 0.1 0.5 1.0

SSSS 90.71 87.99 80.62 73.10 90.89 87.84 80.36 74.22

SCSC 135.36 133.79 128.58 122.66 135.58 133.80 128.53 122.58

CCCC 193.50 189.17 176.21 161.94 194.91 186.79 177.74 162.80
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Table 7: Buckling multipliers for simply-supported VS panels with four curvilinear stringers under

prescribed axial shortening of 0.02 mm. Convergence analysis using Rpre×Rpre and Rbuck×Rbuck

functions for the pre-buckling and buckling analysis, respectively.

Concentric (e = 0) Eccentric (e 6= 0)

Rbuck Rbuck

Rpre 5 10 15 20 25 5 10 15 20 25

3 8.70 7.68 7.50 7.46 7.44 23.78 17.89 17.24 17.06 16.96

5 8.82 7.69 7.49 7.45 7.43 24.82 16.79 16.23 16.06 15.96

10 8.92 7.61 7.40 7.35 7.33 25.57 15.57 14.96 14.79 14.70

15 8.94 7.62 7.41 7.36 7.34 25.65 15.53 14.92 14.75 14.66

20 8.95 7.63 7.42 7.37 7.35 25.67 15.53 14.92 14.75 14.66

25 8.95 7.63 7.42 7.37 7.35 25.68 15.53 14.92 14.75 14.66

FEM ([36]) - NASTRAN ([36]) 7.09 - 7.29 14.70 - 14.91
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Table 8: Dimensional frequencies (Hz) for pre-stressed simply-supported VS panels with four curvi-

linear stringers.

Concentric (e = 0) Eccentric (e 6= 0)

Mode FEM ([36]) NASTRAN ([36]) Ritz FEM [36] NASTRAN ([36]) Ritz

20 × 20 20 × 20

1 202.163 204.34 207.74 343.42 336.41 343.76

2 472.458 477.47 493.78 740.61 720.39 750.24

3 514.900 522.25 535.08 795.61 769.60 802.69

4 758.249 768.16 778.24 956.78 952.67 970.32

5 861.464 875.25 894.74 1150.51 1148.54 1153.41

6 1015.298 1033.14 1058.01 1236.34 1245.01 1268.39

7 1113.045 1126.36 1130.76 1345.99 1319.14 1367.69

8 1223.402 1244.45 1260.25 1563.75 1549.75 1590.68

9 1323.388 1354.80 1381.01 1641.03 1629.65 1659.12

10 1149.591 1512.27 1521.03 1694.96 1684.19 1701.95
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Table 9: Critical temperatures (◦C) for for simply-supported VS panels with two curvilinear

stringers under uniform temperature increase.

Concentric (e = 0) Eccentric (e 6= 0)

Mode FEM ([35]) NASTRAN ([35]) Ritz FEM [35] NASTRAN ([35]) Ritz

20 × 20 20 × 20

1 77.78 78.00 77.89 101.03 100.92 101.83

2 117.44 118.07 118.02 122.61 123.27 123.51

3 138.78 140.06 137.97 150.08 152.25 149.55

4 143.09 144.65 143.04 151.75 153.83 151.13

5 149.92 151.97 149.69 160.01 162.38 160.49

6 159.22 161.87 160.06 165.55 168.37 167.69

7 172.39 175.25 172.55 191.65 196.25 190.97

8 184.28 188.79 184.79 192.01 196.75 192.47

9 192.47 197.64 192.43 205.26 210.70 205.75

10 211.38 216.93 211.99 215.29 222.37 218.01
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Figure 1: Sketch of a stiffened panel with three curvilinear stringers – dimensions and conventions

for edge loads and prescribed displacements.
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(a) (b)

Figure 2: Plate element: (a) fiber orientation, (b) conventions for generalized displacement compo-

nents.
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Figure 3: Beam element: dimensions and conventions for generalized displacement components.
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(a) Present, Nxx (b) Present, Nyy (c) Present, Nxy

(d) Ref. [6], Nxx (e) Ref. [6], Nyy (f) Ref. [6], Nxy

Figure 4: Pre-buckling membrane resultants for unstiffened VS plates loaded in compression.
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(a) Present, Nxx (b) Nyy (c) Nxy

(d) Nxx (e) Nyy (f) Nxy

Figure 5: Pre-buckling membrane resultants for VS panels stiffened by two straight stiffeners and

loaded in compression: (a)-(c) present, (d)-(f) Ref. [36].
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(a) Mode 1, e = 0 (b) Mode 2, e = 0 (c) Mode 1, e 6= 0 (d) Mode 2, e 6= 0

(e) Mode 1, e = 0 (f) Mode 2, e = 0 (g) Mode 1, e 6= 0 (h) Mode 2, e 6= 0

Figure 6: Buckling modes for simply-supported VS panels with four curvilinear stringers under

prescribed axial shortening: (a)-(d) present, (e)-(h) Ref. [36].
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(a) Mode 1, e = 0 (b) Mode 2, e = 0 (c) Mode 1, e 6= 0 (d) Mode 2, e 6= 0

(e) Mode 1, e = 0 (f) Mode 2, e = 0 (g) Mode 1, e 6= 0 (h) Mode 2, e 6= 0

Figure 7: Vibration modes for pre-stressed simply-supported VS panels with four curvilinear

stringers: (a)-(d) present, (e)-(h) Ref. [36].
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(a) Mode 1, e = 0 (b) Mode 2, e = 0 (c) Mode 1, e 6= 0 (d) Mode 2, e 6= 0

(e) Mode 1, e = 0 (f) Mode 2, e = 0 (g) Mode 1, e 6= 0 (h) Mode 2, e 6= 0

Figure 8: Buckling modes for simply-supported VS panels with two curvilinear stringers under

uniform temperature increase: (a)-(d) present, (e)-(h) Ref. [35].

61



5. Appendix

5.1. Differential matrices

B1 =



(·),x 0 0 0 0 0

0 (·),y 0 0 0 0

(·),y (·),x 0 0 0 0

0 0 0 (·),x 0 0

0 0 0 0 (·),y 0

0 0 (·),x 1 0 0

0 0 (·),y 0 1 0


(64)

B2 =

0 0 (·),x 0 0 0

0 0 (·),y 0 0 0

 (65)

5.2. Stiffener section properties

A blade stiffener is considered, where the plies are stacked along the stiffener

width, i.e. along the direction normal to stiffener height. The stiffener section prop-

erties are derived starting from the laminate constitutive law, which is expressed

referring to First Order Shear Deformation Theory. Assumptions of specially or-
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thotropic stacking sequences are introduced, so:

Nxx

Nyy

Nxy

Mxx

Myy

Mxy


=



A11 A12 0 0 0 0

A11 A12 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D11 D12 0

0 0 0 0 0 D66







ξxx

ξyy

ξxy

kxx

kyy

kxy


−



α̂ixx

α̂iyy

α̂ixy

0

0

0


∆T


Qy

Qx

 =

As
44 0

0 As
55


2ξyz

2ξxz



(66)

Assuming that N i
bb = 0 and M i

bb = 0, Eq. (66) can be inverted to obtain:

ξxx

2ξxy

kxx

kxy


=


a11 0 0 0

0 a66 0 0

0 0 d11 0

0 0 0 d66





Nxx

Nxy

Mxx

Mxy


+



α̂itt

α̂itb

0

0


∆T (67)

From which: 

Nxx

Nxy

Mxx

Mxy


=


A 0 0 0

0 F 0 0

0 0 D 0

0 0 0 H







ξxx

ξxy

kxx

kxy


−



α̂ixx

α̂ixy

0

0


∆T


(68)

with:

A =
1

a11

F =
1

a66

D =
1

d11

H =
1

d66

(69)

63



Within the context of the stiffener beam model, the section resultants can be evalu-

ated by integrating the laminate resultants along the blade height:

F i
t =

∫
h

N i
tt db =

∫
h

A
(
ξitt + bkn − α̂tt∆T

)
db = Ah

(
ξitt + ekin − α̂itt∆T

)
F i
n =

∫
h

Qi
t db = As

55h2ξitn

F i
b =

∫
h

N i
tb db = Fh

(
2ξitb − α̂itb∆T

)
M i

t = α

∫
h

M i
tb db = αHhkit with α = 4 (see Ref. [44])

M i
n =

∫
h

N i
ttb db = Ah

eξitt +

(
h2

12
+ e2

)
kin − eα̂itt∆T


M i

b =

∫
h

M i
tt db = Dbkib

(70)

where e = 1
2

(t+ h) is the stiffener eccentricity.

F i
t

F i
n

F i
b

M i
t

M i
n

M i
b


=



Ah 0 0 0 Ahe 0

0 As
55h 0 0 0 0

0 0 Fh 0 0 0

0 0 0 4Hh 0 0

Ahe 0 0 0 Ah
(
h2

12
+ e2

)
0

0 0 0 0 0 Dh





ξitt

2ξitn

2ξitb

kit

kin

kib


−



Ahα̂itt

0

Fhα̂itb

0

Aheα̂itt

0


∆T

(71)

or, in compact form: Fi

Mi

 = Ci

ξ
i

ki

−
 F̂

i

M̂
i

∆T (72)

where the beam section constitutive law Ci and the vectors of unitary thermal loads

F̂
i

and M̂
i

are available by comparison between Eq. (72) and Eq. (71).
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5.3. Ply angles

Example 1

Design 1: θ1 =

[
68 55 19

]
θ2 =

[
−76 −55 9

]
(73)

Design 2: θ1 =


71 49.5 71.5

67 50 51

17 12 45

 θ2 =


−72.5 −59 −59.5

−65 −54 −50.5

14 11.5 6

 (74)

Design 3: θ1 =


71 49.5 71.5

67 50 51

17 12 45

 θ2 = −



89 67.5 64 65 82

81 69 65 60 60

80.5 66.5 58 54.5 59

26 25 18 24 25

8 −4.5 1 −5 −0


(75)

Pre-stressed vibrations

∆u/∆uqi = 0.0

θSSSS =


48.36 47.40 43.38

43.60 44.65 46.29

55.22 46.06 44.25

 θSCSC =


90 90 65.37

90 60.55 37.70

90 90 65.04

 θCCCC =


86.41 56.45 −16.72

64.35 45.62 −0.15

90 90 15.88


(76)

∆u/∆uqi = 0.1

θSSSS
=


90.00 89.67 46.35

90.00 53.95 48.68

90.00 45.86 51.69

 θSCSC =


90.00 90.00 76.01

90.00 65.39 34.61

90.00 90.00 70.38

 θCCCC =


90.00 66.36 −17.35

90.00 50.20 44.65

90.00 90.00 46.78


(77)

65



∆u/∆uqi = 0.5

θSSSS =


90.00 90.00 86.87

90.00 72.52 39.80

90.00 56.13 44.37

 θSCSC =


90.00 90.00 90.00

90.00 77.55 31.00

88.72 90.00 78.54

 θCCCC =


90.00 76.62 −16.92

89.92 68.58 −9.05

87.93 90.00 65.20


(78)

∆u/∆uqi = 1.0

θSSSS =


87.98 89.78 90.00

87.06 90.00 39.36

90.00 69.16 31.70

 θSCSC =


89.30 90.00 76.01

89.69 82.50 35.34

87.71 90.00 77.80

 θCCCC =


83.66 80.32 −19.24

86.53 78.94 −36.19

89.50 90.00 90.00


(79)

Example 3

Buckling analysis and pre-stressed vibrations

θ1 =


71 49.5 71.5

67 50 51

17 12 45

 θ2 =


−72.5 −59 −59.5

−65 −54 −50.5

14 11.5 6

 (80)

5.4. Control points
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Table 10: Position of control points – Example 3.

Stiffener 1 Stiffener 2 Stiffener 3 Stiffener 4

Point x y x y x y x y

1 -150.00 -112.50 -112.50 150.00 150.00 112.50 112.50 -150.00

2 -17.16 -73.04 14.84 92.64 13.73 77.44 -27.46 -111.68

3 109.56 10.12 100.11 -23.00 -91.17 -24.71 -143.48 -1.00

4 150.00 150.00 150.00 -150.00 -150.00 -150.00 -150.00 150.00

Table 11: Position of control points – Example 4.

Stiffener 1 Stiffener 2

Point x y x y

1 -75.00 0 -37.50 -75.00

2 -29.24 16.80 -6.00 -34.70

3 11.24 42.93 37.92 -17.80

4 37.50 75.00 75.00 0
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