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Abstract The aim of this work is to investigate a portfolio optimization problem in 
presence of fixed transaction costs. We consider an economy with two assets: one risky, 
modeled by a geometric Brownian motion, and one risk-free which grows at a certain 
fixed rate. The agent is fully described by his/her utility function and the objective 
is to maximize the expected utility from the liquidation of wealth at a terminal date. 
We deal with different forms of utility functions (power, logarithmic and exponential 
utility), describing in each case how the fixed transaction costs influence the agent’s 
behavior. We show when it is optimal to recalibrate his/her portfolio and which are 
the best adjusted portfolios. We also analyze how the optimal strategy is influenced 
by the risk-aversion, as well as other model parameters.

Keywords Portfolio optimization · Transaction costs · Impulse control ·
Quasi-variational inequalities

1 Introduction

Portfolio optimization in presence of transaction costs have been intensively studied 
in literature. For a survey of the literature on consumption-investment problems with 
transaction costs we refer to Cadenillas (2000). However, most of the articles deal 
with proportional transaction costs, as, for example, in Davis and Norman (1990),
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Shreve and Soner (1994), Akian et al. (1996) and in Liu and Loewenstein (2002), 
where expected utility maximization problems are considered, or in Assaf et al. 
(1988), Dumas and Luciano (1991) and in Akian et al. (2001), where the objective is 
to maximize the long-term growth rate of the portfolio value. In this case, the 
optimal strategy is to make the minimal effort, in terms of transactions, to maintain 
the portfolio composition inside a no-trading region. When only one risky stock is 
present, this means to keep the fraction of the portfolio invested in the risky asset 
inside an interval of values. The investor trades only when the boundary of the 
interval is reached, making a great number of small transactions to prevent the 
portfolio composition to cross the borders (see Davis and Norman 1990; Dumas and 
Luciano 1991; Shreve and Soner 1994; Liu and Loewenstein 2002). Thus the 
proposed strategies have a lack of realism because the investor trades continuously, 
at least part of the time, and he/she makes infinitesimally small transactions, which is 
not the case in the real world.

Considering the presence of fixed transaction costs leads to more realistic strate-
gies: the agent intervenes only a finite number of times in any time interval and he/
she trades finite amounts of the assets. In Morton and Pliska (1995), Bielecki et al. 
(2004) authors assume that whenever the investor trades he/she must pay a 
transaction cost equal to a fixed fraction of the portfolio values (‘portfolio 
management fee’), while Eastham and Hastings (1988), Korn (1998) and Oksendal 
and Sulem (2002) consider the transaction costs of a trade made of two parts: a fixed 
fee and a cost proportional to the transaction size. To solve the stochastic control 
problem, these papers use a dynamic programming approach and the impulse control 
techniques. Impulse control associate the value function to a Hamilton-Jacobi-
Bellman quasi-variational inequal-ity (HJBQVI). In Eastham and Hastings (1988), 
Korn (1998) authors characterize the value function and the optimal control by 
means of verification theorems: if a suffi-ciently regular solution of the HJBQVI 
exists, then that solution is the value function and it is possible to build an optimal 
control. They solve the problem in some simple examples with a finite horizon, 
using a linear or, by an asymptotic analysis, an expo-nential utility function. In 
Oksendal and Sulem (2002) the problem is formulated with an infinite horizon and 
considering a power utility function with a positive exponent. The value function is 
characterized as a viscosity solution of the HJBQVI and an example of a numerical 
solution is given.

In this article we study the optimal strategy for an investor who invests in two 
assets, one risky and one risk-free. Our agent pays a fixed cost K > 0 whenever he/
she trades and he/she seeks to maximize the expected value of the utility of his/her 
terminal wealth at a finite horizon. We formulate the problem as a parabolic impulse 
control problem where the variables are the values invested in the two assets and 
time. We will show, in a heuristic approach, that the value function is a solution of 
the associated HJBQVI and that from this solution it is possible to obtain a 
Markovian optimal policy. The optimal control is characterized by a continuation 
and a transaction region, but also by a set of target portfolios. These are the 
portfolios where it is optimal to move when the portfolio composition touches the 
borders of the transaction region. Unlike most of the literature on portfolio 
optimization under transaction costs, see for instance Shreve and Soner (1994), 
Morton and Pliska (1995), Liu and Loewenstein (2002), Oksendal and Sulem (2002), 
our optimal policy is not stationary. The control regions change as time passes up to 
the finite horizon. The main contribution of the present article is to show



the shape and evolution of the no-transaction region, as well as the target portfolio 
line, in the presence of a fixed transaction cost and for different utility functions. 
Moreover we also investigate the sensitivity of the optimal strategy with respect to 
the model parameters, such as the fixed cost K , the risk-aversion of the agent or the 
volatility of the stock price. We have computed the solution of the HJBQVI 
numerically by solving (as in Chancelier et al. 2002 and Baccarin 2009) an iterative 
sequence of variational inequalities, each one representing the value function of a 
problem where only a finite number of interventions are available. In our numerical 
experiments we have considered the case of a power or logarithmic utility, which 
assume a constant relative risk-aversion index for the agent, and the case of an 
exponential utility, which implies a constant absolute risk-aversion.

The structure of the paper is as follows. In Sect. 2 we describe the financial frame-
work as well as the optimal investment problem in presence of fixed transaction 
costs. Then, in Sect. 3 we deal with the quasi-variational inequality associated to the 
opti-mal problem. Section 4 addresses the numerical solution of the problem with a 
finite element technique, and finally Sect. 5 contains the numerical results.

2 The investment problem

We consider a continuous time economy with a finite horizon T . We assume that 
there are two assets: the risk-free asset B with a constant instantaneous interest rate r , 
and a risky asset S, whose price evolves according to a geometric Brownian motion 
of constant drift b and volatility σ

d S(t) = bS(t)dt + σ S(t)d Z (t),

Zt being an adapted Wiener process on the filtered probability space (Ω, F, P, Ft). The 
agent maximizes the expected utility over the finite horizon. The utility at time T is a 
function of the wealth, and we assume one of the following forms for the utility 
function:

u(x) = xγ

γ
, γ < 0 or 0 < γ < 1,

u(x) = log(x), (1)

u(x) = −e−γ x , γ > 0.

We will denote the investor’s portfolio by

(πS, πB)

where πS and πB are the amounts of money invested respectively in the stock and
in the risk-free asset. At any time t the agent can buy (or sell if ξ < 0) a value ξ of
the risky asset reducing (or increasing) correspondingly the bank account. However,
for each transaction, he/she must face a fixed transaction cost, paying K . Thus the
portfolio composition in t becomes



(
πS(t−) + ξ, πB(t−) − K − ξ

)
,

where (πS(t−), πB(t−)) are the values invested in the two assets just before the
transaction.

A fundamental notion in our model is the liquidation value of the portfolio. We
define the liquidation value L(πS, πB) as

L(πS, πB) = πS + πB − K if πS �= 0, L(0, πB) = πB

i.e., it is the value when the long or short position in the risky asset is cleared out.
Besides the transaction costs, we assume that the agent must face a solvency constraint,
that is a portfolio is admissible only if L(πS(t), πB(t)) ≥ Lmin, ∀t ∈ [0, T ]. Here
Lmin is a positive constant denoting the minimum value of liquidity required to the
agent. If his/her wealth reaches this lower bound the portfolio will be liquidated and
the remaining value invested only in the risk-free asset. Moreover we will assume that
there are lower bounds Bmin < 0 and Smin < 0 in the open short positions in the bank
account and in the risky security, respectively. We thus define the region P ⊂ R

2 of
admissible portfolios by

P =
{
(πS, πB) ∈ R

2 : L(πS, πB) ≥ Lmin ∧ (B ≥ Bmin) ∧ (S ≥ Smin)
}

.

A control policy p is a sequence of stopping times {τi } (with respect to the filtration
Ft ) and corresponding random variables {ξi } verifying the conditions:

⎧
⎨

⎩

0 ≤ τi ≤ τi+1 almost surely ∀i
limi→+∞ τi = +∞ almost surely
ξi is Fτi measurable .

Here ξi represents the value of stocks bought (if ξi > 0) or sold (if ξi < 0) at time τi .
Notice that limi→∞ τi = ∞ implies that the number of stopping times τi which are
less or equal to T is almost surely finite (τi = +∞ almost surely for some i < ∞
is possible). Starting from the initial condition (πB(0), πS(0)) the dynamics of the
controlled portfolio can be described by the following set of stochastic differential
equations:

{
dπS = bπSdt + σπSd Z
dπB = rπBdt

if τi < t < τi+1

{
πS(τi ) = πS(τ−

i ) + ξi

πB(τi ) = πB(τ−
i ) − ξi − K

if t = τi ,

Z being the one-dimensional Brownian motion driving the risky asset.
We will say that a policy p is admissible if the corresponding controlled process

verifies (πB
p
(t), πS

p
(t)) ∈ P, ∀t ∈ [0, T ]. Since the investor’s preferences are repre-

sented by one of the utility functions (1), we can formulate our model as the 
following optimal impulse control problem



max
p∈A(0,πS(0),πB (0))

E0,πS(0),πB (0) [u(L(πS(T ), πB(T ))]

where A(0, πS(0), πB(0)) is the set of admissible policies when the process starts at
time 0 with a portfolio (πS(0), πB(0)).

We will solve this problem by using a dynamic programming approach, considering
a variable initial condition and the value function

V (t, πS, πB) = sup
p∈A(t,πS ,πB )

Et,πS ,πB [u(L(πS(T ), πB(T ))]

defined in [0, T ] × P . Here A(t, πS, πB) is the set of admissible policies when the
process starts in t with a portfolio (πS, πB). In the next section we will show heuris-
tically that V (t, πS, πB) is a solution of a quasi-variational inequality, and that there
exists an optimal control of a Markovian type for our model.

3 The quasi-variational inequality associated to the value function
and the optimal control

We define the following non-local operator M for bounded functions in [0, T ] × P
as

MV := sup
ξ∈F(πS ,πB )

V (t, πS + ξ, πB − ξ − K ),

being F(πS, πB) the set of admissible transactions from (πS, πB) ∈ P

F(πS, πB) := {ξ ∈ R : (πS + ξ, πB − ξ − K ) ∈ P}.

Notice that MV corresponds to the best transaction the agent can make if he/she
decides to intervene. If F(πS, πB) = ∅, we set MV = −∞. We also define the
second order linear operator L by

LV := ∂V

∂t
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+ 1

2
σ 2π2

S
∂2V

∂π2
S

.

In this section we will show, in a formal way, that the value function V of our problem
is a solution of the following parabolic quasi-variational inequality in (0, T ) × P

V (t, πS, πB) ≥ MV (t, πS, πB) (2)

LV (t, πS, πB) ≤ 0 (3)

(V (t, πS, πB) − MV (t, πS, πB))LV (t, πS, πB) = 0. (4)

We will assume that the value function is regular enough to apply the Dynkin’s
formula in (0, T ). This is the case when the value function is C1,2 but it can also hold
true when its distributional derivatives are ordinary functions in Sobolev spaces. Let



us consider our agent at the time instant t. He/she can take only one of two possible
decisions:

1) to let the system evolve freely for the infinitesimal interval (t, t + h);

2) to make the best transaction, selling or buying stocks.

Since there is no other alternative it is likely that the following version of Bellman’s 
optimality principle holds true:

V (t, πS, πB ) = max 
{
Et,πS ,πB [V (t + h, πS(t + h), πB (t + h))], MV (t, πS, πB )

}
.

Therefore we obtain immediately V ≥ MV, which is condition (2). Now, suppose 
that we can apply the Dynkin’s formula in the interval (t, t + h). We obtain

Et,πS ,πB [V (t + h, πS(t + h), πB(t + h))]

= V (t, πS, πB) + Et,πS ,πB

⎡

⎣
t+h∫

t

∂V

∂s
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+ 1

2
σ 2π2

S
∂V

∂π2
S

ds

⎤

⎦ .

But, from the Bellman’s principle, it holds

V (t, πS, πB) ≥ Et,πS ,πB [V (t + h, πS(t + h), πB(t + h))]

and consequently we have

Et,πS ,πB

⎡

⎣
t+h∫

t

∂V

∂s
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+ 1

2
σ 2π2

S
∂V

∂π2
S

ds

⎤

⎦ ≤ 0.

Letting h → 0+ and using the integral version of the mean value theorem we obtain 
the inequality (3), that is LV ≤ 0. Since no other alternative is possible, the third 
equality (4), (V − MV ) LV = 0, is also verified. To uniquely characterize V as a 
solution of (2–4) in [0, T ] × P we must consider the behavior of the value function 
at the boundary of (0, T )×P. At the terminal date T it holds, obviously, V 
(T, πS, πB ) = u(L(πS, πB )), ∀(πS, πB ) ∈ P . Along the straight line πS +πB = K + 
Lmin, we have

V (t, −πB + K + Lmin, πB ) = u(Lminer(T −t)) ∀t ∈ [0, T ]

because the minimum solvency level has been reached and the investor is forced to 
liquidate his/her position. Moreover when πB = Bmin or πS = Smin we have V = MV 
because one of the open short position is too big and the agent is forced to transact. 
The value function is also determined by the fact that it is upper bounded, because it 
is certainly lower than the value function of a corresponding problem without 
transaction costs.



We also can show heuristically that an optimal control of a Markovian type always
exists for our model. We divide the [0, T ]×P domain into two regions, the transaction
region

A ≡ {(t, πS, πB) ∈ [0, T ] × P : V = MV }
and the complementary continuation region

C ≡ {(t, πS, πB) ∈ [0, T ] × P : V > MV }.

Setting τ ∗
0 ≡ t , the optimal policy p∗(t, πS, πB) for the process starting in (t, πS, πB)

is given by:

p∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ ∗
i =

{
inf

{
Ii ≡ {

T ≥ s ≥ τ ∗
i−1 : (s, πS(s−), πB(s−)) ∈ A

}}
if Ii �= ∅

+∞ if Ii = ∅

ξ∗
i =

⎧
⎨

⎩

arg max
ξ∈F(πS(τ−

i ),πB (τ−
i ))

V (τi , πS(τ ∗−
i ) + ξ, πB(τ ∗−

i ) − ξ − K ) if τ ∗
i < ∞

arbitrary if τ ∗
i = +∞

Indeed, if we apply the Dynkin’s formula, separately in the intervals (τ ∗
i−1 ∧T, τ ∗

i ∧T )

to the process (π∗
S , π∗

B) controlled by policy p∗, and we take account of the jumps ξ∗
i ,

we have (i = 1, ..., m) :

Et,πS ,πB [V (τ ∗
m ∧ T, πS(τ ∗−

m ∧ T ), πB(τ ∗−
m ∧ T ))] = V (t, πS, πB)

+Et,πS ,πB

⎡

⎢
⎣

m−1∑

i=0

τ∗
i+1∧T∫

τ∗
i ∧T

(
∂V

∂s
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+ 1

2
σ 2π2

S
∂V

∂π2
S

)

ds

⎤

⎥
⎦

+Et,πS ,πB

[
m−1∑

i=1

(V (τ ∗
i , πS(τ ∗−

i ) + ξ∗
i , πB(τ ∗−

i ) − ξ∗
i − K )

−V (τi , πS(τ ∗−
i ), πB(τ ∗−

i ))χτ∗
i <∞

]

.

Since V verifies LV = 0 when V > MV, and by construction (s, π∗
S , π∗

B) ∈ C
in the intervals (τ ∗

i ∧ T, τ ∗
i+1 ∧ T ) when τ ∗

i ∧ T < τ ∗
i+1 ∧ T, all the terms in the

first expectation vanish. Similarly, as V verifies V = MV in A, and by construction
(τ ∗

i , πS(τ ∗−
i ), πB(τ ∗−

i )) ∈ A if τ ∗
i < ∞, we have V (τ ∗

i , πS(τ ∗−
i )+ξ∗

i , πB(τ ∗−
i ).ξ∗

i −
K )τ∗

i <∞ = V (τ ∗
i , πS(τ ∗−

i ), πB(τ ∗−
i )τ∗

i <∞, and also the second expectation vanishes.
Therefore we obtain

V (t, πS, πB) = Et,πS ,πB [V (τ ∗
m ∧ T, πS(τ ∗−

m ∧ T ), πB(τ ∗−
m ∧ T ))].



By taking the limit for m → ∞, as τ ∗
m → ∞ almost surely because p∗ is admissible,

we have

V (t, πS, πB) = Et,πS ,πB [V (T, π∗
S (T ), π∗

B(T ))] = Et,πS ,πB [U (L(π∗
S (T ), π∗

B(T )))]
(5)

and by the definition of the value function the policy p∗ is optimal.

4 A numerical solution

To solve numerically our model, it is necessary to deal with a finite domain. To avoid 
artificial boundary conditions, instead of using some transformation to reduce the 
unbounded region P to a bounded domain, we will assume that the agent must face 
another constraint, which has a natural economic meaning. Our investor will be fully 
satisfied if his/her portfolio reaches a threshold liquidation value Lmax, at a time t < T . 
In this case the portfolio will be liquidated in t and Lmax will be invested in the bank 
account up to the finite horizon T . Therefore we can define the bounded region Ph ⊂ P 
of admissible portfolios by

Ph =
{
(πS, πB )∈R

2 : (Lmin ≤ L(πS, πB ) ≤ Lmax) ∧ (πB ≥ Bmin) ∧ (πS ≥ Smin)
}

The bounded region Ph is depicted in Fig. 1: Ph consists of the trapezoidal domain 
ABCD and the segment GF. For computational purposes, we only consider the bounded 
domain ABCD.

We now consider the backward-in-time problem: as specified in the previous sec-
tion, at the final time T it holds

V (T, πS, πB) = u(L(πS, πB)). (6)

The value function is fully described by the terminal condition problem (2–4). We set 
the boundary conditions on the domain depicted in Fig. 1 as follows:

– on edges AB and CD: V (t, πS, πB) = u(L(πS, πB)er(T −t));
– on edges BC and AD: V (t, πS, πB) = MV (t, πS, πB).

The first boundary condition is due to the assumption on the threshold liquidation 
values Lmin and Lmax: if the agent reaches these levels, he/she recalibrate his/her 
portfolio investing only in the risk-free asset up to the horizon T . The second boundary 
condition is due to the Bmin and Smin bounds, where the agent is obliged to transact.

The above problem can be solved with a projected SOR method coupled with an 
iterative procedure above the obstacle (2–4). We define the function V0(t, πS, πB ) 
such that

LV0(t, πS, πB ) = 0



Fig. 1 Bounded admissible
region (Ph ): OG = K ,
OF = OE = K + Lmin,
while the trapezoidal region has
vertices A = (Bmin, K +
Lmin − Bmin), B = (K + Lmin −
Smin, Smin), C = (K + Lmax −
Smin, Smin) and D = (Bmin,

K + Lmax − Bmin)

for any t ∈ [0, T ) and (πS, πB) ∈ Ph , with the condition V (t, πS, πB) =
u(L(πS, πB)er(T −t)) on the whole boundary. This is the the expected utility of the
final position when no transactions are permitted. Beginning with V0(t, πS, πB), one
defines Vi (t, πS, πB), i ≥ 1, as the solution of

Vi (t, πS, πB) ≥ MVi−1(t, πS, πB),

LVi (t, πS, πB) ≤ 0, (7)

(Vi (t, πS, πB) − MVi−1(t, πS, πB))LVi (t, πS, πB) = 0,

with boundary condition Vi (t, πS, πB ) = MVi−1(t, πS, πB ) on edges BC and AD. 
In the Appendix we show, in a formal way, that the solution Vi (t, πS, πB ) can be 
interpreted as the value function of our problem when at most i transaction can be 
made by the investor. Thus it holds

V0(t, πS, πB ) ≤ V1(t, πS, πB ) ≤ V2(t, πS, πB ) ≤  · · ·  ≤  V (t, πS, πB ),

and, as the number of transactions in the interval [0, T ] is almost surely finite, the 
sequence Vi converges to V .

Each variational inequality (7) can be solved with a projected SOR method. We 
discretize the PDE LV = 0 considering a finite element technique with polynomial 
of degree 1, and a Crank-Nicholson scheme. For details on the implementation of the 
PSOR algorithm see, for example, Wilmott et al. (1995), while for applications of 
the finite element technique to financial problems see, as examples, Achdou and 
Pironneau (2005), Barucci and Marazzina (2012), Marazzina et al. (2012).



5 Numerical results

In this section we present some numerical results considering different utility functions
and different values of the model parameters. We will always assume a finite horizon of
one year (T = 1) and the following bounds of the domain (see Fig. 1): Bmin = Smin =
−20, Lmin = 1 and Lmax = 100. The finite element discretization is done with a
mesh of 3,000 points (approximately 5,000 triangles) and a time grid of 50 steps. The
numerical experiments are performed with Matlab R2011a. We will separate the case
of a power or logarithmic utility, with a constant relative risk-aversion, from the case
of an exponential utility, with a constant absolute risk-aversion. In both cases an exact
solution is available if we consider our portfolio problem without transaction costs.

5.1 Power and logarithmic utility

In this case it is well known that the optimal policy without transaction costs is to
transact continuously, to maintain fixed the proportion of wealth invested in the risky
asset

πS

πB + πS
= b − r

σ 2(1 − γ )

the so-called Merton’s proportion, see Merton (1969). The logarithmic utility can be 
seen as the particular case when γ = 0. To analyze the influence of transaction costs, 
in Figs. 2, 3, 4 and 5 we show the transaction region (in blue) as well as the target 
portfolios (in red), i.e., the portfolio where it is optimal to move when the agent 
portfolio falls into the transaction region. In these figures we have set the values r = 
3 %, b = 0.08, σ  = 0.5, we have considered a power utility with exponent γ = 0.5 
and different transaction costs (K = 0.01, 0.05, 0.1 and 0.25). We show the 
transaction areas at time t = 0 and t = 0.5. From these numerical experiments we 
notice that the target portfolios belongs to the Merton’s line, with few exceptions near 
the edge CD (see Fig. 1). These exceptions are due to the fact that the portfolio value 
is already near the threshold value Lmax. The investor will likely liquidate his/her 
position in short time and before T , and this makes the risky asset less attractive. The 
transaction region consists of two parts. The shape of the continuation region (white) 
is similar to a cone, enlarging as time increases, and it seems nearly symmetric with 
respect to the Merton’s line.

Moreover, as expected, transaction costs strongly influence the optimal strategies. 
The transaction region, in fact, decreases as the transaction cost K increases. Moreover, 
it also decreases as time increase: this happens because, as the time to maturity T −t 
decreases, only a large change in the portfolio composition can compensate the trans-
action costs.

To describe how the risk-aversion influences the transaction region as well as the 
target portfolio, in Fig. 6 we consider both the power utility function (with different 
exponents) as well as the logarithmic utility. Considering this figure and Fig. 4 (left), 
we notice that, as expected, increasing the risk-aversion 1 − γ , the target portfolios 
move according to the Merton’s line, i.e., the agent prefers to invest more in the risk-free



Fig. 2 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and t = 0.5 (right).
K = 0.01

Fig. 3 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and t = 0.5 (right).
K = 0.05

Fig. 4 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and t = 0.5 (right). 
K = 0.1

asset instead of the risky one, and the transaction area increases, since the amplitude 
of the no-transaction cone decreases. This implies that a more risk-averse agent recal-
ibrates more frequently his/her portfolio, paying transaction costs, to maintain his/her 
portfolio into a less risky position.

To conclude, in Fig. 7 we modify the volatility parameter. Comparing this figure with 
Fig. 6 (down-left), where we recall that we set σ = 0.5, we notice that the behavior



Fig. 5 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and t = 0.5 (right).
K = 0.25

Fig. 6 Transaction area in the plane (πB , πS) at time t = 0 and  K = 0.1. Power utility with γ = 0.8 
(up-left), γ = −0.5 (down-left) and  γ = −0.8 (down-right); logarithmic utility (up-right)

of the transaction area varying the volatility parameter is similar to the one described 
above for the risk-aversion: increasing the volatility, it is well known that the slope of 
the Merton’s line decreases, and thus also the target portfolio line’s slope decreases, 
while the transaction region increases. Numerical experiments not reported here show 
a similar behavior decreasing the risky-asset drift b or increasing the risk-free interest 
rate r : the target portfolio always follows the Merton’s line and the no-trade region 
decreases.



Fig. 7 Transaction area in the plane (πB , πS) at time t = 0 and K = 0.1 for power utility with γ = −0.5.
Volatility σ = 0.3 (left) and σ = 0.4 (right)

Fig. 8 Transaction area in the plane (πB , πS) for the exponential utility. Time t = 0 (left) and  t = 0.5 
(right). K = 0.25

5.2 Exponential utility

In this sub-section we deal with the exponential utility u(x) = −e−γ x . In this case 
(see Pliska 1986) the optimal strategy without transaction costs is to transact 
continuously to maintain the amount of money invested in the risky security equal to 
the discounted constant

πS(t) = b − r

σ 2γ
e−r(T −t).

Note that this trading policy appears to be rather unrealistic. The value invested 
in the stock does not depend on the current wealth but only on time and the model’s 
parameters, including the constant absolute risk-aversion γ . The investor essentially 
changes only the amount invested in the bank account, behaving in a more risky way 
when is poor than when is rich. In Figs. 8 and 9 we show the evolution of the 
transaction area for two different transaction costs, K = 0.25 and K = 0.1. The 
model parameters are the same as in the previous section, with the exception of γ , 
which is set equal to 0.02. Again, the target portfolios coincide with the optimal line 
without transaction costs, but the no-trade area is no more a cone, but a rectangular 
region with inside the



Fig. 9 Transaction area in the plane (πB , πS) for the exponential utility. Time t = 0 (left) and t = 0.5
(right). K = 0.1

Fig. 10 Transaction area in the plane (πB , πS) at time t = 0 and  K = 0.1 for the exponential utility. 
Risk-aversion equal to γ = 0.04 (left) and γ = 0.1 (right)

horizontal line of optimal portfolios. Moreover, as expected, the no-transaction region 
is enlarging as the fixed cost and/or the time increase.

To conclude, in Fig. 10 we consider two different values of the risk-aversion 
parame-ter γ : the target portfolio follows the Merton’s line, moving towards the line 
S = 0 as  γ increases, while the no-transaction region collapses. Numerical results 
not reported here show a similar behavior increasing the volatility σ , the interest rate 
r or decreasing the drift of the risky asset b.

6 Conclusions

In this article we have studied an optimal investment problem with a fixed transaction 
cost and a finite horizon. In the case of a power (or logarithmic) utility we have shown 
that the no-transaction region closely resembles a cone, which is the same shape as the 
no transaction region of similar problems with proportional transaction costs (see, for 
instance, Davis and Norman 1990; Liu and Loewenstein 2002). The fixed cost however 
leads to a striking difference in the optimal policy: in our framework the optimal 
strategy is to move from the borders of the no-trade region to the the Merton’s line, 
while in the proportional case the optimal strategy is to perform many infinitesimal



transactions to remain on the boundary of the cone. It is a remarkable fact that also 
with the exponential utility our optimal target portfolios essentially coincide with the 
optimal line without transaction costs. In this case it is a horizontal line, slowly moving 
upwards, inside a no-trade region of a rectangular shape. Unlike most of the literature 
on portfolio optimization our optimal strategies are not stationary: we have shown 
how the no-trade regions increase as time goes on up to the finite horizon.

There are several directions in which our portfolio optimization problem under 
transaction costs can be further investigated. To prove rigorously that the value function 
is a solution of the HJBQVI it is necessary to use some kind of weak solution of 
this inequality, such as the very general notion of constrained viscosity solution (as 
for instance in Akian et al. 2001; Oksendal and Sulem 2002; Ly Vath et al. 2007). 
The theoretic connection between the value function and the sequence of variational 
inequalities also deserves additional analysis. It is likely that in the more general case 
of fixed plus proportional transaction costs the optimal target portfolios will split in 
two different lines, with possibly independent dynamics, and the coincidence with 
the optimal line without transaction costs will no longer hold true. All these different 
aspects are currently under investigation by the authors.
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Appendix: Interpretation of the increasing sequence of variational inequalities

We denote by An(t, πS, πB ) the set of admissible policies when at most n interventions 
are admitted before the final time T . A policy p = (τi , ξi ) ∈ An(t, πS, πB ) if p ∈ 
A(t, πS, πB ) and τn+1 = +∞ almost surely. We introduce the value function V n 

when the set of admissible policies is restricted to An(t, πS, πB ):

V n(t, πS, πB) := sup
p∈An(t,πS ,πB )

Et,πS ,πB [V (π
p
S (T ), π

p
B (T ))] = sup

p∈An(t,πS ,πB )

J (p)

where (π
p
S (t), π p

B (t)) is the process controlled by policy p, and J (p) the corresponding
objective value.

We define V0 as the solution of the partial differential equation (with the other
appropriate boundary conditions):

{LV0(t, πS, πB) = 0
V0(T, πS, πB) = u(L(πS, πB))

.

Consider now the sequence of variational inequalities ( j = 1, ..., n):

⎧
⎪⎪⎨

⎪⎪⎩

LVj ≤ 0
Vj ≥ MVj−1
(Vj − MVj−1)LVj = 0
Vj (T, πS, πB) = u(L(πS, πB))



starting from j = 1. We show in a heuristic way that Vn = V n , that is the solution
of the n − th variational inequality is the value function when at most n interventions
are admitted.

Let p ∈ An(t, πS, πB) and define τ̂
p

i = τ
p

i ∧ T . By Ito’s formula applied to Vn

on the interval (t, τ̂1), taking expectations and recalling that LVn ≤ 0 (and assuming
that the expectation of the stochastic integral vanishes), we obtain

Vn(t, πS, πB) ≥ Et,πS ,πB [Vn(τ̂1, πS(τ̂−
1 ), πB(τ̂−

1 ))].

Moreover since Vn ≥ MVn−1 we also have

Vn(t, πS, πB) ≥ Et,πS ,πB

[
Vn(τ̂1, πS(τ̂−

1 ), πB(τ̂−
1 ))

]
χ

T <τ
p
1

+Et,πS ,πB

[
Vn(τ̂1, πS(τ̂−

1 ), πB(τ̂−
1 ))

]
χ

T ≥τ
p
1

≥ Et,πS ,πB

[
Vn(τ̂1, πS(τ̂−

1 ), πB(τ̂−
1 ))

]
χ

T <τ
p
1

+Et,πS ,πB

[
Vn−1(τ̂1, πS(τ̂−

1 ) + ξ1, πB(τ̂−
1 ) − ξ1 − K )

]
χ

T ≥τ
p
1

= Et,πS ,πB

[
Vn−1(τ̂1, πS(τ̂1), πB(τ̂1))

]
.

Repeating the same reasoning we obtain ( j = 1, ...., n − 1)

Et,πS ,πB

[
Vn− j (τ̂ j , πS(τ̂ j ), πB(τ̂ j ))

]≥ Et,πS ,πB

[
Vn− j−1(τ̂ j−1, πS(τ̂ j−1), πB(τ̂ j−1))

]
.

Summing up these inequalities we end with

Vn(t, πS, πB) ≥ Et,πS ,πB [V0(τ̂n, πS(τ̂n), πB(τ̂n))].

Furthermore we have

Et,πS ,πB [V0(τ̂n, πS(τ̂n), πB(τ̂n))] ≥ Et,πS ,πB [V0(T, π
p
S (T ), π

p
B (T ))]

= Et,πS ,πB [u(L(π
p
S (T ), π

p
B (T )))] = J (p).

Therefore we have shown that

Vn(t, πS, πB ) ≥ J ( p), ∀ p ∈ An(t, πS, πB ).

Now we show that there exists p∗ ∈ An(t, πS, πB ) such that Vn(t, πS, πB ) = 
J ( p∗) and Vn ≡ V n , the value function with at most n interventions.
By Ai , i = 1, ..., n, we define the set

Ai := 
{
(t, πS, πB ) : Vn+1−i = MV n−i 

} 
.



We consider the policy p∗ given recursively by (τ ∗
0 ≡ t, i = 1, ..., n)

p∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ ∗
i =

{
inf

{
Ii ≡ {

T ≥ s ≥ τ ∗
i−1 : (s, πS(s−), πB(s−)) ∈ Ai

}}
if Ii �=∅

+∞ if Ii = ∅

ξ∗
i =

{
arg maxξ∈R Vn−i (τ

∗
i , πS(τ ∗−

i ) + ξ, πB(τ ∗−
i ) − ξ − K ) if τ ∗

i < +∞
arbitrary if τ ∗

i = +∞

.

It is not difficult to see that using this policy the above inequalities become equalities
and we have

V n(t, πS, πB) = J (p∗) = Vn(t, πS, πB).
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