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Abstract
We introduce a new class of parity-time ( )-symmetric complex crystals 
which are almost transparent and one-way reflectionless over a broad fre-
quency range around the Bragg frequency, i.e., unidirectionally invisible, 
regardless of the thickness L of the crystal. The  -symmetric complex 
crystal is synthesized by a supersymmetric (SUSY) transformation of a Her-
mitian square well potential, and exact analytical expressions of transmission 
and reflection coefficients are given. As L is increased, the transmittance and 
reflectance from one side remain close to one and zero, respectively, whereas 
the reflectance from the other side secularly grows like ∼L2 owing to uni-
directional Bragg scattering. This is a distinctive feature as compared to the 
previously studied case of the complex sinusoidal  -symmetric potential 
V ( )x V0 exp (= −2i ok )x at the symmetry breaking point, where transparency 
breaks down as L → ∞.

1. Introduction

Over the past two decades increasing interest has been devoted to study of the transport and 
scattering properties of matter or classical waves in non-Hermitian periodic potentials, i.e., in 
the so-called complex crystals (see, for instance, [1–31] and references therein). Among them, 
parity-time ( )-symmetric complex crystals, which possess a real-valued energy spectrum 
below a symmetry breaking point [32–34], have attracted huge attention, especially since the 
proposal [12] and experimental realizations [35–38] of synthetic periodic optical media with
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tailored optical gain and loss regions. Complex crystals show rather unique scattering and 
transport properties as compared to ordinary (Hermitian) crystals, such as violation of the 
Friedelʼs law of Bragg scattering [6, 7, 9, 10], double refraction and nonreciprocal diffraction 
[12], unidirectional Bloch oscillations [13], mobility transition and hyper ballistic transport 
[30, 38], and unidirectional invisibility [23, 24, 28, 31, 36, 37]. One of the most investigated 
-symmetric complex crystals is the one described by the sinusoidal complex potential V
( )x V exp (= −2i0 0k ),x which is amenable for an exact analytical study [2, 3, 6, 7, 12, 19–21,
23–25, 28, 31]. In the infinitely extended crystal, this periodic potential is gapless and shows a 
countable set of spectral singularities, which are the signature of the  symmetry breaking 
transition. For a finite crystal of length L containing a finite number N of unit cells, it was 
shown by simple coupled-mode theory that in the limit of a shallow potential, the crystal is 
unidirectionally invisible; i.e., it is transparent and does not reflect waves when probed in one 
propagation direction [23, 39]. One-way invisible crystals with sophisticated shape and 
structure have also been synthesized by application of supersymmetric (SUSY) transforma-
tions of the sinusoidal complex crystal at its symmetry breaking point [31]. Unidirectional 
invisibility holds for thin and shallow enough crystals, a condition which is typically satisfied 
in optical experiments [36, 37]. However, for thick crystals, the transparency and unidirec-
tional reflectionless properties of the sinusoidal complex potential break down, and the 
scattering scenario comprises three distinct regimes, as shown in [24, 28] by an exact analysis 
of the scattering problem involving modified Bessel functions beyond coupled-mode theory. 
An open question remains whether  -symmetric complex crystals exist that remain uni-
directionally invisible as L → ∞.

In this work we introduce a new class of exactly solvable complex periodic potentials that 
are transparent and unidirectionally reflectionless (at any degree of accuracy) over a broad 
frequency interval around the Bragg frequency and that remain unidirectionally invi-sible as 
the crystal length L becomes infinite. Such complex crystals are super-symmetrically 
associated to a Hermitian square potential well of length L and height ϵ. In the limit of small ϵ, 
the partner complex crystal is almost unidirectionally invisible, even in the L → ∞ limit, and 
its shape differs from the complex sinusoidal potential at the symmetry breaking point, 
previously considered in [23, 24, 28], mainly for a bias of the real part of the potential, which 
avoids breakdown of transparency as L → ∞.

2. Synthesis of the  -symmetric complex crystal

Let us consider the stationary Schrödinger equation for a quantum particle in a locally 
periodic and complex potential V(x), which in dimensionless form reads

ψ ψ ψ ψ≡ − + =H
x

V x Eˆ d

d
( ) (1)

2

2

where E is the energy of the incident particle and V(x) is the complex scattering potential with 
period Λ, which is nonvanishing in the interval 0 < <x L . In dimensionless units used here Λ 
is taken to be of order ∼1; for example, =Λ π . The crystal length L is assumed to be an integer 
multiple of the lattice period Λ; i.e., L = NΛ, where N is the number of unit cells in the crystal. 
As discussed in [24, 31], equation (1) can also describe Bragg scattering of optical waves from 
a complex grating of period Λ and length L at frequencies close to the Bragg frequency. Our 
aim is to synthesize a complex periodic potential V(x) which is almost unidirectionally 
invisible over a broad frequency range around the Bragg frequency and that remains 
unidirectionally invisible in the N → ∞ limit. To this aim, we use SUSY



transformations (see, e.g., [40, 41]) to realize isospectral partner potentials, one of which is 
almost bidirectionally invisible and corresponds to a shallow square potential well. Let us
indicate by = −∂ +H V xˆ ( )x1

2
1 the Hamiltonian corresponding to the potential V x( )1 , and let

ϕ x( ) be a solution (not necessarily normalizable) to the equation ϕ ϕ=H Eˆ1 1 . The
Hamiltonian Ĥ1 can be then factorized as = +H BA Eˆ ˆ ˆ

1 1, where = −∂ +A W xˆ ( )x ,
= ∂ +B W xˆ ( )x , and

ϕ
ϕ

=W x
x

x
( )

(d d )

( )
(2)

is the so-called superpotential. The Hamiltonian = +H AB Eˆ ˆ ˆ 1, obtained by intertwining the
operators Â and B̂, is called the partner Hamiltonian of Ĥ1. The following properties
then hold:

(i) The potential V(x) of the partner Hamiltonian Ĥ is given by

= − + = − + +V x W x
W

x
E V x E W x( ) ( )

d

d
( ) 2 2 ( ) (3)2

1 1 1
2

(ii) If ψ ψ=H Eˆ1 with ≠E E1, then ξ ξ=H Eˆ with

ξ ψ ψ ψ= = − +x A x
x

W x x( ) ˆ ( )
d

d
( ) ( ). (4)

(iii) The two linearly independent solutions to the equation ξ ξ=H Eˆ 1 are given by

∫ξ
ϕ

ξ
ϕ

ϕ= =x
x

x
x

t t( )
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, ( )

1

( )
d ( ). (5)

x

1 2
0

2

Let us apply the SUSY transformation by assuming for V x( )1 a shallow square potential well
of width Λ=L N and depth ϵ, i.e.,

ϵ
= < >

− < <{V x x x L
x L

( ) 0 0,
0 .

(6)1

Let us indicate by k0 the Bragg wave number π Λ=k0 , and let us assume ϵ= − >E k 01 0
2 .

A solution ϕ x( ) to the equation ϕ ϕ=H Eˆ1 1 is given by

⎧
⎨⎪

⎩⎪
ϕ μ ρ

π

=
<

− < <
− − >

( )
( )

[ ]
x

k x x

k x x L

k x L N x L

( )

exp i 0

cos i 0

exp i ( ) i

(7)

1

0
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where we have set ϵ= = −k E k1 1 0
2 and where ρ, μ are two real parameters that need to

be determined by imposing the continuity of ϕ x( ) and of its first derivative at x = 0 and at
π= =x L N k0. This yields

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ρ ϵ μ ϵ= − =

k k
atanh 1 , . (8)

0
2

0



From equations (2) and (7) it follows that the superpotential W(x) is given by

⎪

⎪

⎧
⎨
⎩ ρ
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− − < <( )
W x

k x x L

k k x x L
( )

i 0 ,

tan i 0 .
(9)

1

0 0

The potential V(x) of the partner Hamiltonian is readily obtained from equations (3) and
(9) and reads explicitly

⎧
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Note that in the interval L(0, ), the potential V(x) is locally periodic with period
Λ π= k0; i.e., k0 is the Bragg wave number. The real and imaginary parts of the potential,

= +V x V x V x( ) ( ) i ( )R I , are given by
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Note that, since VR(x) and VI(x) have opposite parity in the unit cell, the crystal is 
symmetric. A typical behavior of the real and imaginary parts of the potential is shown in
figure 1. Interestingly, in the limit ϵ → 0 (i.e., ρ → ∞), the potential V(x) in the interval

< <x L0 reduces to

ϵ ϵ≃ − −( )V x k x( ) 2 exp 2i ; (13)0

Figure 1. Behavior of the complex periodic potential V(x) (real and imaginary parts), defined 
by equation (10), in the unit cell 0 x<<Λ for =Λπand for (a) ϵ = 0.1, and (b) ϵ = 0.01.

i.e., V(x) basically coincides with the complex sinusoidal potential at the symmetry breaking
point [23, 24, 28], but with the additional bias −ϵ. As discussed in the next section, such a bias
prevents breakdown of the transparency of the crystal in the L → ∞ limit.



p

3. Scattering states, spectral reflection/transmission coefficients, and
unidirectional invisibility

3.1. Wave scattering from the square well potential V 1 xð Þ

Let us first consider the scattering properties of the square well potential V1 x( ), defined by 
equation (6). This is a very simple and exactly solvable problem. For a plane wave with 
momentum p incident from the left side of the well, the solution to the Schrödinger equation
Ĥ1 p = Eψ ψ ( =E p2) in the <x 0 and >x L regions is given by

⎧⎨⎩ψ = + − ⩽
⩾

x
px r p px x

t p px x L
( )

exp (i ) ( ) exp ( i ) 0
( ) exp (i )

(14)p

l
1
( )

1

where t p( )1 and r p( )l
1
( ) are the transmission and reflection (for left incidence) coefficients,

respectively. Similarly, for a plane wave with momentum p incident from the right side of the
well, the solution to the Schrödinger equation ψ ψ=H Eˆ

p p1 ( =E p2) in the <x 0 and >x L
regions is given by

⎧⎨⎩ψ = − + ⩾
− ⩽

x
px r p px x L

t p px x
( )

exp ( i ) ( ) exp (i )
( ) exp ( i ) 0

(15)p

r
1
( )

1

where r p( )r
1
( ) is the reflection coefficient for right incidence. In the well region < <x L0 , the

solution ψ x( )p is given by a superposition of plane waves qxexp (i ) and − qxexp ( i ), where we
have set

ϵ= +q p . (16)2

The amplitudes of plane waves, as well as the expressions of the spectral transmission [t p( )1 ]
and reflection [r p( )l r

1
( , ) ] coefficients, are readily obtained by imposing the continuity of ψ x( )p

and of its first derivative at x = 0 and x = L. This yields

= −
− +( )

t p
pq pL

pq qL p q qL
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(17)1
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− +( )

r p
qL

pq qL p q qL
( )

i sin ( )
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= −r p r p pL( ) ( ) exp ( 2i ). (19)r l
1
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The reflectance is equal for both left and right incidence sides and is given by

ϵ

ϵ ϵ
= =

− + +( )
R p r p

qL

qL p
( ) ( )

sin ( )

cos ( ) 2
(20)l r

1 1
( , ) 2 2 2

2 2 2 2

whereas the transmittance is given by = −T p R p( ) 1 ( )1 1 . Note that
ϵ ϵ⩽ +R p p p( ) [4 ( )]1

2 2 2 , so that for a fixed value of >p 00 , one has →R p( ) 01 ,
→T p( ) 11 as ϵ → 0 uniformly in the interval ∈ ∞p p( , )0 , regardless of the value of L1. This

means that, for a sufficiently small value of ϵ, the potential well is almost reflectionless from
both sides of incidence in a wide interval of wave numbers p around the Bragg wave number

1 More precisely, for a fixed value of >p 00 and for a given (arbitrarily small) value η > 0, one can find a
nonvanishing value of ϵ (independent of L) such that η<R p( )1 for any L and for any p in the range ∈ ∞p p( , )0 .



=p k0. As an example, figure 2 shows typical behaviors of the reflectance R p( )1 as p varies
in the range k k(0.6 , 1.4 )0 0 for two values of ϵ.

3.2. Wave scattering from the  -symmetric complex potential V(x)

The scattering properties of the complex crystal defined by equation (10) are readily obtained
from those of the partner square well potentialV x( )1 , using the property (ii) of SUSY stated in
the previous section. For a plane wave with momentum p incident from the left side of the
crystal, the solution to the Schrödinger equation ξ ξ=H Eˆ p p ( =E p2) in the <x 0 and >x L
regions is given by

⎧⎨⎩ξ α= + − ⩽
⩾

x
px r p px x

t p px x L
( ) exp (i ) ( ) exp ( i ) 0

( ) exp (i )
(21)p

l( )

where t(p) and r p( )l( ) are the transmission and reflection (for left incidence) coefficients,
respectively, and α is an arbitrary non-vanishing constant. On the other hand, according to the
property (ii) stated in the previous section for ≠E E1, i.e., for ϵ≠ = −p k k1 0

2 , one has
ξ ψ ψ= − +x x W x x( ) (d d ) ( ) ( )p p p . From equations (14) and (21) taking into account that

=W x k( ) i 1 for <x 0 and >x L, it follows that α = −k pi( )1 and

= =
+
−

t p t p r p r p
k p

k p
( ) ( ), ( ) ( ) . (22)l l

1
( )

1
( ) 1

1

Similarly, from the problem of a plane wave with momentum p incident from the right side of
the crystal, one obtains

= =
−
+

t p t p r p r p
k p

k p
( ) ( ), ( ) ( ) . (23)r r

1
( )

1
( ) 1

1

The case =E E1, i.e., =p k1, can be analyzed by considering the limit of equations (22)
and (23) as →p k1. In particular, from equation (23) one has →r p( ) 0r( ) as →p k1, whereas
from equations (18) and (22), a 0/0 limit is obtained, which yields after some calculations

ϵ→ −r p L
k

k
( ) i (24)l( ) 1

0

Figure 2. Behavior of the spectral reflectance R1 (p) of the square potential well 
(equation (6)) for N = 100, =Λ π (i.e., k0 = 1), and for (a) ϵ = 0.1, (b) ϵ = 0.01.



as →p k1. From the above results, the following scattering properties of the complex crystal,
with potential V(x) given by equation (10), can be stated:

(i) The transmission coefficient t(p) of the complex crystal is the same as that t p( )1 of a
square well of width L and height ϵ (see equation (17)).

(ii) The spectral reflectances =R p r p( ) | ( )|l l( ) ( ) 2 and =R p r p( ) | ( )|r r( ) ( ) 2 for left and right
hand incidence sides are related to the reflectance R p( )1 of the square well (equation (20))
by the simple relations

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

+
−

=
−
+

R p R p
k p

k p
R p R p

k p

k p
( ) ( ) , ( ) ( ) . (25)l r( )

1
1

1

2
( )

1
1

1

2

Note that the spectral transmittance =T p t p( ) | ( )| 2 and reflectances R p( )l( ) , R p( )r( )

satisfy the generalized unitarity relation

− =T R R1 , (26)l r( ) ( )

according to general results on scattering in  -symmetric potentials [31, 42–44].
(iii) For a fixed momentum >p 00 and for a given small parameter η > 0, one can find a

non-vanishing value ϵ > 0, independent of L, such that η<R p( )r( ) and η− <T p| ( ) 1|
uniformly in the interval ∞p( , )0 , regardless of the value of L. Moreover, the reflectance

for left side incidence shows a peak at ϵ= = −p k k1 0
2 , which secularly grows with

the crystal thickness L like ∼L2; namely, one has

⎛
⎝⎜

⎞
⎠⎟ϵ ϵ= = −( )R p k L

k
1 . (27)l( )

1
2 2

0
2

Figure 3. Behavior of the spectral reflectances R( ,l r)  p( ) (for left and right incidence 
sides, upper plots) and transmittance T(p) (lower plots) of the complex crystal V(x), 
defined by equation (10), for =Λ π , ϵ = 0.01, and for increasing number N of cells: (a) N 
= 100, (b) N = 1000, and (c) N = 5000. Note that the spectral reflectances are plotted on 
a logarithmic scale.



Figure 4. Numerically computed behavior of the spectral transmittance T(p) of the
complex sinusoidal potential ϵ= −V x k x( ) 2 exp ( 2i )0 (solid curve), and of the shifted
complex sinusoidal potential ϵ ϵ= − −V x k x( ) 2 exp ( 2i )0 (dashed curve) for Λ π= ,
ϵ = 0.01, and N = 5000.

This means that, for a sufficiently small value of ϵ, the potential (10) is almost transparent 
and unidirectionally reflectionless in a broad range of wave number p around the Bragg wave 
number k0 and for an arbitrary crystal thickness L. This is shown in figure 3, where typical 
behaviors of spectral transmittance T(p) and reflectances R( ,l r)  p( ) for increasing values of 
L = NΛ are depicted. Note that, as N increases the spectral reflectance, R r( )  p( ) remains 
smaller than ∼ ×2 1 −0 4, and the transmittance T(p) remains close to 1, whereas the spectral 
reflectance R l( )  p( ) shows a peak at p k= ≃1 0k , which increases as N is increased (according 
to equation (27)). The scattering properties of the potential (10) are thus distinct from the ones 
of the complex sinusoidal potential at the symmetry breaking point V ( )  2ϵ exp= −(  2x ki 0 ),x

for which transparency is lost as N is increased [24]. This is shown in figure 4, where the solid 
line shows the behavior of spectral transmittance of the complex sinusoidal potential for 
ϵ = 0.01, =Λ π , and N = 5000, i.e., for the same parameter values as in figure 3(c). Note that 
near the Bragg wave number ≃p k0, the transmittance T greatly deviates from 1. As dis-
cussed in [24], such a deviation is the signature of the spectral singularity of the complex 
sinusoidal potential that arises in the L → ∞ limit. For a small value of ϵ, the potential (10) is 
well approximated by the shifted complex sinusoidal potential V ( )  2  exp (2x ki 0 )= −ϵ ϵx
(see equation (13)). Hence transparency of the complex sinusoidal potential is expected to be 
restored, provided that the bias −ϵ is added to the potential. This is shown in figure 4, where 
the dashed curve depicts the numerically computed behavior of the spectral transmittance for 
the shifted sinusoidal complex potential V ( )  2  exp (2x ki 0 )= −ϵ ϵ.x As one can appreciate 
from the figure, the addition of the bias −ϵ to the complex sinusoidal potential restores the 
transparency.

4. Conclusion

In this work Bragg scattering in a new class of supersymmetrically synthesized  -sym-metric complex crystals 
has been analytically investigated. The crystal turns out to be almost transparent and unidirectionally 
reflectionless, i.e., one-way invisible. Unidirectional invisi-bility has been predicted and recently observed in the 
sinusoidal complex potential at the symmetry breaking point; see [2, 3, 23, 24, 28, 31, 37]. However, while 
transparency is lost for the complex sinusoidal potential for thick crystals [24], in the super-symmetrically syn-
thesized complex crystal considered in this work, unidirectional reflectionless and transpar-ency properties hold, 
regardless of the crystal thickness; i.e., they persist in the limit L →∞. The reason is that the spectral 
transmittance of the super-symmetrically synthesized complex crystal is the same as that of a shallow square well 
potential, which remains close to 1



regardless of the thickness L of the well. In the limit of a very shallow potential well, we have
shown that the super-symmetrically associated complex crystal reduces to the complex
sinusoidal potential at the symmetry breaking point but with an additional bias of the
potential, which prevents breakdown of transparency in the → ∞L limit.
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