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Abstract

Many valuable resources developed by world-wide research institutions and consortia

describe genomic datasets that are both open and available for secondary research, but

their metadata search interfaces are heterogeneous, not interoperable and sometimes

with very limited capabilities. We implemented GenoSurf, a multi-ontology semantic

search system providing access to a consolidated collection of metadata attributes found

in the most relevant genomic datasets; values of 10 attributes are semantically enriched

by making use of the most suited available ontologies. The user of GenoSurf provides

as input the search terms, sets the desired level of ontological enrichment and obtains

as output the identity of matching data files at the various sources. Search is facilitated

by drop-down lists of matching values; aggregate counts describing resulting files are

updated in real time while the search terms are progressively added. In addition to

the consolidated attributes, users can perform keyword-based searches on the original

(raw) metadata, which are also imported; GenoSurf supports the interplay of attribute-

based and keyword-based search through well-defined interfaces. Currently, GenoSurf

integrates about 40 million metadata of several major valuable data sources, including

three providers of clinical and experimental data (TCGA, ENCODE and Roadmap Epige-

nomics) and two sources of annotation data (GENCODE and RefSeq); it can be used

as a standalone resource for targeting the genomic datasets at their original sources

(identified with their accession IDs and URLs), or as part of an integrated query answering

system for performing complex queries over genomic regions and metadata.

Database URL: http://www.gmql.eu/genosurf/
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Introduction

Next-generation sequencing technologies and data process-
ing pipelines are rapidly providing sequencing data with
associated metadata, i.e. high-level features documenting
genomic experiments. Very large-scale sequencing projects
are emerging, and many consortia provide open access
for secondary use to a growing number of such valu-
able data and corresponding metadata. While the pro-
vided sequencing data are generally of high quality and
increasingly standardized, metadata of different sources are
differently structured; furthermore, their search interfaces
are heterogeneous, not interoperable and sometimes with
very limited capabilities. However, modern biological and
clinical research more and more takes advantage of inte-
grated analysis of different datasets produced at various
sources; therefore, a system capable of supporting meta-
data integration and search, able to locate heterogeneous
genomic datasets across sources for their global processing,
is strongly needed.

We built such metadata integration and search system;
our approach is based on the genomic conceptual model
(GCM, (1)), which provides a small set of entities
and attributes for metadata description, covering very
important and complex data sources. On top of this
core schema, we implemented a multi-ontology semantic
search system that uses knowledge representation for
supporting metadata search. Our metadata repository
currently includes about 40 million metadata entries from
five sources, out of which more than 7 million have been
integrated within the common structure of the GCM,
described by 39 attributes over eight connected entities.
We also provide semantic enrichment of the values of
10 of these attributes, by linking them to ontological
terms. For each of such terms, besides describing synonyms
and other syntactic and semantic variants, we provide
a small hierarchy of hypernyms and hyponyms, whose
depth typically ranges up or down to three hierarchical
levels.

Our metadata repository can be searched with a friendly
web user interface called GenoSurf, publicly available at
http://www.gmql.eu/genosurf/. Through it, the user can: (i)
select search values from the integrated attributes, among
predefined normalized term values optionally augmented
by their synonyms, and hypernyms; (ii) obtain a summary
of sources and datasets that provide matching items (i.e.
files containing genomic regions with their property values);
(iii) examine the selected items’ metadata in a tabular cus-
tomizable form; (iv) extract the set of matching references
(as backlinks to the original sources and links to data and
metadata files); (v) explore the raw metadata extracted
for each item from its original source, in the form of

key-value pairs; (vi) perform free-text search on attributes
and values of original metadata; and (vii) prepare data selec-
tion queries ready to be used for further processing. Search
is facilitated by drop-down lists of matching values; aggre-
gate counts, describing resulting files, are updated in real
time.

The metadata content is stored in a PostgreSQL
database, including for each item a backlink to the
original source storing the referenced data. It is fueled
by an automatized pipeline to register new sources and
extract their metadata, as well as to update and maintain
already integrated sources. The pipeline systematically
performs data extraction, translation, normalization and
cleaning. Using it, we integrated metadata from five
consolidated genomic sources: The Cancer Genome Atlas
(TCGA, (2)) from Genomic Data Commons (GDC, (3,4));
The Encyclopedia of DNA Elements (ENCODE, (5,6));
Roadmap Epigenomics (7); GENCODE (8); and RefSeq
(9), the latter two providing reference annotation data.
Furthermore, we are in the process of adding other data
sources, including Cistrome (10), International Cancer
Genome Consortium (ICGC, (11)), and 1000 Genomes
Project (12), and we plan to integrate several others.

We also imported processed genomic data into an
integrated data repository, where they can be globally
handled with our high-level, declarative GenoMetric Query
Language (GMQL, (13)) (http://www.gmql.eu/gmql-rest/)
and associated GMQL repository engine (14), which uses
Apache Spark (https://spark.apache.org/) on arbitrary
servers and clouds. The data repository currently contains
243 520 files from 37 datasets; repository versions have
been available since 2017 (http://www.bioinformatics.deib.
polimi.it/GeCo/) and were used in several collaborative
(epi) genomic projects. GenoSurf data items are in one-to-
one mapping with the most recent version of the data files
in the GMQL repository and share the same identifiers.
Hence, the result of a GenoSurf search can be immediately
used within the GMQL engine (44) to extract and directly
process comprehensively relevant genomic region data files
and their metadata.

Related works

In the past few years, several surveys (15–17) have high-
lighted the need for data integration approaches in life sci-
ences, with a particular attention to omics. Among various
projects focused on offering integrated access to biomed-
ical data and knowledge extracted from heterogeneous
sources, we cite BioMart (18), DNADigest (19), DATS
(20), BioSchemas (21), FAIR (22) and MOD-CO (23)—
all single initiative or community-driven efforts towards
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making biomedical data findable and accessible for scien-
tific datasets.

For what concerns the semantic enrichment of meta-
data, (24) surveys the use of ontologies in biomedical data
management and integration. Choosing the most suitable
ontologies for semantic enrichment of specific corpuses of
values is addressed in (25).

We consider DeepBlue (26) as the most similar platform
to ours. This data server was developed to search, filter and
process epigenomic data produced within a multi-center
research consortium. Some of its modeling choices are
similar to ours (e.g. distinction between region data and
metadata, management of both experimental and annota-
tion datasets, a set of mandatory attributes and key-value
pairs to store additional metadata). However, DeepBlue
focuses on epigenomics, while we approach a broader
integration, as we consider a larger spectrum of different
data/experiment types. The DeepBlue database identifies
five mandatory metadata attributes (three of them are stan-
dardized to external controlled vocabularies and equipped
with synonyms and hierarchies), while GenoSurf accounts
for eight entities with 39 attributes (10 of which are nor-
malized, also including synonyms, hierarchies and external
references).

Paper organization

We first describe the relational database schema on which
our repository is based, including the tables that support
semantically expanded search (using specialized ontology
content). Then, we describe the currently integrated data
sources, spanning different areas of functional genomics
such as expression and mutation data (TCGA/GDC),
epigenomics (ENCODE, Roadmap Epigenomics) and
annotations (RefSeq and GENCODE). The main focus
of this paper is a thorough description of a novel web
server for searching the integrated repository; we show
the user interface, explain how inference occurs in the
background, describe several use cases and provide an
evaluation.

Relational schema

The core of our metadata repository exhibits a star-like
relational schema, illustrated in Figure 1, centered on
the Item table; it physically implements the GCM (1),
as each table corresponds to a GCM entity. The core
schema is extended by two subschemas representing,
respectively: the original unstructured metadata—in the
form of key-value pairs—and the semantic enrichment
for specific attributes of four core tables (Knowledge
Base).

Core schema

The core schema is a classic data mart (27), with a cen-
tral fact table describing Items (or data files) and four
dimensions:

• The Biological dimension describes the biological mate-
rial and process observed in the experiment that gen-
erated the genomic item. It includes Donor, Biosample
and Replicate entity tables, and the Replicate2Item bridge
table.

• The Management dimension describes the organizations
or projects that are behind the production of each exper-
iment. It includes the Project and CaseStudy entity tables,
and the Case2Item bridge table.

• The Technology dimension describes the process used
for the production of the experimental or annota-
tion item and includes the ExperimentType entity
table.

• The Extraction dimension describes the containers avail-
able in the repository for storing items that are homo-
geneous for data analysis; it includes the Dataset entity
table.

All core tables have a numerical sequential primary
key (PK), conventionally named <table_name>_id and
indicated as PK in Figure 1. Tables Donor, Biosample, Repli-
cate, Item and CaseStudy have, in addition, a secondary
unique key <table_name>_source_id that refers to
the original source; such secondary key is used for providing
backward links to the data source (and for direct compari-
son of source contents with the ones in the repository during
periodic updates/reloads).

Core tables have two kinds of foreign keys (FKs): the FKs
that uniquely identify a row of another table of the core
schema (red in Figure 1) and FKs that reference concepts
in the Knowledge Base from the core attributes that are
semantically enriched (blue in Figure 1). Nullable attributes
are indicated in Figure 1 with N.

Relationships in the core schema from the Item outward
are functional (i.e. one Item has one ExperimentType, while
an ExperimentType may be the same for multiple Items),
with the exception of two many-to-many relationships:
each Item derives from one or more Replicates and belongs
to one or more CaseStudies.

We next discuss every table of the core schema.

Item Each item corresponds to a processed data file
that contains genomic region data. It references the
ExperimentType and Dataset tables with FKs, whereas
item_id is directly used in bridge tables Replicate2Item
and Case2Item. Size, date and checksum denote
the properties of the corresponding genomic data file:
source_url; local_url; file_name; and source_
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Figure 1. Logical schema of the metadata repository. Red relations represent FKs between core schema tables; blue relations link core schema

values to corresponding ontology vocabulary terms. Data types are shortened: str for character varying; int for integer; and bool for Boolean. N

marks nullable attributes.

page include information useful to locate and download
the physical data file and associated information. The
content_type describes the type of genomic regions in
the file (such as gene segments, introns, transcripts, etc.)
and is enriched using concepts in the NCIT (28) and SO

(29) ontologies. The platform is the instrument used to
sequence the raw data related to the item and is enriched
using the OBI ontology (30). The pipeline includes a list
of methods used for processing phases, from raw data to
processed data.
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Replicate When an assay is performed multiple times on
separate biological samples (or even on the same sample),
multiple replicas of the same experiment are generated, each
associated with a distinct item and progressive numbers
(indicated as biological_replicate_number and
technical_replicate_number). Multiple replicates
for the same item are present in the sources ENCODE and
Roadmap Epigenomics.

Replicate2Item This bridge table, by combining item_id

and replicate_id, can associate multiple Items to a
single Replicate (i.e. they may have undergone different
processing) and multiple Replicates to a single Item (such
items are generally called ‘combined’).

Biosample It describes the material sample taken from a
biological entity and used for the experiment. It references
the Donor table with an FK. The biosample_type dis-
tinguishes between tissues, cell lines, primary cells, etc.
The tissue field is enriched by concepts in the Uberon
ontology (31), describing a multicellular component in its
natural state, or the provenance tissue of cells. The cell field
allows to specify single cells (in natural state), immortalized
cell lines or cells differentiated from specific cell types; it is
enriched by concepts in the EFO (32) and CL (33) ontolo-
gies. The disease (i.e. illness investigated within the sam-
ple) is enriched by the NCIT ontology; the is_healthy
field stores a Boolean condition, as the biological sample
may be healthy/control/normal or non-healthy/tumoral.

Donor It describes the donor providing the biological sam-
ple. The donor age, gender, ethnicity (enriched
with terms from the NCIT ontology) and species

(enriched with terms from the NCBITaxon terminology
(34)) refer to the individual from which the biological
sample was derived (or the cell line established).

CaseStudy It connects the set of items that are collected
together, as they participate to the same research objective
(the criteria used by each source to group together such
files are variable). It references the Project table with an
FK. The source_site represents the physical site where
the material is analyzed and experiments are physically
produced (e.g. universities, biobanks, hospitals, research
centers or just laboratory contact references when a broader
characterization is not available). External_reference
may contain identifiers taken from the main original source
and other sources that contain the same data.

Case2Item This bridge table, by combining item_id and
case_study_id, can associate multiple Items to a single
case (which is the typical scenario) but also multiple cases to
a single Item (this happens when an Item appears in multiple
analyses and studies).

Project It represents the infrastructure or organization that
sets the context for the experiments (or case studies).
Source describes the programs or consortia responsible for
the production of genomic items (currently featuring five
possibilities: TCGA; ENCODE; Roadmap Epigenomics;
RefSeq; and GENCODE). Within a source, items may
be produced within a specific initiative, specified in the
project_name, which uniquely references the project;
it is particularly relevant in the context of TCGA data,
where items are organized based on the type of tumor
analyzed in the specific project (e.g. BRCA identifies a set
of items regarding the Breast Invasive Carcinoma study) or
in annotation projects (such as the RefSeq reference genome
annotation).

ExperimentType It refers to the specific methods used for
producing each experimental or annotation data file (hence,
each item of the core schema). With respect to the orig-
inal source, a tuple is uniquely identified by the triple
technique, feature and target. The first one is
enriched by the OBI or EFO ontologies and describes the
assay, i.e. the investigative procedure conducted to pro-
duce the items. The second one is enriched by the NCIT
ontology and describes the specific genomic aspect studied
with the experiment (e.g. gene expression, mutation and
histone mark). Epigenomic experiments such as ChIP-seq
usually analyze a protein, which we call target; this
field is enriched by concepts in the OGG ontology (35).
The antibody is the protein employed against such tar-
get (values refer to The Antibody Registry, http://www.
antibodyregistry.org/, or the ENCODE antibody accession,
in case the first is missing).

Dataset It gathers groups of items stored within a folder
named dataset_name; dataset items are homogeneous as
they share a specific data_type (e.g. peaks, expression
quantifications and methylation levels), assembly (i.e.
reference genome alignment—either hg19 or GRCh38) and
file_format (i.e. standard data format of the items dictat-
ing the genomic region data schema, including the number
and semantics of attributes, for example BED, narrowpeak
or broadpeak). The Boolean variable is_annotation

allows distinguishing between datasets containing exper-
imental data and datasets storing genomic annotations
(currently defined in the Item’s content_type field).

Original metadata

Out of about 40 million metadata extracted from sources,
around 7 million were included in the core schema. Many
attributes and their respective values found within different
sources cannot be mapped to the same conceptual model.
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We store such extra attributes in an unstructured format,
using key-value pairs extended with the item_id of the Item
which they refer to; all attributes together form the PK,
while the item_id also acts as FK.

Knowledge base

Some of the attributes of the core schema have been anno-
tated with ontological concepts using an automatic proce-
dure following described. Enriched attributes include: the
ethnicity and species describing Donors; disease,
tissue and cell describing Biosamples; technique,
feature and target describing ExperimentTypes; and
platform and content_type describing Items.

Automatic enrichment is performed by using one or
two preferred bio-ontologies for each attribute (details on
the annotation process are available in (36)). For a given
value, when a match with an ontology term is not found,
the annotation task is re-routed to a manual procedure
handled by an admin user who is expert in data curation
and biomedical ontologies. So far, we enriched attribute
values by linking them to 1629 terms in the eight specified
ontologies. In addition to terms that directly annotate core
values (and their synonyms), we included all terms that
could be reached by traversing up to three ontology levels
from the base term (12 087 concepts in total); as next
discussed, the use of three levels enables powerful query
extensions.

Also the Knowledge Base is deployed using relational
tables; in particular, we use:

• the Vocabulary table, whose PK term identifier tid is ref-
erenced from all the core tables that contain semantically
enriched attributes, with the acronym of the ontology
providing the term (source, e.g. NCIT), the code used
for the term in that ontology (e.g. NCIT_C4872) and
its label (pref_label, e.g. Breast Carcinoma), in addition
to an optional description and iri (i.e. International
Resource Identifier);

• the Ontology table, a dimension table presenting details
on the specialized ontologies contained (even partially)
in the knowledge base—referenced with an FK from the
vocabulary table;

• the Reference table, containing references to equivalent
terms from other ontologies (in the form of a < source,

code> pair)—referencing, with the FK tid, the term in the
vocabulary table;

• the Synonym table, containing alternative labels that can
be used as synonyms of the preferred label along with
their type (e.g. alternative syntax, related nomenclature
and related adjectives)—referencing the term in the
vocabulary table; and

Figure 2. Excerpt of Uberon subtree originating from the ‘uterus’ root.

We only report elements that are relevant to our example.

• the Relationship table, containing ontological hierarchies
between terms and the type of the relationships (either
generalization is_a or containment part_of)—the PK is
composed of parent, child and type of the relationship;
the first two reference the vocabulary table with FKs.

For performance issues, we materialized an unfolded
representation of the Relationship table and a denormal-
ized representation of the core tables, which are used by
search queries; they are rematerialized at each change of
the database.

The construction of the Knowledge Base allows to
expand the semantic content of the values contained in
the GCM. To clarify this aspect, we briefly discuss the case
of the broad ‘uterus’ concept. In our system, tissue values
are extended using the Uberon ontology, which represents
body parts, organs and tissues in a variety of animal species
(adopted by many groups and projects, such as the Gene
Ontology (37), Monarch Initiative (38), EBI (https://www.
ebi.ac.uk/) and ENCODE). Figure 2 is an excerpt of Uberon
useful to grasp the ontological structure containing the
concepts interesting for this example. The ‘uterus’ concept
(ID:0000995) includes, among others, three parts: ‘body
of uterus’ (ID:0009853), ‘uterine cervix’ (ID:0000002),
and ‘uterine wall’ (ID:0000459). The last one has the
‘endometrium’ part (ID:0001295). Each concept can be
related to exact or broad synonyms, related adjectives and
alternative syntaxes.

Table 1 reports which values (Search keyword) in our
system are mapped to the ‘uterus’ or related ontological
concepts, and how many data items are retrieved when the
query matching mechanism progressively includes richer
options, moving from the original values (Original) up
to include also the equivalent values (Synonym) and the
hierarchical hyponyms (Expanded). Depending on the used
option, the number of matches changes significantly. By
using the Original value option, the search for ‘uterus’
retrieves only 57 data items; when the matching includes
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Table 1. Number of items found in GenoSurf using different

search options and keywords from the ‘uterus’ concept area

Term ID Search keyword Original Synonym Expanded

0000995 uterus 57 1708 16 851
uterus nos 1651 1708 16 851

0009853 body of uterus 0 9535 9535
corpus uteri 9535 9535 9535

0000002 uterine cervix 0 5585 5585
cervix uteri 5417 5585 5585
cervix 167 5585 5585
cervical 1 5585 5585

0000459 uterine wall 0 0 23
0001295 endometrium 21 23 23

endometrial 2 23 23

Original refers to search at the core level (such values correspond to metadata retrieved from
original sources); in addition to original values, synonym considers also equivalent terms
and synonyms, whereas expanded considers also all terms in the ontological subhierarchy.

synonyms, it returns 1708 items (as it also matches ‘uterus
nos’, which stands for ‘uterus, not otherwise specified’).
When the matching includes hyponyms (Expanded), it
returns 16 851 items, as it matches also all other terms
in Table 1, which originate from the ‘uterus’ root in
Uberon (Figure 2). The user can choose any of the three
levels of matching for queries and obtain either exact or
semantically improved matches without needing to know
the specific nomenclature used in the various integrated
data sources.

Data sources

Our system targets genomic sources, in the typical broader
meaning that includes DNA data, but also epigenomic and
transcriptomic data. However, our framework is general
enough to include other kinds of omics data, e.g. for pro-
teomics or metabolomics, which can be described with the
few attributes of our core schema.

Data are extracted through an incremental integration
framework, realized as a standalone application developed
in Scala programming language and configurable through
an XML file. The framework extracts both metadata
(then accessed by using GenoSurf) and region data (to be
imported in the GMQL repository). Our data extraction
procedure, which requires human intervention and is
supported by software modules, includes six steps.

The download step handles heterogeneity at the distri-
bution and format level, by taking into account various
access protocols (FTP, HTTP, RESTful API and file bun-
dles) as well as data formats (XML, JSON, CSV, Excel
and Google Sheet); it imports at our repository site the
original data and their metadata from the sources, making
use of a precise source partitioning scheme to allow for
versions’ comparison. A transformation step flattens meta-

data into a key-value output format, where the attribute
(key) describes the kind of represented information and
the value embodies the actual information. A cleaning step
produces a collection of standard metadata pairs for each
source. Redundant information (i.e. duplicated attributes) is
removed, and cumbersome keys deriving from the previous
phase are filtered out. A mapping step extracts information
from the produced pairs and maps it to the core tables
(only pairs relevant to the GCM, while others are kept
in key-value format). To this end, we manually specify ad
hoc mappings between the entities of the core schema and
cleaned attributes from the sources; examples of rules are
provided in (1). In the enrichment step, the values in specific
attributes of the core tables are then linked to biomedical
ontologies, typically manually curated by experts. During
this step, values that have super-concepts or subconcepts in
the biomedical ontologies are enriched with all terms in a
is_a or part_of relationship within three steps in the ontol-
ogy graph, as described in the previous section ‘Knowledge
Base’ and detailed in (36, 45). Finally, we perform a content
consistency check step to enforce integrity constraints and
legal values in the repository. Examples of the applied rules
are present in (1).

The whole project is detailed in https://github.com/
DEIB-GECO/Metadata-Manager/wiki/ and the code
released as open source.

The framework was designed starting from three impor-
tant data sources: ENCODE, Roadmap Epigenomics and
TCGA. These three sources provided us with the most
complex integration scenarios that can be faced in genomic
metadata integration. Later, exploiting the generality of the
integration framework, we easily extended our repository
by adding genomic annotations (from GENCODE and
RefSeq). Figure 3 provides quantitative descriptions of the
datasets currently in the repository, all related to the human
species and roughly equally distributed between assemblies
hg19 and GRCh38 (see Figure 3a).

ENCODE collects projects regarding functional DNA
sequences that intervene at the protein/RNA levels. From
ENCODE, as of July 2019, we have included in our data
repository all available processed human data files in nar-
rowpeak and broadpeak format, for both GRCh38 and
hg19 assemblies (see four datasets in Figure 3b).

Roadmap Epigenomics is a public resource of human
epigenomic data; as indicated in Figure 3c, we included in
GenoSurf 6 datasets regarding NGS-based consolidated
processed data about: (i) broad and narrow regions
associated with protein binding sites, histone modifications
or open chromatin areas identified using ChIP-seq or
DNase-seq experiments (datasets NARROW, BROAD,
GAPPED and BED); (ii) differentially methylated regions
(dataset DMR); and (iii) expression quantification of
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Figure 3. Partition of data in the integrated repository according to (a) assemblies and datasets from the most relevant sources: (b) ENCODE; (c)

Roadmap Epigenomics; (d) TCGA in the GRCh38 version provided by GDC; and (e) TCGA in the hg19 legacy data repository.

regions associated with genes, exons and other known
genomic regions of interest (dataset RNA Expression).

TCGA is the most relevant source for cancer genomics,
with data about RNA and miRNA expressions, copy num-
ber variations, somatic mutations and methylation levels.
In (39), we reported the development of an automatic
pipeline to transform into BED format, the data originally
available at the former TCGA portal, based on hg19 assem-
bly. The portal is now deprecated and has been replaced
by the GDC project (https://gdc.cancer.gov/), which pro-
vides data for the GRCh38 assembly; we transformed into
BED format, also this updated version of the TCGA data
(http://www.bioinformatics.deib.polimi.it/opengdc/). As to
July 2019, we imported seven GRCh38 datasets with a total
of 100 234 data files (Figure 3d) and 12 hg19 datasets with
a total of 106 780 data files (Figure 3e).

GENCODE aims at creating a comprehensive set of
annotations, including genes, transcripts, exons, protein-
coding and non-coding loci, as well as variants. For the
hg19 assembly, we included releases 10 and 19, whereas for
GRCh38, we imported versions 22, 24 and 27.

RefSeq is a stable reference for genome annotation,
analysis of mutations and studies on gene expression. We
imported annotation files of GRCh38 v10 and hg19 v13
releases.

Web interface

Users can search the integrated metadata content through
the GenoSurf web interface, which allows to specify search

values for metadata attributes and retrieve a list of matching
genomic items (i.e. corresponding genomic data files).

The interface is composed of five sections, described in
Figure 4: (i) a menu bar to navigate the different services
and their documentation; (ii) intuitive query utilities; (iii)
the search interface over the core database, whose content
can be set on three levels: original metadata, synonyms/al-
ternative syntax and hierarchical ontological expansion;
(iv) the search interface over key-value pairs, for searching
over original metadata from the imported sources; and
(v) a result visualization section, showing the resulting
items in three different aggregation sections. The interface
also enables an interplay between core Data search and
Key-value search, thereby allowing to build complex
queries given as the logical conjunction of a sequence
of core metadata and key-value search steps of arbitrary
length; results are updated at each step to reflect the
additional search conditions, and the counts are dynam-
ically displayed to help users in assessing if query results
match their intents. In the following, we describe the main
GenoSurf sections more in detail.

Simple data search

The Data search section (part 3 of Figure 4) serves as
a primary tool for querying the integrated repository
with GenoSurf. To improve usability, it is based on a
restricted number of the attributes in the repository
schema; attribute names in the interface are slightly
changed with respect to relational table fields, with the
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Figure 4. Sections of GenoSurf Web interface: (i) top menu bar; (ii) query utilities; (iii) data search; (iv) key-value search; and (v) results visualization.

purpose of facilitating their understanding. The interface
allows setting different levels of semantic enrichment: the
Original option (search using metadata values provided
by original data sources), the Synonym option (adding

synonyms) and the Expanded option (adding hypernyms
and hyponyms).

The Data search section has four parts to reflect the
four dimensions of GCM, i.e. Management, Extraction,
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Figure 5. Data search section of the GenoSurf Web interface, highlighting attributes within the four dimensions of the repository core schema; values

are entered by users and appear in drop-down menus for easing their selection.

Biology and Technology. It contains the 26 attributes of the
core tables most relevant for search purposes (other core
attributes are managed as additional key-value pairs). For
each attribute, matching values are presented for selection
in a drop-down list; each value has on the side the number
of items connected in the star schema to that value. Multiple
values chosen for the same attribute are considered as possi-
ble alternatives (in disjunction); values chosen over different
attributes are considered as conditions that should all be
satisfied (in conjunction) by the resulting items. The special
value N/D indicates null values and allows to select items
for which a particular attribute is undefined. After each
selection, a running query is progressively built and shown
in the interface field ‘Selected query’; the current query is
evaluated, and the number of matching items is displayed.

In the example shown in Figure 5, the user searches for
all items that have Data type either ‘copy number segment’
or ‘masked copy number segment’ and that have Assembly
‘grch38’ and Tissue ‘kidney’; the query option is set to
Original. As a consequence of the attribute value selection,
the field ‘Selected query’ is compiled as:
assembly: [‘grch38’], data_type: [‘copy’

number segment", ‘masked copy number

segment’], tissue: [‘kidney’].

Counts of attribute value associated items are changed
dynamically. For example, if initially the Data type
drop-down menu shows 22 371 items for ‘copy number
segment’ and 22 374 for ‘masked copy number segment’,
when the user selects the Tissue ‘kidney’ (with count 19
357), then the Data type drop-down menu shows 1862
items for each of the two mentioned Data types, reflecting
the reduction of matching items.

As an example of query with Data search option set
to Synonym, when we only select the value ‘k562’ for the
Cell/Cell line attribute (which at the Original level had a
5942 count), we obtain a count of 5986 items, which is the
same for all equivalent syntactic variants of the attribute
(e.g. ‘k-562’, ‘k562 cell’ and ‘k-562 cell’). Indeed, the addi-
tional 44 items derive from a small set of items labeled with
‘k562 leukemia cells’, which have been annotated with such
synonym concept corresponding to the term EFO_0002067
in the Experimental Factor Ontology. As a second example,
assuming we are interested in the antibody Target BORIS
(Brother of Regulator of Imprinted Sites), at the Original
level, we cannot find any match in the repository. However,
when we enable the Synonym level search, we find 10 items
(which were originally annotated with the transcriptional
repressor CTCFL), since in the Ontology of Genes and
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Figure 6. Key-value search result using input string ‘disease’ as a key. The keyword is matched both in the GCM attributes (for each matching attribute,

we present the number of available distinct values and some example values) and in the original source attributes (each matching attribute enables

exploration and selection of any corresponding values).

Genomes the concept OGG_3000140690, with preferred
label CTCFL, has the alternative term BORIS.

As an example of Expanded search, if we select the
value ‘eye’ for Tissue, we find 1473 items by exploiting the
expansion offered by the Uberon ontology. Specifically, we
retrieve: 13 items annotated exactly with ‘eye’; 1440 items
annotated with ‘Eye and adnexa’ (all from TCGA), which
is an alternative form of ‘eye’; and also 20 ENCODE items
annotated with ‘retina’, which is_a ‘photoreceptor array’,
which is in turn a part_of ‘eye’.

Key-value search

The Key-value search section (part 4 of Figure 4) allows
searching metadata without having previous knowledge of
the original metadata attribute names and values, or of the
attribute names and data content of the GCM core schema,
which stands behind the integration effort. In the Key-value
search, the user can perform a case-insensitive search either
over all metadata attributes (using the Key option) or over
all metadata values (using the Value option). Users can
search both keys and values that either exactly match or
only contain the input string.

When input strings are searched within keys, in case
a match is found among the core attributes of the GCM
(which can also be considered as ‘keys’), we provide an
informative result: example values of each of the matched
attributes and the number of distinct values available for
that attribute. Conversely, when showing the results of a
match on original attributes (i.e. keys), a list of all matching
keys is provided in output, equipped with the number of

distinct values available for each of such keys; the user
can then explore these values and select any of them.
Figure 6 shows a search with Key option and input string
‘disease’.

Value search has a simpler interface, showing all possible
matches in values, both for core attributes and original key-
value pairs. Users can directly select desired key-value pairs
among the ones shown in the result.

Query sessions

A query consists of a sequence of search sessions, performed
by alternating simple Data search and Key-value search;
a sequence of searches produces items resulting from the
conjunction of search conditions. Within each search ses-
sion, multiple options for values (either for core attributes
or as keys/values in Key-value search) are considered in
disjunction. Figure 7 shows how a query can be composed
using a sequence of two Key-value search sessions; steps can
be deleted by rolling them back in any order. The query of
Figure 7 corresponds to the predicate:
(biospecimen__admin__disease_code = "chol"

OR biospecimen__admin__disease_code="kich"

OR clinical_patient__history_immunological

_disease = "hashimoto’s thyroiditis") AND.

biospecimen_sample__sample_type = “primary
tumor”.

Every choice in the Data search and Key-value search
sections impacts the results and their visualization at the
bottom of the web interface page (part 5 of Figure 4).
Acting on the Data search section, the result table is updated
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Figure 7. Example of composition of two key-value search sessions.

whenever the user either adds or removes a value from
a drop-down menu or types/deletes text directly in a text
field. In the Key-value search section, filters are instead
applied/deleted by pressing corresponding buttons; due to
their greater complexity, they are typically applied one-by-
one, hence a dynamic update is not useful.

Result visualization

As shown in Figure 8, the result visualization includes three
sections: (i) Source count, containing the number of found
items aggregated by origin data source; (ii) Dataset count,
containing the number of found items aggregated by dataset
name; and (iii) Result items, reporting the core metadata
values of resulting items (to be navigated in batches of
chosen cardinality, with suitable scroll options). Within the
last section, a table is presented with one row for each
item; for all found items, we also provide links to the data
description page at the source location, and to data files
at their source location (Source URI) and at our repository
location (Local URI). The user can visualize the original
metadata key-value pairs of a data file by clicking on
the row’s Extra button. In the bottom part of the table,
the user can select how many rows should be visible in
the page, up to a 1000 limit; other pages can be scrolled
using the left/right arrows. Fields can be arbitrarily sorted,
included or excluded from the tabular visualization (Sort
fields button).

The user can change the one-item-per-row default
view by using the Replicated/Aggregated switch; when
items match many Replicates/Biosamples/Donors, with the
Aggregated option, related information is aggregated by
concatenating the possible distinct values through the pipe
symbol ‘|’.

Inference explanation

Behind the scenes, the implemented keyword-based search
is driven by a precise inference mechanism, which is tuned
according to the user’s choice of query option (Original,
Synonym and Expanded) and is based on semantic enrich-
ment. To illustrate the relational links that are traversed

in the different kinds of searches over our system, we
introduce the concept of deduction chain, which describes
the internal path in the database that links the Item (i.e.
the found data file) to the table where the match with the
search keyword is found. The deduction chain shows the
steps of the inference process that are activated according
to the requested search level. A search may be performed
considering:

• the source original metadata key-value pairs;
• the GCM attributes;
• additionally, the ontological synonym annotations; and
• additionally, the ontological hierarchical expansions.

The best way to illustrate deductive chains is by showing
an example of use. A biologist or bioinformatician may be
interested in the keyword ‘brain’, intending to request all
data items related to this concept (i.e. those that contain
this string in their metadata). Table 2 shows how quan-
titative results in our system (i.e. numbers of items) can
be explained: according to the different search levels (first
column); we indicate the number of found data files (second
column); and the third column shows the deduction chain.

At the first level, the search produces key-value pairs cor-
responding to unchanged original metadata directly linked
to the <Item>. Thus, the first four rows of Table 2 link
an <Item> directly to a < Key, Value>; at this level, term
matching can be performed on either keys or values. For
instance, the first row indicates that 789 found items are
associated with the pair <biosample__organ_slims,

brain>.
At the second level, the search is performed on the

attributes of the core schema; results in Table 2 match
values contained either in the tissue, disease or cell
attributes. In the first case, the deduction chain shows
that 15 714 items are found since they are connected
to a < Replicate>, further connected to a < Biosample>,
which contains the ‘brain’ value for the tissue attribute.

At the third level, the search is based on ontological
vocabularies and synonyms. The example in Table 2 shows
that we found 13 items whose original cell value is ‘fetal
brain’, a synonym of ‘brain’ annotated with the Uberon
ontology term 0000955.
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Figure 8. Excerpt of the result items table resulting from a search session. Red ellipses highlight relevant features. Top left: GMQL button to generate

queries to further process related data files; DOWNLOAD buttons for result items table and data file links; and Replicated/Aggregated switch. Top

right: SORT FIELDS button to customize the columns visualized in the table. Center: Extra, Source URI and Local URI columns with clickable links.

Bottom right: component to set the number of rows visible at a time; indication of the total items corresponding to the performed query.

Table 2. Available search levels and examples of their results for the ‘brain’ search keyword

Search level # items Deduction chain

1 789 <Item>− <Key: biosample__organ_slims, Value: brain>

4670 <Item>− <Key: gdc__project__disease_type, Value: brain lower grade glioma>

126 <Item>− <Key: clinical__lgg__family_history_of_primary_brain_tumor, Value: yes>
2463 <Item>− <Key: clinical_patient__history_lgg_dx_of_brain_tissue, Value: no>

2 15 714 <Item>− <Replicate>− <Biosample.tissue: brain>

9188 <Item>− <Replicate>− <Biosample.disease: brain>

10 <Item>− <Replicate>− <Biosample.cell: smooth muscle cell of the brain vasculature>
3 13 <Item>− <Replicate>− <Biosample.cell: fetal brain> −<Vocabulary: brain, UBERON_0000955>

4 10 <Item>− <Replicate>− <Biosample.tissue: pons> − <Vocabulary: pons, UBERON_0000988 >

−[IS_A] −< Vocabulary: regional part of brain, UBERON_0002616 >−[PART_OF]
−< Vocabulary: brain, UBERON_0000955>

8 <Item>− <Replicate>− <Biosample.tissue: globus pallidus>
−<Vocabulary: globus pallidus, UBERON_0001875 >−[PART_OF]
−< Vocabulary: pallidum, UBERON_0006514 >−[IS_A]
−< Vocabulary: brain gray matter, UBERON_0003528 >−[PART_OF]
−< Vocabulary: brain, UBERON_0000955>

For the different search levels, we show the number of items resulting from searching on: (1) source key-value metadata; (2) core attribute values; (3) synonyms; and (4) hyponyms, with the
corresponding deduction chain.

At the fourth level, the search is based on ontological
vocabularies and synonyms or their hyponyms; for instance,
the first row in Table 2 for this search level indicates that
10 items are associated with the term ‘pons’, which is a
‘regional part of brain’ according to the Uberon ontology
terms 0000988 and 0002616.

Additional functionalities

To provide a complete and useful environment to users, we
allow to modify, save and load queries, as well as search
results, in a customizable way; other functionalities allow to
use results produced by GenoSurf within the GMQL engine.
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Interaction with queries To support re-use of queries, we pro-
vide the possibility to download and upload text files in
JavaScript Object Notation (JSON) format containing the
query, or directly copy, paste and modify JSON queries on
the web interface. Furthermore, 10 predefined queries are
available to demonstrate practical uses of the interface.
Use of results Found genomic region data files can be down-
loaded individually from the GenoSurf web interface using
the Source URI, a clickable link to download the region
data file from the origin source, or the Local URI, to
download the region data file corresponding to the selected
item from the GMQL system, when available (see Figure 8).
Additionally, for each search query, we provide (through the
buttons DOWNLOAD TABLE and DOWNLOAD LINKS
in Figure 8): a text file containing all the URLs to download
all the genomic region data files from our system, and a
comma-separated file to download the entire results table.

Finally, the user can generate a GMQL query (button
GMQL in Figure 8) that can be used directly in our GMQL
engine in order to select specifically the items found with a
GenoSurf search for further processing.

RESTful API All services used in the GenoSurf web interface
are implemented using our GenoSurf RESTful Applica-
tion Programming Interface (API) available at http://www.
bioinformatics.deib.polimi.it/genosurf/api/.

All POST services are based on the principle of
setting a JSON payload that establishes the context
for the next query. As an example, if the JSON pay-
load is as follows: {"gcm":{"disease":["prostate
adenocarcinoma"], "assembly":["grch38"]},
"type":"original", "kv":{} }, it means that the
next query (i.e. API request) is performed only on the set of
GRCh38 prostate adenocarcinoma items, which are 4821.
Suppose we are interested in knowing how many of these
samples are healthy and how many are non-healthy. We can
thus call the /field/{field_name} API service (with
{field_name} equal to is_healthy) providing the just
mentioned payload. The output is as follows:

{
"values": [

{"value": false, "count": 3543},
{"value": true, "count": 1278}

],

"info": {
"shown_count": 2,

"total_count": 2,

"item_count": 4821

}
}
It indicates that roughly 75% of the results regard tumor

samples and about 25% healthy samples.

Complete dumps of the whole database with timestamps
are available at http://www.bioinformatics.deib.polimi.it/
genosurf/dump/.

Use cases

In this section, we show typical data retrieval queries per-
formed by a hypothetical user of GenoSurf to select interest-
ing subsets of the integrated repository. More examples of
interest can be found in the GenoSurf WIKI page at http://
www.gmql.eu/genosurf/.

Extracting cancer patient data

Suppose we are interested in extracting data of different
types divided by patient for a specific cancer type. Consider-
ing genomic, epigenomic and transcriptomic data of cancer
patients in a comprehensive way provides a general view of
their biomolecular system, possibly leading to novel find-
ings. Let us consider as an example GRCh38 TCGA data
for disease ‘Cholangiocarcinoma’. In total, the repository
contains 401 related items divided in seven datasets, each
of which contains between 45 and 85 different items, as it
can be observed in Figure 9.

In the RESULT ITEMS table, the order of columns can
be customized. For this particular query, it is useful to
arrange Source ID, Donor ID, Data Type and Healthy as
first columns. The resulting table can be sorted by Donor
ID and downloaded as a.csv file. Groups of rows with the
same Donor ID represent all available genomic region data
files for each specific donor, with different data types and
normal/tumor characterization. Table 3 shows an excerpt
of the result, relative to two different patients having 9 and
14 items each. The first patient has normal/tumor data pairs
for the Copy Number Segment and Masked Copy Number
Segment data types, while the second patient has normal/-
tumor data for all available data types except for Copy
Number Segment and Masked Somatic Mutation (in some
cases, normal data are even repeated). This kind of quick
data extraction can be conveniently used to understand how
many same-patient data items are available for performing
differential data analysis (i.e. comparison between certain
characteristics of normal vs. tumor patients’ signals and
sequences).

The datasets can be analyzed using a genomic data
analysis tool such as GMQL. By clicking on the GMQL
button (Figure 8), the user can retrieve the selection query
ready to be pasted into the GMQL web interface publicly
available at http://www.gmql.eu/gmql-rest/; there, results
can be aggregated by patient using specific operations such
as JOIN or GROUP BY. For more details, please refer to
(14) and to the ‘GMQL introduction to the language’ docu-
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Figure 9. Available datasets for the performed GRCh38 TCGA Cholangiocarcinoma data search.

ment at http://www.bioinformatics.deib.polimi.it/genomic_
computing/GMQLsystem/documentation.html.

Combining ChIP-seq and DNase-seq data in

different formats and sources

Suppose the data analysis goal is to extract genomic
regions of enriched binding sites that occur in open
chromatin regions, e.g. focusing on H1 embryonic stem
cells. This example shows how to improve the quality of
the peaks called within ChIP-seq experiments by filtering
out the peaks that are not in open chromatin regions
(as required by molecular biology). In order to catch all
possible available data related to such cells, we select
the Synonym semantic option in the Data search phase.
As a first step, we look for ENCODE (Source) and
ChIP-seq (Technique) experiment items with narrowpeak
format (File format) and regarding H1 cells (Cell/Cell
line). We find 601 items as a result. As a second step,
we select Roadmap Epigenomics (Source), DNase-seq
(Technique) and HOTSPOT (Pipeline) open chromatin
regions in H1 cells (Cell/Cell line). Such selection produces
as a result four items. For this set, we decide to further
restrict the selection to items with a false discovery
rate (FDR) threshold of at least 0.01 (note that the
HOTSPOT peak caller was used to call domains of

chromatin accessibility both with an FDR of 1% and
without applying any threshold). Since this is a source-
specific metadata information, we apply this filter by
using the Key-value search interface: we first search
metadata keys that contain the ‘FDR’ string, obtaining
the manually_curated__fdr_threshold key with values
‘0.01’ and ‘none’; we then chose to apply the manu-
ally_curated__fdr_threshold = 0.01 filter, which reduces our
results to only one item, with the desired content. The
obtained JSON query corresponding to this second step
looks as follows:

{
"gcm":{
"source":["roadmap epigenomics"],

"technique":["dnase-seq"],

"pipeline":["hotspot"],

"cell":["h1 cells"]

}
"type":"synonym",

"kv":{
"fdr_0":{
"type_query":"key",

"exact":false,

"query":{
"gcm":{},
"pairs">:{
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Table 3. Excerpt of result table from the extraction of GRCh38 TCGA Cholangiocarcinoma data, grouped by patient (i.e. Donor

ID)

Source ID Donor ID Data type Healthy Technique

3787a... 07755... Copy number
segment

FALSE Genotyping array

e6443... 07755... Copy number
segment

TRUE Genotyping array

f36ef... 07755... Gene expression
quantification

FALSE RNA-Seq

f7b6d... 07755... Isoform expression
quantification

FALSE miRNA-Seq

3787a... 07755... Masked copy
number segment

FALSE Genotyping array

e6443... 07755... Masked copy
number segment

TRUE Genotyping array

9aa16... 07755... Masked somatic
mutation

FALSE WXS

1ba92... 07755... Methylation beta
value

FALSE Methylation array

f7b6d... 07755... miRNA expression
quantification

FALSE miRNA-Seq

2cbc6... 20bf7... Copy number
segment

TRUE Genotyping array

c2d57... 20bf7... Copy number
segment

TRUE Genotyping array

d3b1d... 20bf7... Gene expression
quantification

FALSE RNA-Seq

2649a... 20bf7... Gene expression
quantification

TRUE RNA-Seq

016fd... 20bf7... Isoform expression
quantification

FALSE miRNA-Seq

f002e... 20bf7... Isoform expression
quantification

TRUE miRNA-Seq

5150... 20bf7... Masked copy
number segment

FALSE Genotyping array

2cbc6... 20bf7... Masked copy
number segment

TRUE Genotyping array

c2d57... 20bf7... Masked copy
number segment

TRUE Genotyping array

80 052... 20bf7... Masked somatic
mutation

FALSE WXS

33 585... 20bf7... Methylation beta
value

FALSE Methylation array

d8106... 20bf7... Methylation beta
value

TRUE Methylation array

016fd... 20bf7... miRNA expression
quantification

FALSE miRNA-Seq

f002e... 20bf7... miRNA expression
quantification

TRUE miRNA-Seq

"manually_curated__fdr_threshold":

["0.01"]

}
}

}

}
}
Such JSON document can be retrieved by pressing the

MODIFY or DOWNLOAD query buttons (at the top of the
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GenoSurf web interface) and can also be used as a payload
in the RESTful API services.

The located data files can be either downloaded to be
further processed or directly selected in GMQL. Indeed, the
objective of this use case corresponds to performing a JOIN
operation in GMQL between the regions in the data items
found with the first step and those in the item from the
second step.

Extracting Triple-Negative Breast Cancer cases

Suppose we are working on comparative triple-negative
breast cancer analysis. This means that we need to select
breast tissue data from the TCGA-BRCA project character-
ized by the absence of all the three types of receptors known
to fuel most breast cancer growth: estrogen, progesterone
and HER2. Such absence can be encoded in the data as
a negative status of the receptors. To do so, first, in the
GenoSurf Data search section, we select: project_name:
["tcga-brca"] and tissue: ["breast"], which
reduces the result to 23 581 items. Then, in the Key-value
search section, we need to set the following conditions in
conjunction:"
"clinical__brca_shared__breast_carcinoma_

estrogen_receptor_status":["negative"] AND

"clinical__brca_shared__breast_carcinoma_

progesterone_receptor_status":["negative"]

AND

“clinical__brca_shared__lab_proc_her2_neu_
immunohistochemistry_receptor_status”:
[“negative”]

Note that the exact name of the keys/attributes to query
can be identified by previously performing a Key search for
estrogen, progesterone or HER2, respectively.

Figure 10 shows such search on the GenoSurf Key-
value interface, leading to the desired result. (Note that
for building conjunctive conditions, each one must be in a
separate panel; filters selected in the same panel are result
in a disjunction).

Extracting from multiple sources at a time

Suppose we need to retrieve items of hg19 assembly from
healthy brain tissue (and possibly its subparts) of male
individuals up to 30 years old. In total, hg19 items in
the repository are 123 965. Healthy tissue corresponds
to choosing ‘true’ in the Healhty/Control/Normal filter,
which reduces the result to 18 090 items. Since Tissue is
an attribute that benefits from ontological expansion, we
select the Expanded semantic option, to be able to find
items connected also to the hyponyms of ‘brain’. This filter
selects 1046 items (annotated with ‘brain’ or ‘cerebellum’).
Gender ‘male’ gets 604 items, and finally, the condition

Max.age = 30 years (corresponding to 10 950 days in the
API call performed by the system) finds 56 items. As it can be
observed in the SOURCE COUNT tab, such output derives
from the ENCODE (2 items) and TCGA (54 items) sources.

Combining mutation and ChIP-seq data

Suppose we are interested in identifying DNA promotorial
regions bound by the MYC transcription factor and that
present somatic mutations in breast cancer patients with
tumor recurrence. To answer such typical biological ques-
tion, a user can concentrate on hg19 assembly and perform
three separate search sessions: (i) selection of ENCODE
(Source), hg19 (Assembly), ChIP-seq (Technique), narrow-
Peak (File format), MCF-7 (Cell/Cell line)—a breast cancer
cell line, and MYC binding sites (Target); (ii) selection of
TCGA (Source), hg19 (Assembly), BRCA (Project name)
and DNA-seq data (Technique) of patients who encoun-
tered a new tumor occurrence—such latter information can
be selected from the Key-value search part, for example
using the value search string ‘new tumor’; and (iii) selection
of hg19 genomic region annotations describing promoter
locations from RefSeq.

The first result set amounts to 16 items; these can be
retrieved by using the filters in the GenoSurf Data search
section. The second result set contains three items (first, 993
items are extracted in the Data search section; then, they
are reduced to three items by the Key-value search of the
additional tumor event). The third result set contains two
annotation items, one specific for each assembly.

Such results can be later analyzed in GMQL by using
a chain of GenoMetric JOINs first between the sets result-
ing from selection to extract the MYC-binding promoters,
and then with the set from selection, and to extract the
BRCA-mutated MYC-binding promoters. Along the way,
GMQL operators can be used to remove genomic regions
replicated in the data and add new metadata attributes
counting the number of investigated promoters for each
patient.

Evaluation

Evaluating an integrated platform for the retrieval of
genomic data files is a challenging task. We invited about
60 users, expert of the domain but typically at their first
encounter with GenoSurf, to evaluate several aspects of our
platform (46). We received 40 complete responses; these
helped us to assess the usability and usefulness of our system.

The users were sourced from within our research group
(GeCo) at Politecnico di Milano and from several collab-
orating Institutions (such as Politecnico di Torino, Istituto

Nazionale dei Tumori, Università di Torino, Università di
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Figure 10. Example of the key-value filters needed to select triple-negative breast cancer items after using the data search interface to preliminarily

select TCGA-BRCA breast items.

Roma Tre, Istituto Italiano di Tecnologia, Radboud Uni-
versiteit Nijmegen, Freie Universität Berlin, Harvard Uni-
versity, Broad Institute, National University of Singapore
and University of Toronto), including computational and
molecular biologists, bioinformaticians and computer sci-
entists/software developers with interest in genomics. To
measure the level of experience in the genomic field, each
user was asked to rate his/her knowledge in a Likert scale
(40) of five levels, from ‘Fundamental Awareness (basic
knowledge)’ to ‘Expert (recognized authority)’; users gen-
erally self-evaluated to have an intermediate to advanced
knowledge, as they use platforms at least on a monthly basis
to retrieve and combine data from heterogeneous sources
for their analysis. We provided WIKI documentation and
video tutorials; half users found this material very useful,
while the remaining half did not use it.

Users provided their feedback to a survey (available at
http://www.bioinformatics.deib.polimi.it/genosurf/survey/)
that includes a set of 10 questions of increasing complexity,
performed in order to progressively learn GenoSurf,
followed by a questionnaire for providing an overall
evaluation of the system; the questionnaire was normally
provided in anonymous format, although some users
elected to provide their contacts. Correct answers could
be read after submitting results.

Search questions

The 10 questions of the questionnaire (some of which con-
tained two or three subquestions) covered different aspects
of the search experience provided by the GenoSurf web
interface. We attempted to lower the ambiguity of the ques-
tions as much as possible. Starting from the basic selection
of data sources and assemblies, we asked the user to explore
healthy/tumor options, disease characterizations and data
types (e.g. ‘Which TCGA GRCh38 project (among a list
of shown options) has more gene expression data?’). We

then tested the understanding of the semantic enrichment
options (e.g. ‘How many sources contain data annotated
with the human fetal lung cell line IMR-90, using alternative
syntaxes?’) and the logical combination of different filters
(e.g. ‘In ENCODE, how many items of ChIP-seq can you
find for the histone modifications H3K4me1, H3K4me2,
and H3K4me3?’). One question used the source key-value
pair selection, while the final use case proposed the com-
position of three different datasets to prepare a realistic
data analysis scenario (e.g. ‘Suppose you need to identify
DNA promotorial regions bound by the MYC transcription
factor that present somatic mutations (if any) in breast can-
cer patients...’), which involved selecting items in separate
search sessions from three different data sources.

Five users were able to answer correctly all questions.
Overall, eight questions were answered correctly by at least
75% of users. Only two questions had a lower rate of
correct answers (respectively, 51.25 and 67.50%). Users
responded the 10 test questions in 44 min on average.

Evaluation of the system

In the second part of the survey, we asked the users whether
they liked the system, if they learnt from it, what they
suggested to improve and to give us hints on how to
proceed in our work (with open suggestions). Two-thirds of
the users declared that answering the proposed questions
was ‘moderately easy’ or ‘neither easy nor difficult’ and
would recommend the platform to their colleagues. Almost
all users, when asked to perform a query to reach items
useful to their own research, succeeded in their purpose.
Most open suggestions proposed the inclusion of currently
unsupported sources that we should add, with most indi-
cations pointing to the GWAS Catalog, the Genotype-
Tissue Expression (GTEx) project, 1000 Genomes Project,
the Cancer Cell Line Encyclopedia and the ICGC. A few
suggestions indicated small improvements of the interaction
that have been incorporated.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/baz132/5670757 by Politecnico di M

ilano D
IP. D

I IN
G

EG
N

ER
IA G

ESTIO
N

ALE user on 13 January 2020

http://www.bioinformatics.deib.polimi.it/genosurf/survey/


Database, Vol. 2019, Article ID baz132 Page 19 of 21

Conclusion

Modern biological and clinical research increasingly takes
advantage of high-quality open data, made available by
large international consortia. However, the repositories
available for data access do not share a common organiza-
tion for their metadata, and hence, scientists have hard time
in searching information from them; a system capable of
supporting metadata integration and search, able to locate
heterogeneous genomic datasets across sources for their
global processing, is strongly needed. We responded to such
need by building a metadata integration and search system;
the technical development of the integrated repository, its
GenoSurf interface and a complete pipeline for metadata
acquisition and enrichment started in 2017, and it is now
completed.

The repository has been developed using a PostgreSQL
implementation; its schema includes core, original and
knowledge base data tables, suitably connected by external
keys; a materialization of their full join augmented with the
unfolding of the knowledge base is also available for fast
query processing. The data management backend has been
produced in the last 2 years, capitalizing on several previous
years of experience in the use of bio-ontologies for specific
research projects (e.g. SOS-GeM (41) and GPKB (42)). The
repository currently integrates about 40 million metadata
items from five sources, described by 39 attributes over
eight connected tables of the core schema and enriched
with terms from eight different ontologies, which have been
reduced to the same knowledge schema.

This metadata search server has been running in the
last 6 months; its GenoSurf interface is equipped with
RESTful API, documentation Wiki, video tutorials and a
pedagogical survey, which are intended to accelerate the
users’ learning of the system and its usage. The system has
been tested with about 1000 input queries for locating,
across sources, heterogeneous datasets targeted to research
purposes. They have been generated by the authors, by PhD
students and postdocs within the GeCo group, and by about
20 collaborators outside the group, holding either com-
puter science, bioinformatics or biomedical background.
External evaluation has been performed on both functional
and usability requirements, with positive results summa-
rized by analyzing the answers to a survey filled by 40
researchers with computer science or biomedical back-
ground, and with intermediate or advanced expertise on
genomics and bioinformatics.

In our future work, we will continue the data integration
effort, by completing metadata management for Cistrome
and ICGC, as well as 1000 Genomes Project data
sources. We will then consider some other sources pointed
out by evaluators, starting with the Cancer Cell Line
Encyclopedia (43).

From a technological point of view, our next challenge
is to design and develop a fast query processing tool and
associated RegionViewer, integrated with GenoSurf but
directly operating on the GMQL Engine, that can reveal,
for given regions or genome bins, individual or summarized
information of genetic and epigenetic nature, extracted
from processed data in our repository. Such effort will
require online fast access to the regions of the repository
as well as support for region aggregation operations, hence
an efficient redesign of some specific GMQL operators.
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