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Abstract

Applied sciences have witnessed an explosion of georeferenced data. Object ori-
ented spatial statistics (02S2) is a recent system of ideas that provides a solid
framework where the new challenges posed by the GeoData revolution can be
faced, by grounding the analysis on a powerful geometrical and topological ap-
proach. We shall present a perspective on 0252, as a fruitful ground where novel
computational approaches to geosciences can be developed, at the very inter-
face among varied fields of applied sciences — including mathematics, statistics,
computer science and engineering.
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1. Introduction: O2S2 for Modern Applied Geosciences

The availability of large amounts of data is shaping a new era for applied geo-
sciences. Nowadays, field studies may not rely on small-scale datasets of scalar
variables only, but rather on a multitude of complex datasets from different
sources, which provide direct and indirect observations of the phenomenon under
investigation. For instance, seismic monitoring relies on dense networks of mea-
surement instruments in-situ, which typically record signals at high-frequency
in time (i.e., functional data). Here, additional sources of information are rep-
resented by remote sensing data (e.g., satellite images), and soft data, such as
those provided by the resident population via crowdsourced platforms (smart-
phone applications, social networks or online surveys, see, e.g., [1]).

Data analyses in these settings cannot ignore the data heterogeneity and
complexity. Data streams, functional data, images, tensors, networks, and texts
are few paradigmatic examples of the different types of data objects that may
represent the core of the geostatistical analysis. In the GeoData deluge, the con-
text where classical geostatistics was developed is rapidly disappearing, opening
a new frontier for GeoData Science.
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This framework is fostering a compelling need for innovative paradigms of
analysis. Object oriented spatial statistics (0252, [2]) is a recent system of
ideas that provides a solid framework where these new and revolutionary chal-
lenges can be faced, by grounding the analysis on a powerful geometrical and
topological approach. 02S2 embraces the philosophy of object oriented data
analysis (OODA, [3]), and is rooted in the interpretation of the data point (e.g.,
the curve, image, or network) as the atomn of the statistical analysis. The data
points (also called data objects) are thus modeled as points in a mathematical
space — named feature space — that should properly represent the data charac-
teristics, particularly their dimensionality and constraints.

In the context of 0252, new challenging problems can be formulated and
tackled, and classical paradigms of analysis reinterpreted (e.g., those based on
variography, kriging and stochastic simulation), opening new venues for compu-
tational geostatistics. The intent of this paper is not to provide an exhaustive
review or deep mathematical treatment, but rather a perspective on 0252 as a
paradigm for the development of new computational approaches to geosciences.
We shall also open views on the varied contexts that are being challenged by
the complexity of modern GeoData-driven problems, in areas of applied sciences
well beyond the classical fields of application of geostatistics. The focus will be
posed not only on the complexity of the data, but also on the potential com-
plexity of the study domain (e.g., for its size or shape), with reference to the
computational methods and software developed in 0252.

2. A key role for the feature space

Among the pillars of 0252, the feature space plays a key role. For instance,
the operations (sum, product by a constant) defined in the feature space are
key to the definition of linear predictors such as kriging [2]. As an example,
we consider a set of data objects (e.g., functional data), collected at locations
81,...,8n in a spatial domain D, and denoted by Xj,, ..., X5, . We represent the
data as elements of a Hilbert feature space F (e.g., the space L?), with oper-
ations (+,-), inner product (-,-), and associated norm || - ||. Loosely stated, in
0252 for Hilbert data, the kriging predictor is defined as the linear combination
of the data ). ; Af - X, with ‘optimal’ scalar weights A}, ..., A% (see [2]). Here,
the form taken by the linear combination is precisely determined by the opera-
tions (+,-). On the other hand, the metric induced by the inner product in F
implies a notion of similarity between data objects observed at nearby locations
(|| X, — X, |1, 4,4 = 1,...,n), which is instrumental in defining the variogram
and the associated notions of stationarity (see [4, 2]). As a matter of fact, the
feature space F should be selected as to properly represent the data character-
istics that one is willing to account for in the analysis. In this perspective, a
feature space selected for unconstrained functional data (e.g., the space L? or
a Sobolev space), most likely will be inappropriate to represent tensor data or
distributional data, such as probability density functions (PDFs). These latter
types of data are not uncommon in the geosciences. For instance, particle-size
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fractions (PSFs) and particle-size densities (PSDs, i.e., the continuous counter-
part) are routinely used in hydrogeological studies and in all the areas of applied
science where flow and transport phenomena are to be modeled, being related to
the porosity and permeability of the medium. The analysis of PSFs (PSDs) re-
quires to account for the fact that they are closed data, i.e., their sum (integral)
is one. It has been widely recognized [ [6] [7] that an approach which neglects
this aspect and treats each component of a PSF separately (or fixed quantiles
of a PSD) is affected by spurious correlations. Furthermore, it leads to biased
results and inappropriate estimates. For instance, embedding PSDs in L? and
building kriging predictors through its geometry most likely leads to negative
kriged densities or totals different from one (e.g., [§], and references therein).
All these issues arise because an Euclidean space is not the appropriate fea-
ture space for the analysis, as the data belong to a simplex. In the perspective
of 0252, the analyst should first focus on these geometrical properties of the
data (positivity and closeness), and, on this basis, select an appropriate feature
space — a possible choice being, for PSFs, the Aitchison geometry for composi-
tional data in the simplex [CoDa [6] and, for PSDs, its continuous counterpart
[9,[8]. In this vein, the feature space may not necessarily be finite-dimensional
and Euclidean — the working assumptions of geostatistics — but could be an
infinite-dimensional Hilbert space, a Riemannian manifold or a Banach space,
if better representative of the data objects [4] [10].

3. 02S2 in action

The areas of potential application of 0252 are varied. O2S2 has been used
for the spatial prediction of particle-size distribution in heterogenous aquifers
[8, 1], to model and forecast gas rate production curves in shale reservoirs [12],
and, more recently, for the analysis, prediction and simulation of shaking fields
generated from earthquakes events [I3]. In fact, O2S2 can be used naturally in
all those settings where compositional, symbolic and functional data analysis
[6, 14, [15] approaches were already successfully introduced, such as geochem-
istry (see [7] and references therein), climatology [16], oceanography [17], water
quality [I8]. A short case study on water quality will be presented at the end
of Sect. B

02S2 also allows for kriging meta-modeling [19], enabling one to perform
efficient uncertainty assessment in numerical models where the response is a
complex object (e.g., a function of time or a field in space). This has found
application in models for fluid flow in reservoirs [20, [2I], but also in diffusion-
reaction PDE models [22]. A similar approach is currently used to provide a
full uncertainty assessment on a mathematical model for sediment transport in
a mountain basin, within the SMART-SED project [23].

In all these contexts, calibrating the model inherently requires to take ad-
vantage of the rich but heterogenous set of information available at different
sources, integrating the data collected in situ with those given at other open
data repositories (e.g., on region geology, soil composition, land use). Data
fusion — i.e., the process of combining information from multiple data sources
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based on sound statistical models — is still one of the most challenging yet com-
pelling issues to bring O2S2 into further action. A critical topic in this regard is
definitely the change of support for the data, particularly the problem of down-
scaling (i.e., of bringing the data support to a smaller spatial scale). Developing
effective downscaling methods in 0252 will be the key to further broaden its
potential in modern applied geosciences.

4. A GeoData revolution beyond classical applications

The advent of modern low-cost technologies for data collection and storage is
fostering the GeoData revolution well-beyond Earth sciences. Smart cities are
equipped with huge networks of sensors, which provide real-time information on
various aspects of life in urban areas. Hot research topics in this field are those
related to urban mobility, particularly for the development and optimization of
shared approaches. In this context, urban dynamics of vehicles and people can
be then inferred from the integrated analysis of large amounts of georeferenced
digital ‘contrails’ and weak signals left by the users, such as mobile phones traf-
fic data, social networks activity, or GPS locations collected from smartphone
applications [24].

In our view, the GeoData revolution represents an incredible opportunity for
knowledge dissemination across very disparate areas of science and engineering.
For instance, GeoData are also widespread in the context of Industry 4.0, where
data-rich environments are feeding the 4th industrial revolution. Production
plants are becoming highly sensored, to allow for a real-time quality monitoring
of the produced parts. In this broad context, additive manufacturing (i.e., 3D
printing) is leading the industrial and statistical research, at the very frontier
of statistical process control. Monitoring of parts is interpreted in this context
as (real-time) analysis of data objects represented by complex shapes, often
described by manifold geometries [25]. The challenge to take on in this frame-
work is to allow for data-driven semi-automatic product and process monitoring,
based on streams of high-frequency signals (e.g., videos [26]) or tomographic re-
constructions [25], these data being naturally subject to spatial dependence (i.e.,
GeoData). Here, O2S2 has the clear potential to be successfully employed for
modeling the spatial structure of complex data, in the same varied industrial
settings were kriging and multi-fidelity paradigms have been already successfully
introduced (see, e.g., [27] in free-form surface monitoring).

5. Complex data or complex domains?

Historically, the analysis of spatial data has been dominated by the use of
global approaches to the field modeling, mostly based on the assumption that
the generating process is stationary (or mildly non-stationary) and distributed
over a Euclidean domain. However, in vast areas of geosciences, the proximity
between data locations is naturally expressed through the shortest path (i.e., the
geodesic) induced by the physics of the phenomenon, which may well be non-
Euclidean. For instance, while measuring aquatic variables in a stream network
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system, the closeness among monitoring sites should be represented through a
water distance — i.e., the shortest path within water, or a distance accounting
for the fluid flow in the system — rather than the Euclidean shortest path, which
may pass through land.

The extensive availability of GeoData defined at large spatial scales, calls
for innovative methodological and computational approaches able to deal not
only with massive and complex data, but also with data distributed over general
types of study domains. This area is the focus of active research in geostatistics.
Indeed, whenever the metric on the spatial domain is non-Euclidean, widely-
used parametric covariance families may no longer be valid [28]. In special cases,
flexible classes of valid covariance models have been developed; these include the
case of stream networks (e.g., [29, [30]) and spherical domains (e.g.,[3T], 32} [33]),
which naturally arise when dealing with global climate data (see, e.g., [34]).
However, strategies based on the development of ad hoc valid models for the
specific metric at hand seem hardly applicable in general contexts. Recent
literature has shown that overcoming the issue is possible by using different
modeling or computational approaches in the analysis. Relevant contributions
in this sense are those encoding the spatial dependence precisely through the
physics of the phenomenon, described via partial differential equations (PDEs,
see, e.g., [35, BO]) or stochastic PDEs (SPDEs, see, e.g.,[37]). Although these
approaches are yet to be developed for general types of object data, their mod-
eling perspective is naturally suited to take full advantage of the possible prior
knowledge on the laws governing the phenomenon under study.

In the context of 02S2, we recently proposed [I8] a computational approach
able to deal jointly with the data and the domain complexities, by following
a divide-et-impera strategy, in a bagging framework [38]. The methodology
is based on iterated random partitions of the study domain (random domain
decompositions, RDD, [I8] [39]), that allow performing an ensemble of locally
stationary and Euclidean weak analyses — each conditioned to a realization of
the RDD — to be then aggregated into a final strong result. Natural fields
of application of the approach are those of environmental monitoring within
large estuarine systems, where sensible data analysis should properly account
for the complex topology of the spatial domain. For instance, in [I8] we used
Kriging via RDDs to predict the PDFs of dissolved oxygen (DO) within the
Chesapeake Bay (US), a large estuarine system which is regularly monitored to
assess the impact of human activities on aquatic variables deemed critical for
its ecosystem. The feature space for the O2S2 analysis was set to the Bayes
space of [9], to properly account for the closed nature of PDF data (see Sect.
. The kriged PDF's are shown in Fig. . Note that kriging the entire PDF's,
instead of, e.g., their summary statistics (mean, variance, or selected quantiles),
allows projecting the full information content embedded in PDFs to unsampled
locations in the system. In the context of our study, the kriged PDFs were
then used to support the identification of the so-called dead zones, which are
areas of the estuary where the presence of oxygen in water is below 2 mg/1
hindering the life of most marine species. Figure shows the predicted map
of probability P(DO < 2mg/1), obtained from the kriged PDFs. The spatial
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(a) Kriged PDFs of DO (b) Predicted probability of DO < 2 mg/I

Kriged PDF of DO

DO [mg/l]

Figure 1: O2S2 prediction results for the distribution of DO in the Chesapeake Bay. (a) Kriged
PDFs obtained via RDD; (b) map of probability of being a Dead Zone (P(DO < 2mg/l)),
obtained from the kriged PDFs (modified from [I8]). To enhance interpretation, the contour
line of level P(DO < 2mg/1) = 0.5 is marked with a thick red line in panel (b). Colors in
panels (a) and (b) are given consistently.

patterns clearly follows the water dynamics within the system, and are indeed
insightful for the assessment of its critical areas. The correct identification of
these latter areas is key to plan effective restoration and protection programs
for the Bay. More generally, developing sound mathematical frameworks for
modern computational geosciences ultimately means providing valid decision
making support to the stakeholder (national and local agencies, administrators,
final users), with potential impacts on economy, environment and human health.

6. Computational challenges and software

Statistical methods taking on the challenge of the GeoData revolution can-
not neglect the computational feasibility of developed algorithms. GeoData
scientists will definitely need to take advantage of state-of-the-art numerical
methods and IT technologies. For instance, recent methods based on PDEs or
SPDEs [35] [37] rely on advanced techniques of numerical analysis and on statis-
tical approximations (INLA [40]), leading to highly sparse matrices. Localiza-
tion through RDD leads to embarrassingly parallel computer schemes (i.e., the
structure of the algorithms is naturally suited to code parallelization), allowing
for highly efficient implementations. Hardware acceleration can provide further
technological support to address the challenges of computational geosciences,
allowing to achieve higher degrees of efficiency by using hardware components
on the system to perform pre-defined types of tasks (see, e.g., [41]). In all these
cases, the availability of open, efficient and effective software packages will be
crucial to knowledge dissemination. A few R packages are already available
for 0252, allowing for spatial modeling and kriging of Hilbert data (fdagstat
[42]) and of manifold data (Manifoldgstat [43]). These software packages take
advantage of scalable routines allowing for fast computations on relatively large
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datasets, or for the use of bagging algorithms — whose backbone is the iterative
repetition of model estimates and kriging predictions.

The ultimate key to moving forward the frontier of GeoData Science will

definitely be a strong interplay among varied areas of applied sciences and engi-
neering — including mathematics, statistics, engineering and computer science.
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