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1. Introduction and historical overview

The celebrated report by Navier [18], published in 1823, was for several
decades the only mathematical treatise of suspension bridges. It mainly deals
with the static of cables and their interaction with towers: some second-order
ordinary differential equations are derived and solved. At that time, no stiff-
ening trusses had yet appeared and the models suggested by Navier are over-
simplified in several aspects. In spite of a lack of prior history, the report by
Navier appears as a masterpiece of amazing precision, including a part of ap-
plications intended to suggest how to plan some suspension bridges; see [18,
Troisième Partie].

In the 19th century some further contributions deserve to be mentioned.
The theory of structures, contained in the monograph by Rankine [23], makes
an analysis of the general principles governing chains, cords, ribs and arches;
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the part on suspension bridge with sloping rods [23, pp. 171–173] makes ques-
tionable assumptions and rough approximations. As far as we are aware, this
contribution has not been applied to real bridges. In 1875, Castigliano [4]
suggested a new theory for elastic systems close to equilibrium and proved a
result known nowadays as the Castigliano theorem; this theorem became the
core of his main work [5] published in 1879. His method allows to study the de-
flection of structures by strain energy method. His theorem of the derivatives
of internal work of deformation extended its application to the calculation
of relative rotations and displacements between points in the structure and
to the study of beams in flexure.

A milestone theoretical contribution to suspension bridges is the mono-
graph by the Austrian engineer Melan [17], whose first edition goes back
to 1888. This book was translated to English by Steinman who, in the pref-
ace to his translation, wrote “The work has been enthusiastically received in
Europe where it has already gone through three editions and the highest honors
have been awarded the author.” Melan considered the bridges with all those
forms of construction having the characteristic of transmitting oblique forces
to the abutments even when the applied loads are vertical in direction. Melan
made a detailed study of the static of cables and beams through a careful
analysis of the different kinds of suspension bridges according to the number
of spans, the stiffened or unstiffened structure, the effect of temperature. He
repeatedly used the Castigliano theorem, in particular for the computation
of deflection [17, p. 69]. Melan [17, p. 77] suggested a fourth-order equation
to describe the behavior of suspension bridges; he viewed a suspension bridge
as an elastic beam suspended to a sustaining cable (see Figure 1 below) and
his equation reads

EI w′′′′(x)− (H + h(w)) w′′(x) +
q

H
h(w) = p(x) ∀x ∈ (0, L), (1.1)

and it is the object of the present paper. In Section 2 we derive (1.1) in full
detail and we explain the physical meaning of all the terms. von Kármán
and Biot [14, (5.5)] called (1.1) the fundamental equation of the theory of the
suspension bridge.

It is our purpose to discuss the Melan equation (1.1) from several points
of view. First of all, the term h(w) (representing the additional tension of the
sustaining cable due to live loads) makes (1.1) a nonlinear nonlocal equation
and, for this reason, it is often considered as a constant in the engineering
literature. However, the nonlinear structural behavior of suspension bridges
is by now well established; see, e.g., [3, 10, 12, 15, 21]. Therefore, the term
h(w) deserves a special attention. In Section 3 we give a survey of the possible
forms of h usually considered in literature, while in Section 4 we discuss the
differences between these forms; it turns out that there may be significant
discrepancies.

In Section 5 we prove existence results for (1.1) by applying some fixed
point theorems. A fairly wide class of nonlocal terms h(w) is considered. Since



Figure 1. Beam (grey) sustained by a cable (black) through
parallel hangers.

we were unable to prove general uniqueness results, we sought a counterex-
ample: we found a particular equation (1.1) admitting two solutions, a small
one and a larger one. This raises some doubts about well-posedness of (1.1).

The Melan equation (1.1) has also attracted the interest of numerical
analysts; see [8, 20, 24, 25, 30]. In these papers, several approximating proce-
dures for the solution of (1.1) have been discussed for different forms of the
term h(w). In view of the above-mentioned counterexample to uniqueness,
one expects iterative numerical procedures to be quite unstable. In Section 6
we suggest a unifying approach for equation (1.1) for a wide class of nonlocal
terms h(w). We set up a fixed point iterative method which enables us to
control the convergence of the approximating terms h(wn), where {wn} is a
sequence of possible approximations of the solution of (1.1). Some numeri-
cal results testify that our approach may be used to get good approximate
solutions, provided the parameters lie in some suitable range. In Section 7
we numerically study (1.1) with parameters taken from an actual bridge, as
suggested by Wollmann [30]: in this situation, fixed points appear to be quite
unstable and a different iterative procedure is used.

This paper is organized as follows. In Section 2 we derive the classical
Melan equation. In Section 3 we discuss three different approximations of
the nonlocal term h(w) suggested in literature. In Section 4 we compute
the response of these approximations for some special forms of the beam.
In Section 5 we state our existence results for the Melan equation (1.1), as
well as a counterexample to uniqueness. In Sections 6 and 7 we give some
numerical results relative to our approximation scheme. Sections 8–10 are
devoted to the proofs of the existence results. Finally, Section 11 contains
our conclusions and some open problems.

2. The derivation of the Melan equation

The classical deflection theory of suspension bridges models the bridge struc-
ture as a combination of a string (the sustaining cable) and a beam (the
roadway); see Figure 1. We follow here [14, Section VII.1]. The point O is
the origin of the orthogonal coordinate system and positive displacements
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are oriented downwards. The point M has coordinates M(0, L), where L is
the distance between the two towers. When the system is only subject to the
action of dead loads, the cable is in position y(x), while the unloaded beam is
the segment connecting O and M . The cable is adjusted in such a way that it
carries its own weight, the weight of the hangers and the dead weight of the
roadway (beam) without producing a bending moment in the beam so that
all additional deformations of the cable and the beam due to live loads are
small. The cable is modeled as a perfectly flexible string subject to vertical
dead and live loads. When the string is subject to a downwards vertical dead
load q(x), the horizontal component H > 0 of the tension remains constant.
If the mass of the cable (dead load) is neglected, then the load is distributed
per horizontal unit. If we assume that spacing between hangers is small rela-
tive to the span, then the hangers can be considered as a continuous sheet or
a membrane uniformly connecting the cable and the beam (live load). This
is a simplified sketch of what occurs in a suspension bridge, provided that
the mass of the cable is neglected and that the roadway is sought as a beam.
The resulting equation reads (see [14, (1.3), Section VII]):

Hy′′(x) = −q(x). (2.1)

If the endpoints of the string are at the same level γ (as in suspension bridges,
see Figure 1) and if the dead load is constant, q(x) ≡ q, then the solution
of (2.1) and the length Lc of the cable are given by

y(x) = γ +
q

2H
x(L− x),

Lc =

∫ L

0

√
1 + y′(x)2 dx

=
L

2

√
1 +

q2L2

4H2
+

H

q
log

(
qL

2H
+

√
1 +

q2L2

4H2

)
.

(2.2)

Hence, the cable takes the shape of a parabola (y is positive downwards so
that it has a ∪-shaped graph).

Summarizing, we denote by

• L the length of the beam at rest (the distance between towers) and
x ∈ (0, L) the position on the beam;

• q and p = p(x) the dead and live loads per unit length applied to the
beam;

• y = y(x) the downwards displacement of the cable connecting the end-
points (at level γ), due to the dead load q;

• Lc the length of the cable subject to the dead load q;
• w = w(x) the downwards displacement of the beam and, hence, the
additional displacement of the cable due to the live load p;

• H the horizontal tension in the cable, when subject to the dead load q
only;

• h = h(w) the additional tension in the cable produced by the live load p.
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The function w describes both the downwards displacements of the
beam and the cable because the elastic deformation of the hangers is ne-
glected. This classical assumption is justified by precise studies on linearized
models; see [16]. Since the dead load q of the beam is constant, (2.2) yields

y′′(x) = − q

H
, y′(x) =

q

H

(
L

2
− x

)
∀x ∈ (0, L). (2.3)

When the live load p is added, a certain amount p1 of p is carried by the
cable whereas the remaining part p− p1 is carried by the bending stiffness of
the beam. In this case, it is well known [11, 14, 17] that the equation for the
(downwards) displacement w of the beam is

EI w′′′′(x) = p(x)− p1(x) ∀x ∈ (0, L). (2.4)

The horizontal tension of the cable is increased to H + h(w) and the deflec-
tion w is added to the displacement y. Hence, according to (2.1), the equation
which takes into account this condition reads

(H + h(w))
(
y′′(x) + w′′(x)

)
= −q − p1(x) ∀x ∈ (0, L). (2.5)

Then, combining (2.3), (2.4) and (2.5) we obtain

EI w′′′′(x)− (H + h(w)) w′′(x) +
q

H
h(w) = p(x) ∀x ∈ (0, L), (2.6)

which is known in literature as the Melan equation [17, p. 77]. The beam
representing the bridge is assumed to be hinged at its endpoints, which means
that the boundary conditions to be associated with (2.6) read

w(0) = w(L) = w′′(0) = w′′(L) = 0. (2.7)

Equation (2.6) is by far nontrivial: it is a nonlinear integrodifferential
equation of fourth order. A further simplification is to consider h as a small
constant (see, e.g., [6, (4.10)]) and obtain the linear equation

EI w′′′′(x)− (H + h)w′′(x) = p(x)− hq

H
∀x ∈ (0, L),

which can be integrated with classical methods. In the engineering literature,
(2.6) and its simplifications have been used for the computation of moments
and shears for different kinds of suspension bridges; see [17, 26].

3. How to compute the additional tension

In this section we address the problem of the computation of the additional
tension h = h(w) in (2.6). Since the cable is extensible, it may be that
h(w) �= 0. To fix the ideas, we first recall that the sag-span ratio is around
1/10, see e.g. [22, Section 15.17]; by using both (2.2) and (2.3), this means
that

y

(
L

2

)
− y(0) =

L

10
=⇒ q

H
=

4

5L
=⇒ y′(0) = 0.4. (3.1)
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The length Lc of the cable at rest is given by

Lc =

∫ L

0

√
1 + y′(x)2 dx =

L

2

√
1 +

L2q2

4H2
+

H

q
log

(
Lq

2H
+

√
1 +

L2q2

4H2

)
.

If we assume (3.1), then Lc may be written as a linear function of L:

Lc =

(√
29

10
+

5

4
log

2 +
√
29

5

)
L ≈ 1.026L. (3.2)

The increase ∆Lc of the length Lc due to the deformation w is

∆Lc = Γ(w) :=

∫ L

0

(√
1 + [y′(x) + w′(x)]2 −

√
1 + y′(x)2

)
dx. (3.3)

According to (2.3) and (3.3), the exact value of Γ(w) is

Γ(w) =

∫ L

0

√
1 +

[
w′(x) +

q

H

(
L

2
− x

)]2
dx− Lc. (3.4)

Finally, if A denotes the cross-sectional area of the cable and E denotes the
modulus of elasticity of the material, then the additional tension in the cable
produced by the live load p is given by

h =
EA

Lc
∆Lc, h(w) =

EA

Lc
Γ(w). (3.5)

In literature, there are at least three different ways to approximate Γ(w).
Let us analyze them in detail.

First approximation. Recall the asymptotic expansion, valid for any ρ �= 0,
√
1 + (ρ+ ε)2 −

√
1 + ρ2 ∼ ερ√

1 + ρ2
as ε → 0. (3.6)

By applying it to (3.4) one obtains

∆Lc ≈
∫ L

0

y′(x)w′(x)√
1 + y′(x)2

dx. (3.7)

While introducing the model in Figure 1, von Kármán and Biot [14, p. 277]
warned the reader by writing

whereas the deflection of the beam may be considered small,
the deflection of the string, i.e., the deviation of its shape
from a straight line, has to be considered as of finite magni-
tude.

However, after reaching (3.7), von Kármán and Biot [14, (5.14)] decided
to neglect y′(x)2 in comparison with unity and wrote

Γ(w) ≈ Γ1(w) =

∫ L

0

y′(x)w′(x) dx

= −
∫ L

0

w(x)y′′(x) dx =
q

H

∫ L

0

w(x) dx,
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where the integration by parts takes into account that w(0) = w(L) = 0 and,
for the second equality, one uses (2.3). We denote by Γ1 the approximated
quantity obtained in [14]. A first approximation of Γ(w) is then

Γ1(w) =
q

H

∫ L

0

w(x) dx. (3.8)

Assuming that y′(x) is small means that the cable is almost horizontal, which
seems quite far from the truth. This is a mistake while deriving (3.8): it was
already present in the Report [2, Section VI-5] and also appears in more
recent literature; see [30, (17)] and [7, (1)].

In order to quantify the error of this approximation, we notice that (3.1)
yields √

1 + y′(0)2 ≈ 1.077,

yielding an error of 7.7% if we approximate with unity. The same error occurs
at the other endpoint (x = L). Using again (3.1), a similar computation leads
to √

1 + y′
(
L

4

)2

≈ 1.02,

yielding an error of 2%, while it is clear that there is no error at all at the
vertex of the parabola x = L/2. In some particular situations one may also
have a sag-span ratio of 1/8, in which case

y′(0) =
1

2
and

√
1 + y′(0)2 ≈ 1.12,

yielding an error of 12%. In any case, this approximation appears too rude.

Second approximation. After reaching (3.3), Timoshenko [27, 28] (see also
[29, Chapter 11]) multiplied and divided the integrand by its conjugate ex-
pression and obtained

Γ(w) =

∫ L

0

2w′(x)y′(x) + w′(x)2√
1 + [y′(x) + w′(x)]2 +

√
1 + y′(x)2

dx.

Then he neglected the derivatives and approximated the denominator with 2:

Γ(w) ≈
∫ L

0

(
w′(x)y′(x) +

w′(x)2

2

)
dx.

With an integration by parts and taking into account both w(0) = w(L) = 0
and (2.3) we obtain

Γ2(w) =
q

H

∫ L

0

w(x) dx+

∫ L

0

w′(x)2

2
dx. (3.9)

With two further integrations by parts one may also obtain (see [29, (11.16)])

Γ2(w) =
q

H

∫ L

0

w(x) dx− 1

2

∫ L

0

w(x)w′′(x) dx,
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but we prefer to stick to (3.9) since it does not involve the second derivative
of w. Note that also Γ2 is obtained by neglecting y′ which, as already un-
derlined, is not small compared to unity, especially near the endpoints x = 0
and x = L.

Third approximation. Without neglecting y′, an integration by parts and the
conditions w(0) = w(L) = 0 transform (3.7) into

∆Lc ≈ −
∫ L

0

y′′(x)w(x)

(1 + y′(x)2)3/2
dx.

Hence, invoking (2.3), a third approximation of Γ is

Γ3(w) =
q

H

∫ L

0

w(x)[
1 + q2

H2

(
x− L

2

)2]3/2 dx. (3.10)

In order to obtain (3.10), one uses the asymptotic expansion (3.6) which holds
for any ρ �= 0 and for |ε| � |ρ|. But, in our case, from (2.3) we have that
ρ = y′(x) and hence ρ = 0 if x = L

2 . More generally, since y is given and w
depends on the load p, |w′(x)|may not be small when compared to |y′(x)|. So,
a second mistake is that (3.6) is not correct for any x ∈ (0, L). Nevertheless, if
the live load p = p(x) is assumed to be symmetric with respect to x = L

2 (the
center of the beam) also the displacement w will have such symmetry and
then |w′(x)| will indeed be small with respect to |y′(x)| for all x; in particular,

w′
(
L

2

)
= y′

(
L

2

)
= 0.

Hence, this approximation appears reasonable only if the live load p is “al-
most” symmetric.

Note that Γ2 equals Γ1 plus an additional positive term and that Γ3 has
a smaller integrand when compared to Γ1; therefore,

Γ3(w) < Γ1(w) < Γ2(w) ∀w. (3.11)

In the next sections we compare (3.4), (3.8), (3.9) and (3.10) and we show
that there may be large discrepancies.

4. Some explicit computations

In this section we estimate the difference of behaviors of Γi for some particular
vertical displacements w. To this end, we notice that it is likely to expect
that the maximum vertical displacement of the beam is around 1/100 of the
length of the span; if the bridge is 1 km long, the maximum amplitude of the
vertical oscillation should be expected of at most 10m. Whence, a reasonable
assumption is that

w

(
L

2

)
=

L

100
. (4.1)

We now compute the Γi’s on three different configurations of the beam.
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Parabolic shape. Assume the displacement w has the shape of a parabola,

w(x) = δx(L− x) (δ > 0), (4.2)

although this does not represent a hinged beam since it fails to satisfy the con-
ditions w′′(0) = w′′(L) = 0. However, this simple case allows for hand com-
putations and gives a qualitative idea of the differences between Γ and its ap-
proximations Γi (i = 1, 2, 3). For the configuration (4.2), the constraint (4.1)
implies that

δ =
1

25L
. (4.3)

Let w be as in (4.2), then (3.4), (3.8), (3.9), (3.10), combined with (3.1)
and (4.3), yield

Γ(w) =

[√
746− 5

√
29

50
+

25

22
log

11 +
√
746

25
− 5

4
log

2 +
√
29

5

]
L,

Γ1(w) =
2

375
L, Γ2(w) =

7

1250
L =

21

20
Γ1(w),

Γ3(w) =

[√
29

4
− 25

16
log

33 + 4
√
29

25

]
L

25
.

Whence, if w is as in (4.2) and we assume both (3.1) and (4.3), then

Γ1(w) ≈ Γ(w), Γ2(w) ≈ 1.05Γ(w), Γ3(w) ≈ 0.96Γ(w).

Simplest symmetric beam shape. The simplest shape for a hinged beam is
the fourth-order polynomial

w(x) = δx
(
x3 − 2Lx2 + L3

)
(δ > 0); (4.4)

this function will also serve to build Counterexample 1. In this case, if we
assume again (4.1), we obtain

δ =
4

125L3
. (4.5)

Inserting (3.1) and (4.5) into (3.4) and using w as in (4.4), a numerical
computation with Mathematica gives

Γ(w) ≈ 0.00512L.

In turn, by inserting (4.4) into (3.8), (3.9), (3.10) and by using (3.1) and (4.5)
we find

Γ1(w) =
16

3125
L,

Γ2(w) =
2808

546875
L,

Γ3(w) =

[
23

5

√
29− 123

4
log

33 + 4
√
29

25

]
L

160
.
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Therefore,

Γ1(w) ≈ Γ2(w) ≈ Γ(w) ≈ 1.05Γ3(w).

Asymmetric beams. We assume here that there is some load concentrated
on the interval (0, �) for some � ∈

(
0, L

2

)
(the case � > L

2 being specular) and
that the corresponding deformation w has the shape of the piecewise affine
function

w(x) =




σx if x ∈ (0, �),

σ�

L− �
(L− x) if x ∈ (�, L),

(4.6)

so that w(�) = σ�. A reasonable value of σ satisfies the rule in (4.1), that is,

σ� = w(�) =
�

50
=⇒ σ =

1

50
. (4.7)

Inserting (4.6) into (3.4) and using both (3.1) and (4.7) (Γ is not linear
with respect to σ) we find the formula

Γ(w) =

[
Φ

(
4 �

5L
− 21

50

)
− Φ

(
−21

50

)
+Φ

(
2

5
+

1

50

�

L− �

)

− Φ

(
4 �

5L
− 2

5
+

1

50

�

L− �

)
− 2Φ

(
2

5

)]
5

8
L,

where we also used (3.2) and

Φ(s) = s
√
1 + s2 + log

(
s+

√
1 + s2

)
.

Some tedious computations show that

Γ(w) →

[
21
√
2941−

√
2501

1250
− 4

√
29

25

+ 2 log

(√
2501− 1

)(√
2941 + 21

)

1250
(
2 +

√
29
)

]
5

8
L as � → L

2
,

Γ(w) ∼
√
2941− 10

√
29

50
� as � → 0.

Inserting (4.6) into (3.8), (3.9) and (3.10) and using (3.1) we find

Γ1(w) =
2�

5
σ,

Γ2(w) =
2�

5
σ +

L �

L− �

σ2

2
,

Γ3(w) =

(√
29

4
L−

√
29

16
L2 + �2 − L�

)
σ L

L− �
.

Both Γ1 and Γ3 linearly depend on σ. Summarizing, in the asymmetric case
we find that

Γ1(w)

Γ(w)
→ 1.054,

Γ2(w)

Γ(w)
→ 1.08,

Γ3(w)

Γ(w)
→ 1.015 as � → 0,
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yielding approximate errors of 5.4%, 8%, 1.5%, respectively. Moreover,

Γ(w)

Γ1(w)
→ 1.008,

Γ(w)

Γ2(w)
→ 0.96,

Γ(w)

Γ3(w)
→ 1.047 as � → L

2
,

yielding approximate errors of 0.8%, 4%, 4.7%, respectively.

5. Existence and uniqueness results

Here and in what follows we denote the Lp-norms by

‖v‖p := ‖v‖Lp(0,L) ∀ p ∈ [1,∞], ∀ v ∈ Lp(0, L).

In this section we prove the existence of at least one solution of (2.6)–(2.7).
For simplicity, we drop some constants and consider the problem

w′′′′(x)− (a+ h(w)) w′′(x) + b h(w) = p(x) for x ∈ (0, L),

w(0) = w(L) = w′′(0) = w′′(L) = 0,
(5.1)

where a, b > 0 and h(w) is a nonlocal term, of indefinite sign, satisfying

∃ c > 0, |h(u)| ≤ c‖u‖1 ∀u ∈ H1
0 (0, L). (5.2)

Note that assumption (5.2) is satisfied when h is defined by

h(w) =
EA

Lc
Γi(w) (i = 1, 3),

see (3.5), with Γ1 and Γ3 defined in (3.8) and (3.10). In both these cases, one
can take

c =
EA

Lc

q

H
.

Our first results yields the existence of a solution of (5.1) provided that L
and p are sufficiently small.

Theorem 5.1. Let a, b > 0 and let h : H1
0 (0, L) → R be a continuous functional

such that there exists c > 0 satisfying (5.2). Assume that

L5 <
π3

bc
. (5.3)

Then for all p ∈ L1(0, L) satisfying

‖p‖1 ≤
a
(
π3 − bc L5

)
c L4

, (5.4)

there exists at least one solution w ∈ W 4,1(0, L) ∩ H1
0 (0, L) of (5.1) which

satisfies the estimate

‖w‖∞ ≤ L3

π3 − bc L5
‖p‖1.
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We prove Theorem 5.1 in Section 8. Theorem 5.1 does not apply to Γ
since the corresponding function h in (3.5) fails to satisfy (5.2). So, we now
state a different result which allows to include Γ.

Consider again (5.1) with a, b > 0 and h(w) being a nonlocal term, of
indefinite sign, satisfying

∃ c > 0, |h(u)| ≤ c‖u′‖1 ∀u ∈ H1
0 (0, L). (5.5)

Note that assumption (5.5) is satisfied when h is defined by

h(w) =
EA

Lc
Γ(w),

see (3.5), with Γ defined in (3.4). Indeed, from the simple inequality
√
1 + (γ + s)2 −

√
1 + γ2 ≤ |s| ∀ γ ∈ R, ∀ s ∈ R,

we infer that

|Γ(w)| ≤
∫ L

0

∣∣∣
√

1 + [y′(x) + w′(x)]2 −
√
1 + y′(x)2

∣∣∣ dx ≤
∫ L

0

|w′(x)| dx,

and therefore one can take c = 1 in (5.5). In Section 9 we prove the following
theorem.

Theorem 5.2. Let a, b > 0 and let h : H1
0 (0, L) → R be a continuous functional

such that there exists c > 0 satisfying (5.5). Assume that

L4 <
1

bc
. (5.6)

Then for all p ∈ L1(0, L) satisfying

‖p‖1 ≤ a(1− bc L4)

c L3
, (5.7)

there exists at least one solution w ∈ W 4,1(0, L) ∩ H1
0 (0, L) of (5.1) which

satisfies the estimate

‖w′‖∞ ≤ L2

1− bc L4
‖p‖1.

Remark 5.3. Neither Theorem 5.1 nor Theorem 5.2 covers the case where h
is defined through Γ2 since

|Γ2(w)| ≤ c‖w‖1 +
‖w′‖22
2

∀w ∈ H1
0 (0, L),

and therefore Γ2 has quadratic growth. However, using some a priori bounds
for the linearized equation, one may estimate the quadratic term ‖w′‖22 with
a linear term ‖w′‖2 and, consequently, obtain a result in the spirit of The-
orems 5.1 and 5.2 also when h is defined through Γ2. However, we will not
pursue this here.

So far, we merely stated existence results for small solutions of (5.1).
We now prove an existence and uniqueness result (for small solutions) which,
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however, has the disadvantage of some tedious and painful assumptions. We
first assume that

h(0) = 0, ∃ c > 0, |h(u)− h(v)| ≤ c‖u′′ − v′′‖2
∀u, v ∈ H2(0, L) ∩H1

0 (0, L).
(5.8)

When h is defined by (3.5), condition (5.8) is satisfied for Γ, Γ1 or Γ3.

In Section 10 we prove the following existence and uniqueness result for
small solutions of (5.1) which, again, holds when both L and p are sufficiently
small.

Theorem 5.4. Let a, b > 0 and let h : H1
0 (0, L) → R be a continuous functional

such that there exists c > 0 satisfying (5.8). Assume that

L < min

{
1

(bc)2
,

π

(bc)2/5

}
. (5.9)

Then for all p ∈ L1(0, L) satisfying

‖p‖1 < min

{(π

L

)3/2
(
π5/2 − bc L5/2

)(
1− bc

√
L
)

c
(
π5/2 − bc L5/2 + bcπ L7/2

) , a
(
π5/2 − bc L5/2

)

πcL5/2

}
,

(5.10)
there exists a unique solution w ∈ W 4,1(0, L) ∩H1

0 (0, L) of (5.1) satisfying

‖w′′‖2 ≤ π L5/2

π5/2 − bc L5/2
‖p‖1. (5.11)

Note that the smallness of L assumed in (5.9) ensures that the right-
hand side of (5.10) is positive. Clearly, which is the maximum to be considered
in (5.9) depends on whether bc ≶ 1. We also emphasize that Theorem 5.4 only
states the existence and uniqueness of a small solution satisfying (5.11), but it
does not clarify if there exist additional large solutions violating (5.11). And,
indeed, as the following counterexample shows, there may exist additional
large solutions and, hence, Theorem 5.4 cannot be improved without further
assumptions.

Counterexample 1. For a given L >
√
12 consider the functional

h(w) =

∫ L

0

w′′(x) dx ∀w ∈ H2(0, L) ∩H1
0 (0, L)

so that (5.8) is satisfied with c =
√
L. Fix δ > 0, for instance as in (4.5), and

consider the problem

w′′′′(x)−
(
2δL3+ε+ h(w)

)
w′′(x)+

12

L3
h(w)=pε(x) for x ∈ (0, L),

w(0) = w(L) = w′′(0) = w′′(L) = 0,
(5.12)

where pε(x) = 12δε(Lx−x2) and ε > 0 will be fixed later. Equation (5.12) is
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as (5.1) with

a = 2δ L3 + ε, b =
12

L3
, c =

√
L, p(x) = pε(x).

Whence,
1

(bc)2
=

L5

144
,

π

(bc)2/5
=

π L

122/5
.

Since we assumed that L >
√
12 and since 122/5 < π, condition (5.9) is sat-

isfied. Now we choose ε > 0 sufficiently small so that pε satisfies the bound
(5.10). Then all the assumptions of Theorem 5.4 are fulfilled and there exists
a unique solution w of (5.12) satisfying (5.11).

Note that the function wδ(x) = δx(x3 − 2Lx2 +L3), already considered
in (4.4), solves (5.12). However, if ε > 0 is sufficiently small, it fails to satisfy
(5.11) and therefore wδ is not the small solution found in Theorem 5.4. This
shows that, besides a small solution, also a large solution may exist.

We conclude this section with a simple calculus statement which will
be repeatedly used in what follows, both for proving the above statements
through a fixed point argument and for implementing the numerical proce-
dures.

Proposition 5.5. Let α > 0 and f ∈ L1(0, L). The unique solution

u ∈ W 4,1(0, L) ∩H1
0 (0, L)

of the problem

u′′′′(x)− α2 u′′(x) = f(x) in (0, L),

u(0) = u(L) = u′′(0) = u′′(L) = 0
(5.13)

is given by

u(x) =
x

α2 L

∫ L

0

(L− t)f(t) dt− sinh(αx)

α3 sinh(αL)

∫ L

0

sinh[α(L− t)] f(t) dt

+

∫ x

0

[
t− x

α2
+

sinh[α(x− t)]

α3

]
f(t) dt.

Note that the assumption α2 > 0 in Proposition 5.5 is crucial since oth-
erwise the equation changes type: instead of hyperbolic functions one has
trigonometric functions with possible resonance problems.

6. Numerical implementations with a stable fixed point

In this section and the following one we apply an iterative procedure in or-
der to numerically determine a solution of (5.1). We inductively construct
sequences {wn} of approximating solutions and it turns out that an excel-
lent estimator of the rate of approximation is the corresponding numerical
sequence {h(wn)}. As we shall see, depending on the parameters involved,
the fixed points of our iterative methods may be stable or unstable. In this
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section we deal with stable cases whereas in Section 7, which involves an
actual bridge, we deal with an unstable case.

We drop here the constant EA/Lc so that h(w) = Γ(w), we fix constants
a, b, c > 0 and a load p, and consider the equations

aw′′′′(x)− (b+ h(w)) w′′(x) + c h(w) = p(x) ∀x ∈ (0, L), (6.1)

complemented with the boundary conditions (2.7). We define a map Λ : R →
R as follows. For any Θ ∈ R we denote by WΘ the unique solution of the
equation

aw′′′′(x)− (b+Θ) w′′(x) + cΘ = p(x) ∀x ∈ (0, L),

satisfying (2.7). The solution of this equation may be obtained by using Propo-
sition 5.5. Then we put

Λ(Θ) := h(WΘ). (6.2)

Clearly, WΘ is a solution of (6.1) and (2.7) if and only if Θ is a fixed point
for Λ, that is, h(WΘ) = Λ(Θ) = Θ.

If Λ(Θ) �= Θ, we can hope to find the fixed point for Λ by an iterative
procedure. We fix some Θ0 ∈ R (for instance, Θ0 = 0) and define a sequence
Θn := Λ(Θn−1) for all n ≥ 1. This defines a discrete dynamical system which,
under suitable conditions, may force the sequence to converge to the fixed
point Θ of Λ. For the equations considered in this section, this procedure
works out perfectly.

In the tables below we report some of our numerical results; we always
start with Θ0 = 0. For each table we emphasize the values of the parameters
involved in (6.1). Since Θ turned out to be small, we magnify Λ(Θn) by some
powers of 10.

Table 1. The case L = 2, a = b = c = 1, p(x) ≡ 1.

n 1 2 3 4 5 6 7 8

100Λ(Θn) 9.55239 8.1815 8.37021 8.34408 8.3477 8.3472 8.34727 8.34726

Table 2. The case L = 2, a = b = c = 1, p(x) = 0 in (0, 1)
and p(x) = 10 in (1, 2).

n 1 2 3 4 5 6 7 8

10Λ(Θn) 8.04928 4.80539 5.90186 5.50443 5.6451 5.59488 5.61276 5.60638

Table 3. The case L = 2, a = b = c = 1, p(x) = 0 in
(0, 3/2) and p(x) = 20 in (3/2, 2).

n 1 2 3 4 5 6 7 8

10Λ(Θn) 3.93699 2.84652 3.1149 3.04668 3.06388 3.05954 3.06064 3.06036



Table 4. The case L = 2, a = b = c = 1, p(x) = 10e−10(x−1)2 .

n 1 2 3 4 5 6 7 8

10Λ(Θn) 6.19365 3.96853 4.65526 4.4316 4.50324 4.48017 4.48758 4.4852

Table 5. The case L = 2, a = 10, b = c = 1, p(x) ≡ 1.

n 1 2 3 4

100Λ(Θn) 1.02565 1.01427 1.01439 1.01439

Table 6. The case L = 2, a = b = 1, c = 10, p(x) ≡ 1.

n 1 2 3 4 5 6 7 8

100Λ(Θn) 9.55239 0.3214 9.16847 0.60499 8.83393 0.858085 8.5387 1.08607

In all the above results it appears that the sequence {Λ(Θn)} is not
monotonic but the two subsequences of odd and even iterations appear, re-
spectively, decreasing and increasing. Moreover, since they converge to the
same limit, this means that

Λ(Θ2k) < Λ(Θ2k+2) < Θ < Λ(Θ2k+1) < Λ(Θ2k−1) ∀ k ≥ 1. (6.3)

This readily gives an approximation of Θ and, in turn, of the solution w of
(6.1). As should be expected, the convergence is slower for larger values of c:
in the very last experiment we found

100Λ(Θ126) < 4.3 and 100Λ(Θ127) > 4.7.

In all these cases this procedure worked out, which means that the fixed
point Θ is stable and that the discrete dynamical system may be described as
in Figure 2. The map Θ �→ Λ(Θ) is decreasing and its slope is larger than −1
in a neighborhood of Θ.

Figure 2. The stable fixed point for the map Θ �→ Λ(Θ)
defined by (6.2).

We also used this iterative procedure in order to estimate the responses
of the different forms of h = Γi. We fix the parameters involved in (6.1)
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and we perform the iterative procedure for each one of the Γi (i = 1, 2, 3)
and Γ0 = Γ. We define again Λi(Θ) (i = 0, 1, 2, 3) as in (6.2). After a finite
number of iterations we have a good approximation of

Θi := lim
n→∞

Λi(Θn).

Then, we obtain a limit equation (6.1) having the form

aw′′′′(x)−
(
b+Θi

)
w′′(x) + cΘi = p(x) ∀x ∈ (0, L), (i = 0, 1, 2, 3).

By integrating these linear equations with the boundary conditions (2.7) we
obtain the different solutions. In Tables 7 and 8 we quote our numerical
results for the different values of Θi.

Table 7. The case L = 2, a = c = 1, b = 10, p(x) ≡ 1.

100Θ0 100Θ1 100Θ2 100Θ3

2.15633 2.07143 2.26845 1.98463

Table 8. The case L = 2, a = c = 1, b = 10, p(x) = 0 in
(0, 3/2) and p(x) = 20 in (3/2, 2).

100Θ0 100Θ1 100Θ2 100Θ3

7.7621 6.19506 8.47472 5.91363

In all these experiments we found the same qualitative behavior repre-
sented in Figure 2: the sequence {Λi(Θn)} is not monotonic, it satisfies (6.3),
and it converges to a fixed point for Λi. As we shall see in next section, this
is not the case for different values of the parameters.

7. Numerics with an unstable fixed point for an actual bridge

We consider here a possible actual bridge and we fix the parameters in (2.6)
following Wollmann [30]. The stiffness EI is known to be EI = 57·106 kN·m2

whereas EA = 36 · 108 kN. Wollmann considered a bridge with main span of
length L = 460m and he assumed (3.1) so that

q

H
= 1.739 · 10−3 m−1, q = 170 kN/m, H = 97.75 · 103 kN.

By (3.2) we find Lc = 472m, while from (3.5) we infer that

h(w) = (7.627 · 106 kN/m)Γi(w),

where the Γi(w) are measured in meters; we will consider i = 0, 1, 2, 3 with
Γ0 = Γ as in (3.4) and the remaining Γi as in (3.8)–(3.10).
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We first take as live load a vehicle, a coach of length 10m having a
weight density of 10 kN/m, that is,

p(x) = 10χ(d,d+10) kN/m 0 < d < 230,

where χ(d,d+10) denotes the characteristic function of the interval (d, d+10).
Then, after dropping the unity measure kN/m and dividing by 10, (2.6) reads

57 · 105 w′′′′(x)−
(
9775 + 7.627 · 105 Γi(w)

)
w′′(x)

+ 1326Γi(w) = χ(d,d+10) ∀x ∈ (0, 460),
(7.1)

where the solution w is computed in meters. For numerical reasons, it is
better to rescale (7.1): we put

w(x) = v
( x

230

)
= v(s). (7.2)

Let us compute the different values of Γi after this change. We have

Γ0(w) =

∫ 460

0

√
1 + [w′(x) + 1.739 · 10−3 (230− x)]2 dx− 1.026 · 460

= 230

[∫ 2

0

√
1 + [4.35 · 10−3 v′(s) + 0.4 (1− s)]2 ds− 2.052

]

=: Υ0(v);

Γ1(w) = 1.739 · 10−3

∫ 460

0

w(x) dx = 0.4

∫ 2

0

v(s) ds =: Υ1(v);

Γ2(w) = 0.4

∫ 2

0

v(s) ds+ 2.17 · 10−3

∫ 2

0

v′(s)2 ds =: Υ2(v);

Γ3(w) = 1.739 · 10−3

∫ 460

0

w(x) dx

[1 + 3.02 · 10−6 (x− 230)2]3/2

= 0.4

∫ 2

0

v(s) ds

[1 + 0.16(s− 1)2]3/2
=: Υ3(v).

Then, after the change (7.2) and division by

57 · 105

2304
≈ 2.037 · 10−3,

equation (7.1) becomes

v′′′′(s)−
(
90.72 + 7078Υi(v)

)
v′′(s) + 650999Υi(v) = 491ψd(s) ∀ s ∈ (0, 2),

(7.3)
where ψd is the characteristic function of the interval

(
d

230 ,
d+10
230

)
. We try to

proceed as in Section 6. We fix some Θ > 0 and we solve equation (7.3) by
replacing Υi(v) with Θ:

v′′′′(s)− α2 v′′(s) = f(s) ∀ s ∈ (0, 2), (7.4)

where

α2 := 90.72 + 7078Θ, f(s) := 491ψd(s)− 650999Θ.



By Proposition 5.5, this linear equation, complemented with hinged boundary
conditions, admits a unique solution VΘ given by

VΘ(s) =

(
491(455− d)

10580
− 650999Θ

)
s

α2
+

650999Θ

2α2
s2

+
650999Θ

α4

(
1− cosh(α s)

)

+

[
650999Θ

(
cosh(2α)− 1

)
− 982 sinh

α

46
sinh

α(455− d)

230

]

× sinh(α s)

α4 sinh(2α)
+ 491Ψd,Θ(s),

where

Ψd,Θ(s) =

=




0 if 0 ≤ s ≤ d
230 ,

1
α4

(
cosh

[
α
(
s− d

230

)]
− 1

)
− (s− d

230 )
2

2α2 if d
230 < s < d+10

230 ,

2
α4 sinh

α
46 sinh

(
α
(
s− d+5

230

))
+ 1

46α2

(
d+5
115 − 2s

)
if d+10

230 ≤ s ≤ 2.

We then compute Υi(VΘ) according to the above formulas and we put

Λi(Θ) = Υi(VΘ). (7.5)

Again, this defines a sequence Θn = Λi(Θn−1). However, for the values in
(7.3), this sequence appears to diverge and to be quite unstable: contrary to
the experiments in Section 6, see (6.3), we have here that

Λi(Θ2k) → +∞, Λi(Θ2k+1) → −∞ as k → ∞.

This clearly describes an unstable fixed point, as represented in Figure 3. Here,
the slope of Θ �→ Λi(Θ) is smaller than −1. In fact, our experiments show
that it is very negative, possibly −∞.

Figure 3. The unstable fixed point for the map Θ �→ Λi(Θ)
defined by (7.5).
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As already mentioned, in order to apply Proposition 5.5 one needs

90.72 + 7078Θn > 0

since otherwise the equation changes type. These difficulties suggest to pro-
ceed differently. We fix Θ0 = 0 and, for any k ≥ 0, if Θ2k+1 = Λi(Θ2k) > Θ2k

(resp., Θ2k+1 < Θ2k) we take some Θ2k+2 ∈ (Θ2k,Θ2k+1) (resp., Θ2k+2 ∈
(Θ2k+1,Θ2k)). With this procedure we constructed a new sequence such that
(Θ2k+1 −Θ2k) → 0 as k → ∞, that is,

∃Θi = lim
n→∞

Θn (i = 0, 1, 2, 3), (7.6)

where the index i identifies which of the Υi’s is used to construct the sequence,
see (7.5).

We numerically computed these limits for different values of d, see Ta-
ble 9, where we only report the first digits of Θi: the results turned out to
be very sensitive to modifications of these values up to 4 more digits and our
numerical procedure stopped precisely when Θ2k and Θ2k+1 had the first 7
nonzero digits coinciding.

Table 9. Approximate value of the optimal constants Θi

in (7.6), case of a single coach.

d 0 50 100 225

Θ0 1.131 · 10−6 1.021 · 10−5 1.74 · 10−5 2.509 · 10−5

Θ1 9.842 · 10−7 1.016 · 10−5 1.729 · 10−5 2.477 · 10−5

Θ2 9.843 · 10−7 1.017 · 10−5 1.73 · 10−5 2.477 · 10−5

Θ3 9.672 · 10−7 1.005 · 10−5 1.723 · 10−5 2.492 · 10−5

It appears that the best approximation of Θ0 is Θ2 if d = 0, 50, 100
(asymmetric load), whereas it is Θ3 if d = 225 (almost symmetric load). The
most frequently used approximation Θ1 is never the best one.

The corresponding solutions of (7.3), which we denote by vi, satisfy the
linear equation

v′′′′i (s)−
(
90.72 + 7078Θi

)
v′′i (s) + 650999Θi = 491ψd(s) ∀ s ∈ (0, 2)

and can be explicitly computed by means of Proposition 5.5. Instead of giving
the analytic form, we plot the differences between these solutions. Since Θ1 ≈
Θ2 in all the above experiments, we also found that v1 ≈ v2. Therefore, in
Figure 4 we only plot the functions v2 − v0 and v3 − v0.

We now take as live load a freight train of length 230m having a weight
density of 20 kN/m, that is,

p(x) = 20χ(d,d+230) kN/m, 0 < d < 230,

where χ(d,d+230) is the characteristic function of the interval (d, d+230). We
consider both the cases where the train occupies the first half of the span
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Figure 4. Plots of the functions v2− v0 (thick) and v3− v0
(thin) for d = 0, 50, 100, 250 (from left to right).

(d = 0) and the case where the train is in the middle of the span (d = 115).
With the same scaling as above, instead of (7.3) we obtain

v′′′′(s)− (90.72 + 7078Υi(v)) v
′′(s) + 650999Υi(v) = 982ψδ(s) ∀ s ∈ (0, 2),

(7.7)
where ψδ is the characteristic function of (δ, 1 + δ) with δ = 0 or δ = 1

2 . We
solve equation (7.7) by replacing Υi(v) with Θ, that is, we consider again
(7.4), where

α2 := 90.72 + 7078Θ , f(s) := 491ψδ(s)− 650999Θ.

By Proposition 5.5, this linear equation, complemented with hinged boundary
conditions, admits a unique solution VΘ given by

VΘ(s) =

(
491(3− 2δ)

2
− 650999Θ

)
s

α2

+
650999Θ

2α2
s2 +

650999Θ

α4

(
1− cosh(α s)

)

+

[
650999Θ

(
cosh(2α)− 1

)
− 1964 sinh

α

2
sinh

α(3− 2δ)

2

]

× sinh(α s)

α4 sinh(2α)
+ 982Ψδ,Θ(s),
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where

Ψδ,Θ(s) =





0 if 0 ≤ s ≤ δ,

1
α4 (cosh [α(s− δ)]− 1)− (s−δ)2

2α2 if δ < s < δ + 1,

2
α4 sinh

α
2 sinh α(2s−2δ−1)

2 + 1+2δ−2s
2α2 if δ + 1 ≤ s ≤ 2.

We then define again Λi as in (7.5) and we find out that it has an unstable
fixed point, that is, the behavior of the sequence Θn is well described by
Figure 3. With the same algorithm previously described, we are again able
to construct a converging sequence and we denote again by Θi its limit,
see (7.6), where the index i identifies which of the Υi’s is used to construct
the sequence, see (7.5). We numerically computed these limits for d = 0 (train
in the first half of the span) and d = 115 (train in the middle of the span),
see Table 10, where we only report the first digits of Θi: again, the results
turned out to be very sensitive to modifications of these values up to 4 more
digits and our numerical procedure stopped when Θ2k and Θ2k+1 had the
first 7 nonzero digits coinciding.

Table 10. Approximate value of the optimal constants Θi

in (7.6), case of a whole train.

d 0 115

Θ0 7.582 · 10−4 1.047 · 10−3

Θ1 7.538 · 10−4 1.042 · 10−3

Θ2 7.582 · 10−4 1.044 · 10−3

Θ3 7.538 · 10−4 1.046 · 10−3

Again, the best approximation of Θ0 is Θ2 if d = 0 (asymmetric load),
whereas it is Θ3 if d = 115 (symmetric load). And, again, Θ1 is never the
best one.

The corresponding solutions of (7.7), which we denote by vi, satisfy the
linear equation

v′′′′i (s)−
(
90.72 + 7078Θi

)
v′′i (s) + 650999Θi = 982ψδ(s) ∀ s ∈ (0, 2)

and can be explicitly computed by means of Proposition 5.5. In Figure 5 we
plot the differences between these solutions. When d = 0 we have Θ1 ≈ Θ3

and Θ2 ≈ Θ0: whence, we only plot the function v1−v0 since v3−v0 is almost
identical and v2 − v0 is almost 0. When d = 115 we plot the three differences
vi − v0 (i = 1, 2, 3) so that it appears clearly how they are ordered.

By scaling, similar pictures can be obtained for the original solutions wi

of (7.1) after undoing the change of variables (7.2).
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Figure 5. On the left, plot of the function v1−v0 for d = 0.
On the right, plots of the functions v1 − v0 (thick), v2 − v0
(intermediate), v3 − v0 (thin) for d = 115.

8. Proof of Theorem 5.1

We first prove the inequality

‖u‖∞ ≤
(
L

π

)3/2

‖u′′‖2 ∀u ∈ H2(0, L) ∩H1
0 (0, L). (8.1)

The main ingredient to obtain (8.1) is a special version of the Gagliardo–
Nirenberg inequality [9, 19]; since we are interested in the value of the esti-
mating constant and since we were unable to find one in literature, we give
its proof. We do not know if the constant is optimal. We first claim that

‖u‖2∞ ≤ ‖u‖2 ‖u′‖2 ∀u ∈ H1
0 (0, L). (8.2)

Since symmetrization leaves Lp-norms of functions invariant and decreases
the Lp-norms of the derivatives, see e.g. [1, Theorem 2.7], for the proof of (8.2)
we may restrict our attention to functions which are symmetric, positive and
decreasing with respect to the center of the interval. If u is one such function,
we have∫ L/2

0

u(τ)u′(τ) dτ =

∫ L/2

0

|u(τ)u′(τ)| dτ =

∫ L

L/2

|u(τ)u′(τ)| dτ

=
1

2

∫ L

0

|u(τ)u′(τ)| dτ.

Therefore, we have

‖u‖2∞ = u

(
L

2

)2

=

∫ L/2

0

[u(τ)2]′ dτ = 2

∫ L/2

0

u(τ)u′(τ) dτ

=

∫ L

0

|u(τ)u′(τ)| dτ ≤ ‖u‖2 ‖u′‖2,

where we used Hölder’s inequality. This proves (8.2).
Then we recall two Poincaré-type inequalities:

‖u‖2 ≤ L2

π2
‖u′′‖2, ‖u′‖2 ≤ L

π
‖u′′‖2 ∀u ∈ H2(0, L) ∩H1

0 (0, L). (8.3)
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The proof of (8.1) follows by combining these inequalities with (8.2).
Next, we multiply (5.13) by u(x) and integrate by parts to obtain

‖u′′‖22 + α2‖u′‖22 =

∫ L

0

f(x)u(x) dx ≤ ‖f‖1‖u‖∞,

where we used Hölder’s inequality. Neglecting the positive term α2‖u′‖22 and
using (8.1), we get

π3

L3
‖u‖2∞ ≤ ‖u′′‖22 ≤ ‖f‖1‖u‖∞

which readily gives the following L∞-bound for the solution of (5.13):

‖u‖∞ ≤ L3

π3
‖f‖1. (8.4)

Next, we consider the closed (convex) ball

B :=
{
v ∈ C0[0, L]; ‖v‖∞ ≤ d‖p‖1

}
,

where

d :=
L3

π3 − bc L5
> 0,

and the positivity of d is a consequence of (5.3). We define an operator T :
B → C0[0, T ] as follows. For any v ∈ B we denote by w = Tv the unique
solution w ∈ W 4,1(0, L) ∩H1

0 (0, L) of the problem

w′′′′(x)− (a+ h(v)) w′′(x) + b h(v) = p(x) for x ∈ (0, L),

w(0) = w(L) = w′′(0) = w′′(L) = 0.
(8.5)

Note that if v ∈ B, then

α2 := a+ h(v) ≥ a− c‖v‖1 > a− cL‖v‖∞ ≥ a− cdL‖p‖1 ≥ 0,

where we used (5.2) (first inequality), Hölder’s inequality (second), v ∈ B
(third), (5.4) (fourth). Putting

f(x) := p(x)− bh(v)

so that f ∈ L1(0, L), Proposition 5.5 then ensures that there exists a unique
solution w ∈ W 4,1(0, L) ∩H1

0 (0, L) of (8.5). Together with the compact em-
bedding W 4,1(0, L) � C0[0, L], this shows that

the map T : B → C0[0, L] is well defined and compact. (8.6)

Moreover, by (8.4) we know that

‖w‖∞ ≤ L3

π3
‖p− bh(v)‖1 ≤ L3

π3

(
‖p‖1 + bL |h(v)|

)

≤ L3

π3

(
‖p‖1 + bc L‖v‖1

)
(by (5.2))

≤ L3

π3

(
‖p‖1 + bc L2‖v‖∞

)
(by Hölder’s inequality)

≤ L3

π3

(
1 + bcdL2

)
‖p‖1 = d‖p‖1 (since v ∈ B).
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This shows that, in fact, T (B) ⊂ B. Combined with (8.6) and with the
Schauder fixed point theorem (see, e.g., [13, Section 6, Theorem 3.2]), this
proves that the map T admits a fixed point in B which is a solution of (5.1).

9. Proof of Theorem 5.2

Take u ∈ H2(0, L)∩H1
0 (0, L); since u(0) = u(L) = 0 and u ∈ C1[0, L], by the

Fermat theorem we know that there exists x0 ∈ (0, L) such that u′(x0) = 0.
Therefore,

|u′(x)| =
∣∣∣∣
∫ x

x0

u′′(t) dt

∣∣∣∣ ≤
∫ L

0

|u′′(t)| dt ≤
√
L ‖u′′‖2 ∀x ∈ (0, L)

which, by arbitrariness of x, proves that

‖u′‖∞ ≤
√
L ‖u′′‖2 ∀u ∈ H2(0, L) ∩H1

0 (0, L). (9.1)

Similarly, we find that |u(x)| ≤
∫ L

0
|u′(t)| dt and therefore

‖u‖∞ ≤ L ‖u′‖∞ ∀u ∈ H2(0, L) ∩H1
0 (0, L). (9.2)

If we multiply (5.13) by u(x) and integrate by parts, we obtain

‖u′′‖22 < ‖u′′‖22 + α2‖u′‖22 ≤ ‖f‖1‖u‖∞ ≤ L ‖f‖1‖u′‖∞,

where we used (9.2). Using (9.1), we get the following bound for the derivative
of the solution of (5.13):

‖u′‖∞ ≤ L2 ‖f‖1. (9.3)

Let C1
0 [0, L] = {v ∈ C1[0, L]; v(0) = v(L) = 0} and consider the closed

(convex) ball

B :=
{
v ∈ C1

0 [0, L]; ‖v′‖∞ ≤ d‖p‖1
}
,

where

d :=
L2

1− bc L4
> 0,

and the positivity of d is a consequence of (5.6). We define an operator T :
B → C1

0 [0, T ] as follows. For any v ∈ B we denote by w = Tv the unique
solution w ∈ W 4,1(0, L)∩C1

0 [0, L] of problem (8.5). Note that if v ∈ B, then

α2 := a+ h(v) ≥ a− c‖v′‖1 > a− cL‖v′‖∞ ≥ a− cdL‖p‖1 ≥ 0,

where we used (5.5) (first inequality), Hölder’s inequality (second), v ∈ B
(third), (5.7) (fourth). Putting

f(x) := p(x)− bh(v)

so that f ∈ L1(0, L), Proposition 5.5 then ensures that there exists a unique
solution w ∈ W 4,1(0, L) ∩ C1

0 [0, L] of (8.5). Together with the compact em-
bedding W 4,1(0, L) � C1[0, L], this shows that

the map T : B → C1
0 [0, L] is well defined and compact. (9.4)
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By (9.3) we know that

‖w′‖∞ ≤ L2 ‖p− bh(v)‖1 ≤ L2
(
‖p‖1 + bL |h(v)|

)

≤ L2
(
‖p‖1 + bc L‖v′‖1

)
(by (5.5))

≤ L2
(
‖p‖1 + bc L2‖v′‖∞

)
(by Hölder’s inequality)

≤ L2
(
1 + bcdL2

)
‖p‖1 = d‖p‖1 (since v ∈ B).

This shows that, in fact, T (B) ⊂ B. Combined with (9.4) and with the
Schauder fixed point theorem (see, e.g., [13, Section 6, Theorem 3.2]), this
proves that the map T admits a fixed point in B which is a solution of (5.1).

10. Proof of Theorem 5.4

Consider the closed ball

B :=
{
v ∈ H2(0, L) ∩H1

0 (0, L); ‖v′′‖2 ≤ d‖p‖1
}
,

where

d :=
π L5/2

π5/2 − bc L5/2
> 0,

and the positivity of d is a consequence of (5.9). We define an operator T :
B → H2(0, L)∩H1

0 (0, L) as follows. For any v ∈ B we denote by w = Tv the
unique solution w ∈ W 4,1(0, L) ∩H1

0 (0, L) of (8.5).
Note that

α2 := a+ h(v) ≥ a− c‖v′′‖2 ≥ a− cd ‖p‖1 > 0 ∀ v ∈ B, (10.1)

where we used (5.8) (first inequality), v ∈ B (second), (5.10) (third). Putting

f(x) := p(x)− bh(v)

so that f ∈ L1(0, L), Proposition 5.5 then ensures that there exists a unique
solution w ∈ W 4,1(0, L) ∩H1

0 (0, L) of (8.5). Together with the compact em-
bedding W 4,1(0, L) � H2(0, L), this shows that

the map T : B → H2(0, L) ∩H1
0 (0, L) is well defined and compact. (10.2)

Let v1, v2 ∈ B and let wi = Tvi for i = 1, 2. Then wi satisfies

w′′′′
i (x)− (a+ h(vi)) w

′′
i (x) + b h(vi) = p(x) for x ∈ (0, L),

wi(0) = wi(L) = w′′
i (0) = w′′

i (L) = 0.
(10.3)

Multiplying (10.3) by wi and integrating by parts, we obtain the following
estimate:

‖w′′
i ‖22 ≤

(
bL|h(vi)|+ ‖p‖1

)
‖wi‖∞ ≤

(
L

π

)3/2 (
bc L‖v′′i ‖2 + ‖p‖1

)
‖w′′

i ‖2,

where we used (10.1) and Hölder’s inequality (first inequality), (5.8) and (8.1)
(second). Whence, since vi ∈ B, we finally obtain

‖w′′
i ‖2 ≤

(
L

π

)3/2 (
bcdL+ 1

)
‖p‖1. (10.4)
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Put v := v1−v2 and w := w1−w2. Then, subtracting the two equations
in (10.3), we find

w′′′′(x)−
(
a+ h(v1)

)
w′′(x) =

[
h(v1)− h(v2)

](
− b+ w′′

2 (x)
)

for x ∈ (0, L).

Let us multiply this equation by w and integrate by parts to obtain

‖w′′‖22 ≤
[
h(v1)− h(v2)

] ∫ L

0

(
− b+ w′′

2 (x)
)
w′′(x) dx,

where we dropped the term α2‖w′‖22 in view of (10.1). By (5.8) and Hölder’s
inequality (twice) we get

‖w′′‖22 ≤ c‖v′′1 −v′′2‖2
(
b‖w′′‖1+‖w′′

2‖2 ‖w′′‖2
)
≤ c‖v′′‖2

(
b
√
L+‖w′′

2‖2
)
‖w′′‖2.

Whence, by (10.4)

‖w′′‖2 ≤ c‖v′′‖2
[
b
√
L+

(
L

π

)3/2 (
bcdL+ 1

)
‖p‖1

]
= (1− ε)‖v′′‖2,

where

ε := c(1 + bcdL)

(
L

π

)3/2 [(π

L

)3/2
(
π5/2 − bc L5/2

)(
1− bc

√
L
)

c
(
π5/2 − bc L5/2 + bcπ L7/2

) − ‖p‖1
]
> 0

in view of (5.10). This shows that T (B) ⊂ B is a contractive map. Whence
by the Banach contraction principle (see, e.g., [13, Section 1, Theorem 1.1])
it admits a unique fixed point in B which is a solution of (5.1).

11. Conclusions and open problems

In spite of the double inequality in (3.11), the explicit computations per-
formed in Section 4 do not allow to infer a precise rule on which form of h(w)
better approximates the additional tension of cables in suspension bridges.
We found both large and tiny percentage errors, both by excess and by de-
fect, of the value Γ(w). For these reasons, the approximations do not appear
completely reliable. In our computations none between the three approxima-
tions Γi seemed better than the others: an important result would then be to
understand in which situation an approximation Γi is better than the others.

The existence results in Section 5 are obtained by fixed point techniques.
There are several alternative statements, depending on the explicit assump-
tions on h. Theorem 5.4 is perhaps the strongest result: not only it makes
general assumptions on h, see (5.8), but also it gives a uniqueness statement
for small solutions. The Counterexample 1 shows that Theorem 5.4 cannot be
improved, the problem is ill-posed and further large solutions may exist. This
gives rise to several natural questions. Under which assumptions on h can one
ensure existence and uniqueness of solutions of (1.1)? In this situation, can
the solution be approximated by a suitable constructive sequence?
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Concerning the last question, we suggested in Section 6 that a sequence
of approximate solutions {wn} might be tested with the numerical sequence
{h(wn)}. We numerically found that, for suitable values of the parameters,
this sequence admits a unique stable fixed point qualitatively described by
Figure 2. However, when the parameters are in the range of actual bridges,
in Section 7 we found that the fixed point is unstable, see Figure 3, and an
iterative procedure seems not possible. We therefore suggested a different
algorithm which allowed to find a fixed point. Our numerical results also
suggest several questions. Under which assumptions on the parameters is
the iterative scheme convergent? Are there better algorithms able to manage
both the stable and unstable cases? Can these algorithms detect multiple
fixed points?

On the whole, we believe that some further research is needed in order
to formulate a sound and complete existence and uniqueness theory for the
Melan equation (1.1) and to determine stable approximation algorithms.
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