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Abstract

Many successful algorithms for analyzing ECG signals leverage data-driven mod-

els that are learned for each specific user. Unfortunately, a few algorithmic

challenges are still to be addressed before employing these models in wearable

devices, thus enabling online and long-term monitoring. In particular, since the

heartbeats morphology changes with the heart rate, models learned in resting

conditions need to be adapted to analyze ECG signals recorded during everyday

activities.

We propose an online ECG monitoring solution where normal heartbeats of

each specific user are modeled by dictionaries yielding sparse representations,

and heartbeats that do not conform to this model are detected as anomalous.

We track heart rate variations by adapting the user-specific dictionary with a

set of user-independent, linear, transformations. Our experiments demonstrate

that these transformations can be successfully learned from a public dataset of

ECG signals and that, thanks to an optimized anomaly-detection algorithm,

our solution enables online and long-term ECG monitoring.
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1. Introduction

Health and ECG monitoring have attracted attention in the pattern-recognition

and machine-learning literature, and algorithms to support the manual annota-

tion of ECG signals have been widely researched to alleviate this expensive and

time consuming operation. Many algorithms to automatically detect anoma-

lies and classify heartbeats have been proposed [1, 2, 3, 4, 5, 6, 7, 8], and a few

commercial products [9, 10] implementing these features are nowadays available.

Often, physicians employ these tools to preliminarily scan long ECG signals and

highlight those relevant segments which require careful inspection.

The next frontier is to bring these algorithms directly on sensing devices,

easing the transitioning from hospital to home/mobile monitoring. Wearable

devices have a huge potential in this scenario [11], since their computational

power and sensor suite have steadily improved in the past few years. However,

their practical use in real-life applications is far from being straightforward,

since a few algorithmic challenges have still to be addressed. In particular, here

we consider the following.

Learning user-specific models. Most of successful algorithms adopts data-

driven models that are learned from each specific user [12, 7, 13]. In fact,

as illustrated in Figure 1, the heartbeats of each user feature a very specific

morphology, which also depends on the sensing apparatus and the electrodes

position [14]. As such, to successfully classify or detect anomalies in ECG

signals, a single data-driven model is not able to accurately describe all the

users (even when trained on large datasets), and has to be directly learned

/ customized from the heartbeats of the specific user [6, 7]. In a wearable-

device scenario, where the user places the device by himself, this training /

customization of the data-driven model has to be performed every time the

device is placed, since heartbeats acquired from the same user and device exhibit

a different morphology when the device position changes [15, 14].

Efficient anomaly detection. To raise timely alerts in case of dangerous

arrhythmias and avoid massive data-transfer, wearable devices should prelimi-
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narily screen the ECG signals while being recorded. In particular, the device

has to identify, in an online manner, any anomalous heartbeat which does not

conform with the morphology of user’s normal heartbeats. Performing heart-

beat classification directly on the wearable device is often unfeasible, since in

ECG monitoring user-specific and data-driven models are conveniently learned

in an unsupervised manner, without requiring a physician to label the ECG

signals and examples of anomalous heartbeats. Moreover, many classifiers, such

as those based on deep neural networks [7], which could in principle be cus-

tomized to each user through transfer learning [16], exhibit high computational

requirements which are typically not compatible with wearable device resources.

Autonomous adaptation of the learned model. As shown in Figure 1, the

heartbeats morphology changes when the heart rate increases. Thus, a model

learned from heartbeats acquired in the initial training session (presumably

when the user is in resting conditions) might not properly describe heartbeats

acquired in long-term recordings during everyday activities. Such a mismatch

typically implies that anomaly-detection algorithms raise a large amount of false

alarms. Unfortunately, straightforward solutions like learning a model for each

heart rate are not viable, since the training procedure has to be kept simple

and without risks. Therefore, to avoid performance degradation, user-specific

data-driven models have to be adapted online to match heart rate variations.

Here, we propose a solution to perform online ECG monitoring on wearable

devices that addresses all these challenges. The data-driven models we adopt

are dictionaries yielding sparse representations [18, 19], namely matrices whose

columns identify a union of low-dimensional subspaces gathering normal heart-

beats of the corresponding user. At each device placement, few minutes of ECG

signals are recorded from the user in resting conditions: these are enough to

learn a user-specific dictionary. To determine whether an heartbeat is anoma-

lous, we propose a very efficient algorithm to compute the distance between the

heartbeat and the union of low dimensional subspaces identified by the learned

dictionary. Anomalies are then detected by thresholding this distance, to report

any heartbeat that does not conform with user resting conditions.
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Figure 1: Examples of heartbeats acquired at different heart rates measured in beats per

minute (bpm) from two users in the LTSTDB dataset: Figures (a-c) refer to user s20071, while

Figures (d-f) refer to user 20431. Letters indicate the waveforms in an ECG [17], namely the

P wave, the QRS complex and the T wave, while the heart rates are reported over each plot.

The heartbeats get transformed when the heart rate increases: the T-waves approach the

QRS complexes, the QT intervals narrow down and the support of each heartbeat contracts

(Figures b, c, e, f). These heartbeats from different users undergo a similar transformation,

which does not seem to be simple dilation / contraction, since peaks change their intensities

and shapes.

We also present a practical solution to adapt both the dictionary and the

anomaly-detection threshold when the heart rate changes, thus enabling long-

term and online ECG monitoring. Our solution can be seen as a form of domain

adaptation or transductive transfer learning [16], where an algorithm trained on

source domain data (the ECG signal acquired in resting conditions at low heart

rate) is adapted to operate in a different target domain (at higher heart rates).

We perform adaptation by linear transformations that depend only on the heart

rate. Our experiments show that these transformations can be successfully

learned from a large, publicly available, dataset containing long ECG signals of

several users, like the ones in [20]. This result is perhaps justified by the fact

that different human hearts feature the same electrical conduction system, thus

we can reasonably assume that, while the morphology of the heartbeats is user

specific, the heartbeats get transformed in the same way for all the users.

We have carefully optimized our solution to make it compatible with the

limited resources available on the Bio2Bit Dongle [21], a prototype wearable

device developed by STMicroelectronics. In particular, we present an efficient

variant of the anomaly-detection algorithm that exploits the algebraic proper-

4



ties of the learned low dimensional subspaces. Our domain-adaptation solution

can be seamlessly integrated in the online monitoring without increasing the

computational complexity of the anomaly detection algorithm.

This paper extends [15], which presents the algorithm for detecting anoma-

lous heartbeats, [22] which introduces dictionary adaptation and [21] which de-

scribes the ECG monitoring device, in the following direction: i) the adaptation

of the decision rule w.r.t. the heart rate, to make our solution able to perform

long-term monitoring, ii) an experimental campaign over long-term recordings

of more than 200 patients from publicly available datasets and 15 ECG signals

acquired using the Bio2Bit Move, and iii) a deeper analysis of computational

complexity and battery life of a device running the proposed solution. Moreover,

we present a unified problem formulation including both the anomaly detection

and domain adaptation, and extend the review of the related literature.

The paper is structured as follows. Section 2 overviews related works, while

Section 3 provides a formal statement of the anomaly-detection and domain-

adaptation problems. The anomaly-detection algorithm is described in Sec-

tion 4, and our domain-adaptation solution is in Section 5. Section 6 details the

optimized anomaly detection algorithm to be run on the Bio2Bit Move device,

and describes the user-configuration phase that to be run every time the device

is placed. Section 7 presents our experimental campaign, and conclusions are

drawn in Section 8.

2. Related Works

Since the introduction of Holter devices in 1940s, cardiac monitoring has

helped physicians to determine whether users are experiencing anomalous heart-

beats. Over the past few years, ECG monitoring devices have evolved from large,

wired systems, as the original Holter, to small, wire-free wearables that allow

users to perform everyday activities with minimal disturbance. Most of ECG

monitoring devices typically do not implement on board anomaly-detection and

heartbeat-classification functionalities, and ECG signal are sensed, processed

and transferred to caregivers that remotely monitor the users [11, 23]. The
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challenge we address here is to integrate anomaly-detection capabilities directly

on a low-power wearable device, as this could raise timely alarms and prevent

massive data-transfer that would reduce the device battery lifetime.

Pattern recognition and machine learning techniques have been widely ex-

ploited for anomaly-detection and heartbeat-classification purposes. A first

class of solutions addressing these tasks are the so called feature-driven meth-

ods [24, 5], which exploit hand-crafted morphological features that mimic the

criteria used by clinicians to analyze ECG signals. Typical examples of features

are the RR interval, namely the distance between two consecutive R-peaks, the

amplitude and the width of QRS complex, as well as shape descriptors for the

local waveforms like P-wave, T-wave, and ST-segment (see Figure 1). Other

features can be extracted from the vectorcardiogram [25], computed through a

linear transformation of the 12 leads ECG, or in wavelet domain [1] or through

Hermite transform [12]. In the last few years, feature-driven approaches are

being replaced or combined with data-driven methods, which do not reproduce

any clinical criterion, but are directly learned from training data. Data-driven

methods typical leverage a model yielding meaningful representations of the

ECG signals [2, 6, 7, 15], and often refer to the time series literature [3, 8] and

detect anomalies by monitoring the prediction error. Others resort to cluster-

ing [6, 26] or Gaussian Mixture Models [3, 2] to describe normal heartbeats. The

main drawbacks of these methods is that they process the global ECG signal of-

fline, and are not suitable for online monitoring. Recently, deep neural networks

have shown very good performance in heartbeats classification [7, 27] and the 1-

dimensional Convolutional Neural Network (CNN) in [7] reaches an accuracy of

98.6% on 24 recordings of the MIT-BIH database. The deep Long Short Term

Memory (LSTM) network in [28] detects anomalies in time series where the

pattern duration is unknown. Unfortunately, the computational requirements

of deep neural networks are not compatible with the limited resources available

on most wearable device, such as the Bio2Bit Dongle: the CNN in [7] classifies

a single heartbeat in few milliseconds on a 2.4 GHz CPU with 16 GB of RAM,

while the CPU frequency of most wearable devices is in the order of tens of

6



MHz.

As discussed in Section 1, to successfully perform long-term ECG monitoring

it is necessary to adapt the learned model to track heart-rate variations. This

problem has been so far ignored in ECG monitoring, including [29, 30], which

are examples of ECG monitoring algorithms meant for wearable devices. Our

adaptation problem calls for the transfer learning scenario [16], in which a model

learned in the source domain is transformed to operate in a target domain where

observations come from a different distribution. The most often transferred task

is perhaps classification, and the goal is to learn, from labeled data in the source

domain, a classifier that can operate also in the a target domain, where a few

supervised (or possibly unsupervised) data are provided [31, 32]. Since in ECG

monitoring, training data of each user are available only in the source domain,

it is more appropriate to specifically refer to domain-adaptation or transductive

transfer learning methods [16].

In this paper we consider dictionaries yielding sparse representations as data-

driven models to detect anomalous heartbeats, and describe a practical domain-

adaptation solution that allows monitoring at different heart rates. Dictionaries

yielding sparse representations are one of the leading models in image and sig-

nal processing [33, 34], and have been also fruitfully used in many machine

learning scenarios such as face recognition [35, 36], abnormal event detection in

videos [37], as well as anomaly detection in ECG signals [15, 38]. Domain adap-

tation techniques for dictionaries have been also widely investigated, mainly to

address the image classification tasks [39, 40, 41, 42], and go under the name of

dictionary adaptation. Among dictionary-adaptation solutions that are mostly

related to ours, we mention the framework in [39], which transforms dictio-

naries while maintaining a domain-invariant sparse representation of the data.

Moreover, this framework assumes data in source and target domains share the

same sparse representations, which might be inappropriate in case of heart-

beats. In [40] dictionary adaptation is performed by learning a sequence of

intermediate dictionaries to gradually adapt source to target data, while in [42]

a shared discriminative dictionary is learned to provide group-sparse represen-
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tations to both source and target domain data. These dictionaries are learned

from a training set including both data from source and target domains, which

is not possible in ECG monitoring where heartbeats are provided only in resting

conditions. The closest alternative to our solution is [41], which performs dic-

tionary adaptation by learning representations for both source and target data

in a common low-dimensional subspace. The projections from source and target

domains to the common subspace are jointly learned with a dictionary yielding

sparse representations of the projected data. In [41] data are transformed by

orthogonal projections, while we assume more general linear transformations

that can be suitably customized to steer the learning process towards solutions

featuring desirable properties.

3. Problem Formulation

We denote by s : N→ R the ECG signal which has been uniformly sampled in

time and preprocessed by standard techniques [13] to remove the baseline wan-

der, i.e. low frequency components due to respiration. We segment the signal

by locating the R peaks (see Figure 1) using the Pan-Tompkins algorithm [43]

and extract heartbeats s ∈ Rp accordingly:

s = {s(t+ v) : v ∈ V}, (1)

where V is a neighborhood of the origin containing p samples, and t denotes the

index of the R peak in s. Our primary goal is to monitor the ECG signal and

detect anomalous heartbeats as they are acquired. To this purpose, we learn a

data-driven model that describes the morphology of normal heartbeats and we

address the following anomaly detection and domain adaptation problems.

Anomaly detection. We assume that the normal heartbeats of each user

u are generated by a user-specific stochastic process Nu. In contrast, anomalous

heartbeats are generated by another stochastic process A 6= Nu and exhibit a

different morphology. Anomalies might be due, for instance, to arrhythmias,

acquisition errors or movements that occur during long-term monitoring. In

particular, we focus on the detection of anomalies that require analyzing each
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heartbeat independently, and we do not consider anomalies that affect, for in-

stance, the heart-rate or that require inspecting multiple heartbeats.

The anomaly-detection problem boils down to defining a decision rule to

determine whether an heartbeat conforms or not to the learned model. Our

goal is to define a function e : Rp → R, and a threshold γu ∈ R such that

s is anomalous ⇔ e(s) > γu (2)

To this end we assume a training set containing only normal heartbeats of the

user is provided, thus we learn a data-driven model that approximates Nu.

Domain Adaptation. Since heartbeats get transformed when the heart

rate changes, the stochastic process generating normal heartbeats actually de-

pends on the heart rate r, thus will be indicated by Nu,r. Domain adaptation

consists in modifying the anomaly-detection algorithm to correctly operate at

different heart rates at a controlled FPR. In our case this requires adapting both

the user-specific model and the decision rule.

Our modeling assumption is that normal heartbeats admit a sparse repre-

sentation w.r.t. to a dictionary Du,r0 ∈ Rp(r0)×n, namely

su,r0 ≈ Du,r0xu,r0 , (3)

where su,r0 ∈ Rp(r0) denotes an heartbeat acquired at heart rate r0 (i.e. in

the source domain) and its representation xu,r0 ∈ Rn has only few nonzero

components. The number of samples in each heartbeat in (3) is p(r0) which also

depends on the heart rate. We formulate dictionary adaptation as the problem

of learning, for each target heart rate r, a user-independent transformation

Fr,r0 : Rp(r0)×n → Rp(r)×n that operates as follows

Du,r = Fr,r0(Du,r0) ∀u, (4)

and such that Du,r can properly approximate Nu,r.

To adapt the decision rule (2) we tackle the problem of learning a set of

user-independent transformations fr,r0 : R → R to detect anomalies at several

heart rates. Considering (2), this consists in transforming the threshold γu,r0 :
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Algorithm 1 An overview of the anomaly-detection algorithm

Input: User-specific dictionary Du,r0 , threshold γu,r0 , heartbeat su,r0 .

Output: Label of the heartbeat su,r0 (normal or anomalous).

1: Compute the sparse representation xu,r0 of s w.r.t. Du,r0 by solving (6).

2: Compute the distance between s and Du,r0 as e(su,r0) = ‖su,r0 −Du,r0xu,r0‖2.

3: if e(su,r0) > γu,r0 then

4: Return “Anomalous”.

5: else

6: Return “Normal”.

7: end if

γu,r = fr,r0(γu,r0). (5)

The user-independent transformations {Fr,r0} and {fr,r0} have to be learned

from a collection {Su,r} of sets of normal heartbeats acquired at several heart

rates from L� 1 users. We extract this collection from large publicly available

datasets containing long ECG signals.

4. Online Anomaly Detection in ECG Signals

We consider the simple, yet effective, anomaly-detection algorithm [15] pre-

sented in Algorithm 1, where normal heartbeats are modeled by means of a

user-specific dictionary. The dictionary Du,r0 ∈ Rp(r0)×n and the sparsity level

κ ∈ N define a union of low-dimensional subspaces Du,r0 , where each sub-

space is spanned by at most κ columns (i.e., atoms) of Du,r0 . We assume that

normal heartbeats of user u at heart rate r0 live close to such union of low-

dimensional subspaces. The rationale behind our anomaly detection algorithm

is that anomalous heartbeats live far from Du,r0 .

To compute the distance between s and Du,r0 , we have to preliminary com-

pute the projection of s onto Du,r0 . To this end, we solve the following sparse

coding problem [19], obtaining the sparse representation of s w.r.t. Du,r0 :

xu,r0 = arg min
x

‖s−Du,r0x‖2 , s.t. ‖x‖0 ≤ κ, (6)

where ‖x‖0 denotes the number of nonzero components of x. The constraint

‖x‖0 ≤ κ promotes the sparsity of x and bounds the dimension of each subspace
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in Du,r0 to be at most κ, where κ� p(r0). Since (6) is an NP-hard problem [44],

we have to resort to greedy algorithms that achieve suboptimal solutions. In

particular, we use the Orthogonal Matching Pursuit (OMP) algorithm [45],

as this can be substantially accelerated when Du,r0 is underdetermined, i.e.

p(r0) > n, as in the case of dictionaries learned for heartbeats. This will be

discussed in Section 6.1.

Solution of (6) provides Du,r0xu,r0 , which is a projection of s on Du,r0 . Thus,

the distance between su,r0 and Du,r0 is defined as

e(su,r0) = ‖su,r0 −Du,r0xu,r0‖2 . (7)

According to the decision rule (2), any heartbeat su,r0 such that e(su,r0) > γu,r0

is detected as anomalous.

4.1. Dictionary Learning and Threshold Estimation

The user-specific dictionary Du,r0 has to be learned every time that the

wearable device is positioned [15]. Let Su,r0 ∈ Rp(r0)×m be a training set of

normal heartbeats, stacked column-wise, acquired from user u at heart rate r0.

We learn Du,r0 by solving the following dictionary learning problem:

Du,r0 = arg min
D∈Rp(r0)×n, X∈Rn×m

‖DX − Su,r0‖2 , s.t. ‖xi‖0 ≤ κ, i = 1, . . . , n (8)

where xi denotes the i-th column of the matrix X ∈ Rn×m that stacks the

coefficient vectors of the heartbeats in Su,r0 . The problem (8) is also NP-Hard

and is typically addressed by alternating between the solution w.r.t. D while

keeping X fixed (dictionary update) and the solution w.r.t. X while keeping D

fixed (sparse coding). In particular, we adopt K-SVD [18] as this state-of-the-art

algorithm has been successfully used to learn models of ECG signals [15, 38].

The threshold γu,r0 in (2) controls the amount of false positives and is set as

the 1 − α quantile of the empirical distribution of e(·) computed on a training

set of normal heartbeats, where α is the desired false positive rate (FPR). To

avoid overfitting when defining γu,r0 , we adopt two disjoints set for learning
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Du,r0 and for computing γu,r0 .

Few minutes of ECG signals acquired in resting conditions are enough to

learn the dictionary Du,r0 . A legitimate question is whether anomalous heart-

beats in the training set Su,r0 would affect the overall monitoring. In [15] we

investigated the impact of heartbeats corrupted by user movements and show

that 2% − 4% of outliers in Su,r0 does not substantially affect the anomaly-

detection performance, since these outliers do not feature any specific structure

to be learned and matched with heartbeats to be tested. Moreover, in wearable

device monitoring heartbeats corrupted by user movements can be removed by

analyzing MEMS accelerometers. Unfortunately, Du,r0 might learn arrhythmias

that occurs in Su,r0 , as these feature a specific structure. Robust dictionary

learning algorithms, such as [46], might mitigate this problem, but the risk

of learning as normal these shapes remains. The anomaly-detection algorithm

would in this case consider as normal each heartbeat similar to the arrhythmias

provided for training. Thus, to monitor patients that are frequently affected by

arrhythmias, it is necessary to preliminary screen Su,r0 to remove all the heart-

beats that need to be detected during online monitoring. This screening can be

performed either by an expert or automatically, e.g., with an offline classifier

such as [13, 5] on a remote host, and does not have to be executed during the

online monitoring.

5. Domain Adaptation for Online ECG Monitoring

Here we address the domain-adaptation problem, and present a solution to

adapt our user-specific anomaly-detection algorithm by means of user-independent

transformations that depend only on the source and target heart rates. In par-

ticular, we show that these transformations can be successfully learned from

datasets containing heartbeats of several users at different heart rates, like [20].

While the anomaly-detection algorithm has to be configured every time the de-

vice is positioned, these transformations have to be learned offline and only once,

and used during the online monitoring. In the following, we tackle the problem

of learning transformations to adapt both the dictionary Du,r0 (Section 5.1),
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and threshold γu,r0 (Section 5.2) to control the false positive rate.

5.1. Dictionary Adaptation

Our goal is to learn a collection of user-independent transformations {Fr,r0}

that maps each subspace in Dr,r0 into a subspace in Du,r. To preserve the sub-

space property, we set each Fr,r0 to be a linear function from Rp(r0)×n to Rp(r)×n.

A linear function between two such vector spaces has in general p(r0)p(r)n2

degrees of freedom, which is quite a large number when the heartbeats are com-

posed of hundred samples (p ≈ 150). To reduce the number of parameters, thus

the risk of overfitting, we constrain the linear transformation Fr,r0 to have a

specific shape that reflects our modeling assumption (3). More precisely, these

transformations have to map each atom of Du,r0 to an atom of Du,r, thus each

generator of the subspaces in Du,r0 is mapped to a generator of the subspaces

in Du,r. In this case, Fr,r0 is described by a matrix Fr,r0 ∈ Rp(r)×p(r0):

Du,r = Fr,r0(Du,r0) = Fr,r0Du,r0 , (9)

and the number of degrees of freedom of Fr,r0 reduces to p(r)p(r0) which is

the number of entries of the matrix Fr,r0 . We point out that the dictionary-

adaptation solution in (9) follows from the simple geometrical interpretation of

dictionary yielding sparse representation. More complex models of heartbeats

might not be straightforwardly adapted to track heart rate variations.

We learn Fr,r0 from the datasets in [20] by extracting pairs of training sets

{Su,r0} and {Su,r} for many users u ∈ {1, . . . , L} and solve the following opti-

mization problem:

Fr,r0 = arg min
F,{Xu}u

1

2

L∑
u=1

‖Su,r − FDu,r0Xu‖22+µ

L∑
u=1

‖Xu‖1+
λ

2
‖W � F‖22+ξ ‖W � F‖1 ,

(10)
where the columns of Xu ∈ Rn×m contain the sparse w.r.t. FDu,r0 of the

corresponding heartbeats in Su,r, and the symbol � denotes the Hadamard

product. All the norms in (10) are vector norms, rather than matrix norms.

In what follows we describe the role of each term in (10): ‖Su,r − FDu,r0Xu‖22
assesses how good the transformed dictionary is at approximating the heartbeats
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of the user u. This term sums up the reconstruction error over training heart-

beats for the L users, and guarantees that dictionaries transformed by Fr,r0 can

properly describe heartbeats in the target domain. We adopt three regulariza-

tion terms controlled by the non-negative regularization parameters λ, µ, ξ, and

a suitable weight matrix W ∈ Rp(r)×p(r0). The first two regularization terms

guarantee that the each transformed dictionary FDu,r0 provides sparse repre-

sentations to the heartbeats in the target domain, for each user u. We adopt an

`1 regularization to enforce sparsity as a customary choice in the literature [47]

since the `1 norm is convex. The other two terms represent a weighted elastic

net penalization over F , which improves the stability of the optimization prob-

lem, and the weighting matrix W introduces some a priori information about

the transformation Fr,r0 in the minimization. In our case, we expect Fr,r0 to be

local, namely that each sample of a transformed atom is determined by only few

neighboring samples in the input atom in Du,r. Therefore, W features larger

weights in positions far from the diagonal of F , and small weights close to the

diagonal. In particular, we define the entries of W using Gaussian weights:

wij = 1− c · e−
(j−i)2
σ , i ∈ {1, . . . , p(r)}, j ∈ {1, . . . , p(r0)}, (11)

where σ > 0 determines the width of the Gaussian and c > 0 is a constant to

ensure that 0 ≤ wij ≤ 1, ∀ i, j. An example of W is shown in Figure 2(a).

Solving (10) is not straightforward since it is not jointly convex in Xu and F .

However, the functional to be minimized is convex with respect to each variable

when the other one is fixed. Therefore, we solve it by the Alternating Direc-

tion Method of Multipliers (ADMM) [48], which has been shown to enjoy good

convergence properties in these settings [49]. The rationale behind the ADMM

is to split the optimization problem in easier sub-problems, and alternate their

optimization. To this purpose, we reformulate (10) in an equivalent form:

arg min
F,{Xu},G,{Yu}

1

2

L∑
u=1

‖Su,r − FDu,r0Xu‖22 + µ

L∑
u=1

‖Yu‖1 +
λ

2
‖W �G‖22 + ξ ‖W �G‖1 ,

s.t. F −G = 0, Xu − Yu = 0, ∀u (12)

where G ∈ Rp(r)×p(r0) and Yu ∈ Rn×m are auxiliary variables. According to
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the ADMM framework, we define the Augmented Lagrangian [48] of (12) and

solve it by alternating the optimization of the following sub-problems:

X(k+1)
u = arg min

Xu

1

2
‖Su,r − FDu,r0Xu‖22 +

ρ

2

∥∥∥Xu + Y (k)
u + Z(k)

u

∥∥∥2
2
, (13)

Y (k+1)
u = arg min

Yu

µ ‖Yu‖1 +
ρ

2

∥∥∥X(k+1)
u − Yu + Z(k)

u

∥∥∥2
2
, (14)

F (k+1) = arg min
F

1

2

L∑
u=1

∥∥∥Su,r − FDu,r0X
(k+1)
u

∥∥∥2
2

+
ρ

2

∥∥∥F +G(k) +H(j)
∥∥∥2
2
, (15)

G(k+1) = arg min
G

λ

2
‖W �G‖22 + ξ ‖W �G‖1 +

ρ

2

∥∥∥F (k+1) −G+Hk

∥∥∥2
2
, (16)

Z(k+1)
u = Z(k)

u +X(k+1)
u − Y (k+1)

u , (17)

H(k+1) = H(k) + F (k+1) −G(k+1), (18)

where Zu ∈ Rn×m and H ∈ Rp(r)×p(r0) are the scaled Lagrange multipliers of

the constraints in (12), that are updated in (17) and (18), respectively. Sub-

problems (13) and (15) are quadratic expressions which can be efficiently solved

by Gaussian elimination. Problem (14) admits a closed-form solution which

corresponds to the proximal mapping [50] of the function (µ/ρ)|| · ||1[
Y (k+1)
u

]
ij

= Sµ/ρ
([
X(k+1)
u + Z(k)

u

]
ij

)
, (19)

where [·]ij denotes a matrix entry, and Sη : R→ R:

Sη(x) = sign(x) ·max{0, x− η}, (20)

is the soft-thresholding operator. From Theorem 4 in [50] and simple algebra,

it follows that also (16) can be solved by soft thresholding:[
G(k+1)

]
ij

=
1

1 + λw2
ij

Sξwij/ρ
([
F (k+1) +H(k)

]
ij

)
. (21)

To initialize the ADMM algorithm, we set to zero the values of all the variable

but F (0), which is initialized to uniformly distributed random values to avoid

trivial solutions. Then, we iteratively solve (13–18) until a maximum number

of iterations is reached or the primal and dual residuals [48] fall below given

thresholds.

Figure 2(b) shows an example of learned Fr,r0 , which, as expected, is local,

since the nonzero elements of Fr,r0 are concentrated at the diagonal.
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Figure 2: (a) The weight matrix W used in (10) to learn the matrix Fr,r0 . The elements of

W are set according to (11) to enforce the learned transformation to be local: the elements on

the diagonal are small, while the ones far from the diagonal are large. (b) Example of learned

Fr,r0 for r = 90, r0 = 70 using the weight matrix W shown in (a). The learned transformation

is local, since nonzero elements of Fr,r0 are concentrated around the diagonal. (c) Boxplot of

the log e(su,r) computed on normal heartbeats acquired at different the heart rate r. In both

cases the distribution of log e(su,r) seems to shift of a value that increases linearly with the

heart rate r. This support pour choice of transformation in (22).

The same optimization problem is solved for several pairs (r, r0) to learn the

collection {Fr,r0} that is used to adapt the user-specific dictionary Du,r0 to any

target heart rate r during the online monitoring.

5.2. Threshold Adaptation

Adapting the dictionary Du,r0 when the heart rate changes is not enough

to enable long-term ECG monitoring. In fact, also the threshold γu,r0 in the

decision rule (2) has to be adapted. To this purpose, we learn a set {fr,r0} of

user-independent transformations by solving the following optimization prob-

lem:
γu,r = fr,r0(γu,r0) = γu,r0 · exp(a(r − r0)), (22)

where a ∈ R is the only parameter that has to be learned.

The choice of transformation in (22) is justified by an empirical consider-

ation. Boxplots from Figure 2(c) report the empirical distribution of log eu,r

for two different users at heart rates r, being eu,r the random variable corre-

sponding to e(su,r) when su,r is drawn from the stochastic process Nu,r and

the sparse coding is performed w.r.t. the adapted dictionary Du,r. The trend

of these boxplots suggests that (log eu,r − log eu,r0) is proportional to (r − r0).

This observation implies the following relation:
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log eu,r = log eu,r0 + a(r − r0), (23)

where a > 0 ∈ R is the parameter yielding the first order approximation to the

trend of such distributions. To maintain a fixed false positive rate (FPR) when

the heart rate changes, we need to set γu,r to guarantee a constant probability

of considering a normal heartbeat su,r as anomalous:

P (eu,r > γu,r) = P (eu,r0 > γu,r0). (24)

Combining (23) and (24), we can derive the relation between γu,r0 and γu,r:

P (eu,r0 > γu,r0) = P (eu,r > γu,r) = P (log eu,r > log γu,r) =

= P (log eu,r0 + a(r − r0) > log γu,r) =

= P (eu,r0 > γu,r exp(−a(r − r0))) .

(25)

The last equation implies that γu,r0 = γu,r exp(−ar,r0(r − r0)), thus (22).

We now address the problem of estimating such transformations from a

training set containing heartbeats of multiple users. Figure 2(c) suggests that

the distribution of log eu,r is symmetric, thus we write

log eu,r = bu,r + ηu, (26)

where bu,r is the expected value of log eu,r, while ηu is a stochastic term that has

a symmetric distribution w.r.t the origin. Taking the expected value in (23), we

have that bu,r = bu,r0 + a(r − r0), which we can substitute in (26) and obtain:

log eu,r = bu,r0 + a · (r − r0) + ηu, (27)

which is a linear regression model for log eu,r w.r.t. the heart rate r. The

parameter bu,r0 is user-dependent and can be estimated from Su,r0 , while we

can estimate a via least squares over multiple users by solving

a = arg min
ã

1

2

L∑
u=1

R∑
j=1

m∑
i=1

(
log
(
e(su,rj (i))

)
− bu,r0 − ã · (rj − r0)

)2
, (28)

where bu,r0 , u ∈ {1, . . . , L} is the average value of e(su,r0) over {Su,r0}. We

estimate a by setting to 0 the derivative of the functional in (28):

a =

∑L
u=1

∑R
j=1

∑m
i=1

(
log
(
e(su,rj (i))

)
− bu

)
· (rj − r0)

mL
∑R
j=1(rj − r0)2

. (29)
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The estimated a defines the user-independent transformation in (22), to adapt

the decision rule. Our anomaly-detection algorithm can thus perform long-term

ECG monitoring by transforming the user specific dictionary Du,r0 and the

threshold γr0 by means of the transformations in (9) and (22), respectively.

6. Wearable Device Monitoring

In this section we describe how our solution can be implemented on a low

power wearabale device to perform online and long-term ECG monitoring. We

consider the Bio2Bit-Dongle [21], a wearable device developed by STMicroelec-

tronics that is composed by the Bio2Bit Move [51] and a small dongle. The

Bio2Bit Move sensing device is plugged on a flexible chest strap and transmits

the ECG signal via Bluetooth Low Energy (BLE) to the dongle, that ana-

lyzes in real time the received signal. In particular, the dongle segments each

heartbeat s, estimates the heart rate and determines whether s is normal or

anomalous using Algorithm 1. To this end, we present an efficient variant of the

OMP algorithm [45] that is specifically designed for undercomplete dictionaries

(Section 6.1); the whole monitoring scheme is in Section 6.2, while Section 6.3

summarizes the configuration procedures to be performed ever time device is

placed.

6.1. Optimized OMP for Undercomplete Dictionaries

Computational costs are a critical aspect for wearable devices: since the

sparse-coding has to be solved for each acquired heartbeat, a reduction in the

number of calculations performed can meaningfully extend the battery life of the

device. Therefore, here we propose an alternative solution of the sparse coding

problem (6), that in case of undercomplete dictionaries is substantially lighter

than traditional OMP. To simplify notation, we omit (u, r) from the subscript

indexes, since all the variables refer to a user u and a target heart-rate r.

In our previous study [15] we showed that in ECG monitoring the anomaly-

detection algorithm achieves the best performance when the dictionary D is

undercomplete, namely the number of atoms n is smaller than the dimension p

of the heartbeats. In these cases, D does not span the entire space Rp, but only
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a subspace U having dimension n that includes the union of low dimensional

subspaces D identified by D. Since solving the sparse coding (6) corresponds to

computing the projection of s onto D, we can reduce the number of operations

performed in the OMP by first projecting s onto U , and then solving the sparse

coding problem on the projected heartbeat. To this end, we select an orthonor-

mal basis of U by computing the QR decomposition of D = QR, being R ∈ Rn×n

an upper-triangular matrix, and Q ∈ Rp×n such that QTQ = In, where In is the

n × n identity matrix. Then, we address the following sparse-coding problem

through OMP instead of (6)

x̂ = arg min
x

∥∥QT s−Rx∥∥2
2
, s.t. ‖x‖0 ≤ κ, (30)

where QT s is the projection of s onto U .

In what follows, we prove that problems (6) and (30) have the same solution.

However, since (30) is much cheaper than (6) since the computational complexity

of OMP is determined by the target sparsity κ and the number of atoms n.

Solving (6) with a dictionary D ∈ Rp×n yields a complexity O(κpn) [52]. In

contrast, since R ∈ Rn×n, solving (30) requires yields a complexity O(κn2),

thus the computational complexity of OMP is dominated by the cost of the

matrix product QT s, i.e. O(pn). In practice, we reduce the overall cost of the

OMP algorithm by a factor κ, from O(κpn) to O(pn). The following proves the

equivalence of (6) and (30).

Proposition 1. Let Q ∈ Rp×n and R ∈ Rn×n define the QR decomposition of

the dictionary D ∈ Rp×n. Then, for every s ∈ Rp and x ∈ Rn it holds:

‖s−Dx‖22 =
∥∥QT s−Rx∥∥2

2
+ ‖s‖22 −

∥∥QT s∥∥2
2
. (31)

Proof. Let us first remark that the columns of Q form an orthonormal basis of

the n-dimensional subspace U ⊂ Rp spanned by the columns of D. Since n < p,

it is always possible to define a set of (p− n) orthonormal vectors to extend Q

to an orthonormal basis of the entire Rp. In particular, we define P = [Q,Q⊥],

where Q⊥ ∈ Rp×n−p is such that QT⊥Q = 0 and QT⊥Q⊥ = Ip−n. Since P is an

orthogonal matrix, for each v ∈ Rp we have that:
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Algorithm 2 Optimized Online ECG Monitoring

Input: Heartbeat s, associated heart rate r̄, user-specific matrices {Qu,r}r and

{Ru,r}r and thresholds {γu,r}r provided by the user configuration.

Output: Label of the heartbeat s (normal or anomalous).

1: Select the matrices Qu,r, Ru,r and the threshold γu,r that are associated to the

current heart rate r̄.

2: Project s onto the subspace U containing Du,r by computing QT
u,rs.

3: Compute the sparse representation xu,r of s w.r.t. Du,r = Qu,rRu,r by (30).

4: Compute the distance e(s) between s and Du,r as in (34)

5: if e(s) > γu,r then

6: Return “Anomalous”.

7: else

8: Return “Normal”.

9: end if

‖v‖22 =
∥∥PTv∥∥2

2
=
∥∥QTv∥∥2

2
+
∥∥QT⊥v∥∥22 . (32)

Substituting D = QR in ‖s−Dx‖22 and applying (32) to v = s−Dx we obtain:

‖s−Dx‖22 = ‖s−QRx‖22 =
∥∥PT (s−QRx)

∥∥2
2

=

=
∥∥QT s−QTQRx∥∥2

2
+
∥∥QT⊥s−QT⊥QRx∥∥22 =

=
∥∥QT s−Rx∥∥2

2
+
∥∥QT⊥s∥∥22 ,

(33)

where the last equality holds since QT⊥Q = 0 and QT⊥Q⊥ = Ip−n. Proposition

is proven by substituting v = s in (32), yielding
∥∥QT⊥s∥∥22 = ‖s‖22−

∥∥QT s∥∥2
2
, and

replacing this expression in (33).

Proposition 1 confirms that we can substitute the functional in (6) with the

right-hand side of (31). The last two terms of (31) do not depend on x and can

be ignored in the minimization, thus the problems (6) and (30) are equivalent.

6.2. Online Monitoring on Wearable Devices

Algorithm 2 details the steps to be performed during the user-configuration

phase described in Section 6.3. To reduce the computational complexity, we

pre-compute and store on the device all the matrices {Qr,r0} and {Rr,r0} and

thresholds. Each heartbeat s to be tested is accompanied by its heart rate

r̄ that identifies which matrices Qu,r and Ru,r, and threshold γu,r to use for
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detecting anomalies (Algorithm 2 line 1). The heartbeat s is then projected in

the subspace generated by columns of Qu,r, by computing QTu,rs (line 2), and

the OMP algorithm is executed using the signal QTu,rs and the dictionary Ru,r

(line 3). Finally, the distance e(s) between the heartbeat s and the union of low

dimensional subspaces D is computed (line 4) as

e(s) = ‖s−Dx‖2 =

√
‖QT s−Rx‖22 + ‖s‖22 − ‖QT s‖

2
2, (34)

and compared with γu,r to determine whether s is anomalous or not (line 5).

We measure the execution time of the standard OMP and our variant on

the development board NUCLEO-L476RG [53], which embeds the same ultra-

low power microcontroller unit embedded on the Dongle, and that has been

equipped by a BLE evaluation board to communicate with the Bio2Bit Move.

The average time required to compute e(s) using our optimized variant of the

OMP is 1.360 ms which is about 48% less than the time required when using a

standard implementation of the OMP algorithm. Moreover, the average current

absorbed by the dongle in 20 minutes of ECG monitoring is 10.01 mA, that

ensures about 16 hours of monitoring autonomy with a 592 mWh battery, the

same of the Bio2Bit Move.

6.3. User Configuration

Algorithm 3 describes the user-configuration phase, which has to be per-

formed every time the Bio2Bit Move is positioned. User configuration includes

learning Du,r0 and estimating γu,r0 , from the training set Su,r0 , as described in

Section 4.1. The configuration of the Bio2Bit dongle to perform domain adap-

tation (Section 5) and execute the optimized OMP (Section 6.1) are described

in what follows.

We experienced that 10 minutes of ECG signals acquired in resting con-

ditions are typically enough for the user configuration: acquired signals are

initially segmented by detecting R peaks by means of the Pan-Tompkins algo-

rithm [43]. The heart rate r̄ associated to each heartbeat is the median of the

inverse of distances between two consecutive R peaks over the last 10 seconds,
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Algorithm 3 User Configuration

Input: Training set Su,r0 , source heart rate r0, user-independent transformations

{Fr,r0}, {fr,r0}, desired false positive rate α.

Output: Matrices {Qu,r}, {Ru,r}, thresholds {γu,r}.
1: Split the training set Su,r0 in two sets T and V .

2: Learn the user specific dictionary Du,r0 by solving problem (8), using T in place

of Su,r0 as training set.

3: Compute e(su,r0) for each heartbeat su,r0 in V .

4: Set γu,r0 as the (1− α) quantile of the empirical distribution of e(·) over V .

5: for each r in the range [70, 120] do

6: Adapt the dictionary Du,r0 by computing Du,r = Fr,r0(Du,r0).

7: Compute the QR decomposition of the adapted dictionary: Du,r = Qu,rRu,r.

8: Adapt the threshold γu,r0 by computing γu,r = fr,r0(γu,r0).

9: end for

quantized to a resolution of 10 bpm (beats per minute). The most frequent heart

rate in these 10 minutes is selected as r0, and only the heartbeats associated to

r0 belong to the training set Su,r0 . The next operations to configure the device

are more computationally demanding than the online monitoring, and can be

conveniently performed on a host, such as a smartphone.

The host receives the training set Su,r0 and r0, and divides Su,r0 into a set

used to learn Du,r0 and a set to estimate γu,r0 , as described in Section 4.1.

The host pre-computes Du,r = Fr,r0(Du,r0) and γu,r = fr,r0(γr0) for a range of

admissible heart rates r (e.g., [70, 120]), as well as the QR decomposition of each

transformed dictionary {Du,r}r. The matrices Qu,r and Ru,r are then sent back

to the dongle that stores them for the optimized sparse coding (Algorithm 2).

7. Experiments

To validate our solution we perform an extensive experimental campaign,

that is meant to show that: i) dictionaries yielding sparse representations can

be successfully used to detect heartbeats featuring an anomalous morphology,

including potentially dangerous arrhythmias (Section 7.4); ii) learned user-

independent transformations can successfully adapt our anomaly-detection al-

gorithm (Section 7.5); iii) our solution can be effectively used to monitor ECG

signals acquired from a wearable device (Section 7.6). We describe the datasets
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Table 1: Datasets from Physionet [20] used in the experiments

Dataset Number of users Average duration (h) Heart rate resolution (bpm)
LTSTDB 80 22 5
LTAFDB 84 24 5

LTDB 7 16 5
EDB 45 2 10

MIT-BIH 48 0.5 −

used in our experiments in Section 7.1, the figures of merit in Section 7.2 and

the alternative solutions in Section 7.3.

7.1. Datasets Description

We consider 5 datasets publicly available from Physionet [20] which have

been acquired using Holter devices, and a dataset containing ECG signals

recorded using the Bio2Bit Dongle. All the dataset from Physionet have been

manually annotated using an automatic tool and corrected by cardiologists. Ta-

ble 1 reports the number of users in each dataset and the durations of the ECG

signals recorded. We use different resolution for heart rate quantization (see

Table 1) on the duration of the ECG signal, to guarantee a sufficient number of

heartbeats for each quantized heart rate. We consider as anomalous heartbeats

all the annotated arrhythmias. The MIT-BIH Arrhythmia dataset contains only

short ECG signals and do not present heart rate variability. Therefore, we use

this dataset to assess the anomaly-detection performance, while not the domain

adaptation performance.

Finally, the Bio2Bit Move Dataset (B2B) contains 15 ECG signals recorded

by the Bio2Bit Move device. 12 ECG signals are from healthy users, while 3 are

from patients affected by a cardiovascular disease and has been annotated by a

cardiologist. Each ECG signal in the dataset lasts at least 1 hour and is acquired

following a protocol including normal-life activities (e.g. resting, lying down,

walking, resting after a small effort), thus the heart-rate significantly varies in

each ECG signal. We restrict our analysis to the most frequent heart rates, i.e.

{70, 80, 90, 100}. Due to the limited number of leads and their reduced distance,

heartbeats in the B2B dataset are very different from those in the datasets from
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Physionet. Low-quality heartbeats have been discarded by an automatic tool

and the supervision of a cardiologist.

7.2. Figures of Merit

To assess how good the adapted dictionaries are at modeling the heartbeats,

we select as figure of merit the distance e of the heartbeats from the trans-

formed union of low dimensional subspaces, that can be also interpreted as the

reconstruction error yielded by the sparse approximation (3).

Figures of merit typically used to assess anomaly-detection performance are

the True Positive Rate (TPR) and the False Positive Rate (FPR), namely the

percentage of anomalous heartbeats that have been detected and the percentage

of normal heartbeats identified as anomalous, respectively. Since both FPR

and TPR depend on the threshold in (2), we analyze the Receiving Operating

Characteristic (ROC) curve by plotting TPR against FPR for different values of

the threshold and, as a global indicator of the anomaly-detection performance,

the Area Under the ROC Curve (AUC).

7.3. Alternative Solutions

As alternative anomaly-detection algorithm we consider [38], denoted as

Coding. This algorithm employs dictionaries yielding sparse representations

and embeds the anomaly-detection phase in a ad-hoc sparse coding procedure.

More precisely, the sparse coding formulation includes an additional term a

which gathers heartbeats that cannot be sparsely represented by D. Anomalies

are detected controlling whether the magnitude of a exceeds a fixed threshold.

To enable a fair comparison with our anomaly detector, the two solutions use

the same dictionary and have been manually configured to achieve their best

performance.

We consider the following dictionary-adaptation solutions:

Cut: since the support of each heartbeat contracts as the heart-rate increases

(see Figure 1), the simplest form of adaptation consists in removing the first

and the last samples of each column of Du,r0 , thus “cutting” the support of each
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atom in the dictionary. This baseline solution transforms each dictionary Du,r0

using a pre-defined transformation which does not require training data.

DTW: this solution is based on dynamic time-warping [54], an established

signal-processing algorithm to align two vectors and measure their similarity.

Given v0 ∈ Rp0 and v1 ∈ Rp1 where p0 6= p1, dynamic time-warping performs a

non uniform resampling of v0 and v1 to obtain two aligned vectors ṽ0, ṽ1 ∈ Rpa

that have a common support pa, such that pa ≥ p0 and pa ≥ p1. The resampling

patterns are estimated by minimizing the Euclidean distance between ṽ0 and

ṽ1 through dynamic programming. Since resampling is a linear operation, it is

always possible to express DTW by two matrices Ai ∈ Rpa×pi , i = 0, 1, such that

ṽi = Aivi. The matrices define the transformation for each pair of heartbeats.

In particular, we compute Ar0 and Ar by aligning the first principal components

of Su,r0 and Su,r. To obtain user-independent transformations, the resampling

patterns are computed to minimize the sum of the Euclidean distance between

the aligned first principal components of Su,r0 and Su,r over many users u. The

corresponding transformation Fr,r0 to map dictionaries is linear as in (9) and is

defined by Fr,r0 = A+
r Ar0 , begin A+

r the pseudo-inverse of Ar.

SDDL: Shared Domain-adaptive Dictionary Learning is a domain-adaptation

algorithm specifically designed for dictionaries [41]. For each source-target do-

main pairs, SDDL jointly learns two projections from these domains into a

common subspace, as well as a shared dictionary providing sparse representa-

tions of the projected data. While this solution is claimed to be general in [41],

it has been primarily developed for classification purposes, as it learns class-wise

mutually incoherent dictionaries. We adapt [41] by learning the projection from

the LTSTDB and LTAFDB datasets, and the dictionaries in the shared subspace

by means of the KSVD [18] in place of the discriminative dictionary-learning

algorithm in [41]. Thus, during the user-specific configuration, we project Su,r0

onto the low-dimensional subspace using the learned projection, then we learn a

user-specific (but heart rate independent) dictionary Du. During online moni-

toring, we project each heartbeat onto the subspace, then we compute the sparse

representation w.r.t. Du and back-project the obtained reconstruction. The `2
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norm of the difference between the original and the back-projected heartbeats

yield the reconstruction error used for anomaly detection.

Oracle: this ideal solution directly learns a dictionary Du,r from a training

set Su,r using KSVD in the target domain.As such, this cannot be pursued

in practical monitoring, but represents a performance reference for domain-

adaptation algorithms.

These domain-adaptation solutions have been trained on all ECG signals

in LTSTDB and LTAFDB datasets, which present a large variability both in

term of users and heart rates, and tested on all other datasets (Physionet and

B2B). Moreover, to assess the performance on all Physionet datasets we learn a

set of transformations from LTSTDB dataset and test it on LTAFDB dataset,

and viceversa. Finally, since all the domain-adaptation solutions depend on

several hyper-parameters, we adopt a 5-fold cross-validation procedure during

the training phase, and use random search [55] to select the hyper-parameters

that achieve the best heartbeats reconstruction performance on a validation set.

7.4. Arrhythmias Detection Experiments

We assess the anomaly detection performance of our algorithm on the ar-

rhythmias of the MIT-BIH dataset. For each user in the dataset, we compute

the ROC curves and the AUC values obtained using our algorithm and Coding

algorithm [38]. The coding algorithm achieves a median AUC equal to 0.9935

and outperforms our algorithm (median AUC equal to 0.992), as confirmed by

a two-samples sign rank test performed over the populations of AUC values (p-

value = 0.002). However, our algorithm achieves a very good performance with

a computational complexity of O(κpn), that is significantly lower than Cod-

ing algorithm, which is O(n3t + pnt) [38], where t is the number of iterations

required by the algorithm to achieve convergence, that is typically several tens.

7.5. Domain Adaptation Experiments

We perform three domain adaptation experiments: the first two are on Phys-

ionet datasets, the third one on B2B dataset. The first experiment aims to assess

the normal heartbeats reconstruction when adapting dictionaries to track heart
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Figure 3: Results of dictionary adaptation experiments on Physionet datasets. (a) The median

reconstruction error over all users. As expected, in the Oracle solution the reconstruction

error is nearly constant w.r.t. the heart rate r, and increases with r in all domain adaptation

solutions, confirming that the change in the heartbeat morphology becomes more evident for

large heart rates. Among such solutions, the Proposed one achieves the lowest reconstruction

error. (b) The median AUC computed over all the users. As in case of the reconstruction

error, the Proposed solution leads to the best performance in case of domain adaptation,

although the DTW achieves similar AUC values.

rate changes. More precisely, for each test user u we learn a dictionary Du,r0

from heartbeats at heart rate r0 = 70 bpm and then we analyze the recon-

struction error on normal heartbeats w.r.t. the dictionary obtained by adapting

Du,r0 on different heart rates. Figure 3(a) shows the median reconstruction er-

ror over all the test users and heart rates (the lower the better). Our dictionary

adaptation solution outperforms all the alternatives (except for the Oracle), in

particular at the high heart rates. A signed-rank test confirms that our so-

lution achieves lower reconstruction error than both DTW and CUT (p-value

< 0.00001), except for low heart-rates (r = 75, 80), where Proposed and Cut

solutions achieve similar performance.

In the second experiment we assess the anomaly-detection performance when

the algorithm is adapted to operate at different heart rates on each specific

user. Figure 3(b) reports the median AUC computed over all test user for each

considered solution. The Proposed one achieves similar performance of DTW for

low heart rates, and is the best when r ≥ 100, although a signed rank test does

not report enough statical evidence that the two solutions perform differently.

This is not in conflict with results on the reconstruction error. Some anomalous

heartbeats can be better perceived at low heart rates and be detected even when

the reconstruction w.r.t. the adapted dictionaries is slightly worse.
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Figure 4: Results of dictionary adaptation on B2B dataset. (a) Boxplots of the reconstruction

error computed over all the user in the datasets. (b) Boxplots of the AUC achieved by all

solutions to detect inter-user anomalous heartbeats. The proposed solution achieves the best

performance according to both figures of merit, especially in case of r = 100.

Finally, in the third experiment we simulate an online monitoring scenario,

where we set a desired FPR α = 0.01 and assess the TPR achieved when the

Du,r0 and γu,r0 using the learned transformations. Figure 5(a) shows the me-

dian FPR and TPR computed over all the users. The learned transformation

successfully maintain the FPR below the target value α for each heart rate. The

TPR is large for small heart rates, but decreases when the heart rate becomes

significantly larger than r0. This is probably due to a quality degradation of

heartbeats because of user movements which affects the capability of the detec-

tor to distinguish between normal and anomalous heartbeats.

7.6. Online Monitoring on Wearable Devices Experiments

Here we show that the transformations learned from Physionet datasets can

successfully adapt dictionaries learned from other devices, such as Bio2Bit Don-

gle, which is completely different from the Holter used to acquire the ECG

signals in the Physionet datasets. This is necessary for our solution to en-

able long-term monitoring. Therefore, we repeat the experiments in Section 7.5

using the same transformations on the B2B dataset to assess both heartbeat

reconstruction and anomaly detection performance. For each user u we learn

Du,r0 and γu,r0 from the first 10 minutes of ECG signal, and perform domain

adaptation to heart rate r ∈ {80, 90, 100}.

Figure 4(a) shows the boxplots of the reconstruction error computed on

normal heartbeats of each user for different r. This plot show that the median
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Figure 5: Results of online monitoring experiments, where the threshold γu,r0 has been set

to achieve a desired FPR α = 0.01. (a) Median TPR and FPR computed over all the users in

Physionet datasets. (b) FPR and TPR computed on the 3 patients affected by cardiovascular

diseases in the B2B dataset. Different colors correspond to different users. (c) Median FPR

and TPR in the inter-user anomaly detection experiments on the B2B dataset.

reconstruction error of the Proposed solution is lower the others even for large

heart rates. As in the experiments on the Physionet datasets, we assess the

performance in the online monitoring scenario by setting a desired FPR α =

0.01, and computing the actual FPR and TPR score for each heart rate r.

Figure 5(b) shows the performance of our solution on the 3 patients affected by

cardiovascular diseases: the FPR exceeds the desired value of α = 0.01, but it is

maintained constant. The TPR is very large for one patient, but it is smaller in

case of the other two, where the number of arrhythmias is low, thus the estimate

of the TPR is subject to a large variance.

To increase the number of anomalous heartbeats, we pursue the approach

described in [15] and artificially introduce inter-user anomalies. More precisely,

for each healthy user u we consider as anomalous any heartbeat from a different

healthy user, which indeed features a morphology that is different from training

ones. Figure 4(b) shows the boxplot of the AUC: again, the proposed solution

outperforms the others, although DTW performs comparably, as confirmed by

a signed rank test (p-value ≈ 0.6). Finally, we assess the anomaly detection

performance in the online monitoring scenario also on the inter-user anomalies.

Figure 5(c) shows the median FPR and TPR, confirming that our solution

successfully detects anomalous heartbeats when the heart rate increases while

maintaining constant FPR.
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8. Conclusions

We have addressed the challenge of performing online and long-term ECG

monitoring directly on a low-power, wearable device. In particular, we learn

a dictionary yielding sparse representations of the normal heartbeats of each

specific user, and detect as anomalous any heartbeat that do not conform to

this dictionary. The sparse coding, which is the most computationally demand-

ing step during monitoring, has been reformulated and optimized to analyze

heartbeats in an online manner on a wearable device.

Dictionaries are very interpretable models and we have shown they can be

successfully adapted to monitor ECG signals even when the heart rate – thus the

heartbeat morphology – changes. Perhaps surprisingly, while dictionaries used

to detect anomalies have to be user-specific, they can be successfully adapted

by user-independent transformations, learned from large and publicly available

datasets. Thus, a few minutes of ECG signals acquired in resting conditions

are enough to configure the device for long-term monitoring. Our algorithms

have been implemented and successfully tested in a demo device [21] performing

online ECG monitoring.

The proposed solution is still sensitive to user movements, which might cor-

rupt the heartbeat morphology and result in false alarms. This can prevent

the ECG monitoring during physical activities. Ongoing works concern online

algorithms to detect and possibly compensate motion artifacts, by analyzing

other signals acquired by the wearable device, like the bioelectrical impedance

and MEMS accelerometer signals.
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