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We have recently realized that part (2) of Lemma 8.6 of [3] is incorrect. This
invalidates the proof of Theorem 8.1 (also appearing on the Introduction as Theo-
rem 1.1). We can however prove the following weaker result (notation is as in [3];
φa is defined in (12)).

Theorem 1. Let g be a simple Lie algebra, a a reductive quadratic equal rank

subalgebra such that assumption (8) below holds. Fix Λ ∈ ĥ∗ such that Λ + ρ̂
belongs to the Tits cone Cg and let M be a highest weight module for ĝ with highest

weight Λ. Let f be a holomorphic Ŵ -invariant function on Cg. Suppose that

a highest weight L̂(a)-module of highest weight µ occurs in the Dirac cohomology

H((Gg,a)0,M). Then f|ĥ∗a
(µ+ ρ̂a) = f(Λ + ρ̂). In particular, there is w ∈ Ŵ such

that (φ∗a)−1(µ+ ρ̂a) = w(Λ + ρ̂).

As an example where the hypothesis of Theorem 1 hold, we consider in Propo-
sition 7 the case where a = h.

We specialize the setting of [3] to the case σ = Id. In particular, we may simplify
the notation of [3] letting h (rather than h0) denote a Cartan subalgebra of g and
ρ (rather than ρ0) denote the Weyl vector.

LetWk = (U(L′(g))/(K − k))⊗F−(g) and A be the algebras defined in Sections

8.2, 8.3 of [3]. Then the map tr ⊗ x 7→ x̃r, t
s− 1

2 ⊗ y 7→ ys extends to an homo-
morphism Ξ : Wk → A. Set U(n′ ⊕ n′p)p = {x ∈ U(n′ ⊕ n′p) | deg(x) = p},
where in our context deg can be defined, for x ∈ gα, y ∈ pβ , by deg(x̃r) =
ht(rδ + α), deg(ȳs) = ht(sδ + β). Recall that F denotes the algebra of holo-
morphic functions on (h∗ ⊕ Cδ)× (h∗ ⊕ Cδa). Set

Cdiag = {(Λ + cδ,Λ + ρ− ρa + cδa) | Λ ∈ h∗, c ∈ C},

let Idiag ⊂ F be the set of functions that are zero when restricted to Cdiag and set
F|Cdiag = F/Idiag.

By Lemma 8.5 of [3] the map x− ⊗ f ⊗ x+ 7→ Ξ(x−)fΞ(x+) +Ap+1
is an onto

map of vector spaces from U(n′− ⊕ (n′p)−) ⊗ F ⊗ U(n′ ⊕ n′p)p to Ap/Ap+1
whose

kernel is U(n′− ⊕ (n′p)−) ⊗ Idiag ⊗ U(n′ ⊕ n′p)p. Then we have an isomorphism (of

vector spaces) between U(n′− ⊕ (n′p)−)⊗F|Cdiag ⊗ U(n′ ⊕ n′p)p and Ap/Ap+1
.

Let Φ denote the set of holomorphic functions on h∗ ⊕Cδa. We can embed Φ in
F by mapping f ∈ Φ to Ff ∈ F , where Ff is defined by setting Ff (λ, µ) = f(µ).
The map f 7→ Ff + Idiag is an isomorphism from Φ to F|Cdiag . It follows that the
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map from U(n′− ⊕ (n′p)−)⊗ Φ⊗ U(n′ ⊕ n′p)p to Ap/Ap+1
defined by

(1) x− ⊗ f ⊗ x+ 7→ Ξ(x−)FfΞ(x+) +Ap+1

is an isomorphism of vector spaces. Since, as a vector space, A/Ap+1
= ⊕i≤pA

i
/Ai+1

,
we obtain an isomorphism

(2) A/Ap+1 ' U(n′− ⊕ (n′p)−)⊗Φ⊗ (⊕n≤pU((n′ ⊕ n′p)n).

Since Ap+1
is homogeneous with respect to deg, we can induce a grading on

A/Ap+1
. Note that, by (1), deg(x) ≤ p for any homogeneous element x ∈ A/Ap+1

.
Denote by A(a) the subalgebra of A generated by {Ff | f ∈ Φ} and (x̃a)r with

x ∈ a, r ∈ Z. Denote by A(a) its closure. Let A(n′a) be the subalgebra of A(a)
generated by (x̃a)r with tr⊗x ∈ n′a and let A+(n′a) be the ideal in A(n′a) generated
by (x̃a)r with tr ⊗ x ∈ n′a.

Set B(p) = Ap+1
+ AA+(n′a) and Bp = A/B(p). Using PBW theorem, we

decompose U(n′−⊕ (n′p)−) and U(n′⊕n′p) as vector spaces as U((n′a)−)⊗S((n′p)−⊕
(n′p)−), U(n′a) ⊗ S(n′p ⊕ n′p) respectively. Set S(n′p ⊕ n′p)p = ⊕i≤pS(n′p ⊕ n′p)i.
Using a multi-index notation similar to the one introduced in [3, (8.17)], we set, for
I = {i1, i2, . . .}, x̃I = (x̃1)i1(x̃2)i2 . . . and similarly for x̄I , x̃Ia, θ(x)I .

Lemma 2. If v ∈ AA+(n′a), then v+Ap+1
=

∑
I 6=0 qI x̃

I
a+Ap+1

, where qI is a sum

of elements of type Ξ(a−)Ξ(x−)FfΞ(x+), a− ∈ U(n′a
−), x− ∈ S((n′p)− ⊕ (n′p)−),

f ∈ Φ, x+ ∈ S(n′p ⊕ n′p)p.

Proof. Write v =
∑
i PiQi with Pi ∈ A and Qi ∈ A+(n′a). Using PBW theorem

for U(n′a) we have that Qi =
∑
I 6=0 c

i
I x̃
I
a with xI ∈ U(n′a) and ciI ∈ C. Thus

v +Ap+1
=

∑
I 6=0(

∑
i c
i
IPi)x̃

I
a +Ap+1

. Since deg(x̃Ia) > 0 we have that Ap+1
x̃Ia ⊂

Ap+1
. Using (1) we write

∑
i c
i
IPi + Ap+1

=
∑
j u

I
j + Ap+1

, where uIj are terms

of type Ξ(a−)Ξ(x−)FfΞ(x+)Ξ(a+) and a− ∈ U(n′−a ), x− ∈ S((n′p)− ⊕ (n′p)−),

a+ ∈ U(n′a), x+ ∈ S(n′p ⊕ n′p), f ∈ Φ. Hence

v +Ap+1
=

∑
I 6=0

(
∑
j

uIj )x̃
I
a +Ap+1

.

Since Ξ(a+) is a linear combination of x̃R with xR ∈ U(n′a), we write
∑
j u

I
j =∑

R qR,I x̃
R with qR,I a finite sum of terms of type Ξ(a−)Ξ(x−)FfΞ(x+), a− ∈

U(n′−a ), x− ∈ S((n′p)− ⊕ (n′p)−), x+ ∈ S(n′p ⊕ n′p), f ∈ Φ.
Using the fact that [x̃r, ȳs] = 0, we have that

(3) x̃R =
∑
M≤R

cMσ(θ(x)R−M )x̃Ma ,

where σ(θ(x1)n1 · · · θ(xk)nk) = θ(xk)nk · · · θ(x1)n1 . Moreover cR = 1. Thus

v +Ap+1
=

∑
I 6=0

∑
R

qR,I x̃
Rx̃Ia =

∑
I 6=0

∑
R

∑
M≤R

qR,Iσ(θ(x)R−M )x̃Ma x̃
I
a +Ap+1

.

Since deg(x̃Ma x̃
I
a) > 0 we have that Ap+1

x̃Ma x̃
I
a ⊂ A

p+1
. Write

σ(θ(x)R−M ) +Ap+1
=

∑
j

wR,Mj +Ap+1
,

with wR,Mj a sum of terms of type Ξ(x−)Ξ(x+) with x− ∈ S(n′p
−), x+ ∈ S(n′p), so

we can write v + Ap+1
=

∑
I 6=0

∑
R

∑
M≤R qR,I

∑
j w

R,M
j x̃Ma x̃

I
a + Ap+1

. We note
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that, if x ∈ pα, then

(4) Ff x̄r = x̄rFfα+rδa
.

Thus, by the defining relations in A, setting rI,M =
∑
j,R≥M qR,Iw

R,M
j , we have

that rI,M is a sum of terms of type Ξ(a−)Ξ(x−)FfΞ(x+), a− ∈ U(n′−a ), x− ∈
S((n′p)−⊕(n′p)−), x+ ∈ S(n′p⊕n′p), f ∈ Φ. Hence v+Ap+1

=
∑
I 6=0

∑
M rI,M x̃

M
a x̃

I
a+

Ap+1
. By PBW theorem, we have x̃Ma x̃

I
a =

∑
T cT,M,I x̃

T
a . with c0,M,I = 0 (since

I 6= 0), hence, as wished

v +Ap+1
=

∑
T 6=0

(
∑
M,I

cT,M,IrI,M )x̃Ta +Ap+1
.

�

Lemma 3. The map Θ : U(n′−a )⊗S((n′p)−⊕(n′p)−)⊗Φ⊗S(n′p⊕n′p)p → Bp defined

by a− ⊗ x− ⊗ f ⊗ x+ 7→ Ξ(a−)Ξ(x−)FfΞ(x+) +B(p) is a linear isomorphism.

Proof. First we check that Θ is onto. By (1), if v ∈ Bp then v is a sum of terms of
type

(5) Ξ(a−)Ξ(x−)FfΞ(x+)Ξ(a+) +B(p),

with a− ∈ U(n′−a ), x− ∈ S((n′p)− ⊕ (n′p)−), a+ ∈ U(n′a), x+ ∈ S(n′p ⊕ n′p), f ∈ Φ.

We can clearly assume that a+ is a monomial, thus Ξ(a+) = x̃I . By (3), there
is a constant c such that Ξ(a+) = x̃I = cσ(θ(x)I) mod AA+(n′a)

Remark that, setting l = deg(θ(x)r), then θ(x)r ∈
∏
q≥lWl−qW+

q , thus θ(x)r ∈∑p
q=lWl−qW+

q mod Ap+1
. Since Ani A

m

j ⊂ A
t

with t = max(n,m+j), we see that

there is an element of u ∈ S(L(p̄)) such that σ(θ(x)I) ≡ Ξ(u) mod Ap+1
. Substitut-

ing in (5), we see that v ∈ Bp is a sum of terms of type Ξ(a−)Ξ(x−)FfΞ(x+)Ξ(u) +
B(p) with u ∈ S(L(p̄)). It is now clear using the defining relations of A and (4) that
Ξ(x−)FfΞ(x+)Ξ(u) can be rewritten as a sum of terms of type Ξ(x′−)Ff ′Ξ(x′+)
with x′ ∈ S((n′p)−⊕ (n′p)−), f ′ ∈ Φ, x′+ ∈ S(n′p⊕ n′p)p, thus v is in the image of Θ.

We now check that the map Θ is injective. Assume that v = Θ(
∑
i ui) with ui

of type a− ⊗ x− ⊗ f ⊗ x+ and that v ∈ Ap+1
+AA+(n′a). This means that, as in

the statement of Lemma 2, v +Ap+1
=

∑
I 6=0 qI x̃

I
a +Ap+1

. Since

(6) x̃Ia =
∑
M≤I

cM,Iθ(x)I−M x̃M ,

with cI,I = 1, we have that

v +Ap+1
=

∑
I 6=0

qI x̃
I +

∑
M

(
∑
I>M

cM,IqIθ(x)I−M )x̃M +Ap+1
.

Arguing as in the first part of the proof we can show that qIθ(x)I−M +Ap+1
=

q′I,M +Ap+1
with q′I,M a sum of terms of type Ξ(x′−)Ff ′Ξ(x′+) with x′ ∈ S((n′p)−⊕

(n′p)−), f ′ ∈ Φ, x′+ ∈ S(n′p ⊕ n′p)p, hence

(7) v +Ap+1
=

∑
I 6=0

qI x̃
I +

∑
M

∑
I>M

cM,Iq
′
I,M x̃

M +Ap+1
.

Let m = max{|I| | qI x̃Ia +Ap+1 6= Ap+1}, then

v +Ap+1
=

∑
|I|=m

qI x̃
I +

∑
|I|<m

q′′I x̃
I +Ap+1

,
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where the coefficients q′′I are obtained from (7) in the obvious way. It follows that∑
|I|=m

qI x̃
I +Ap+1

= Θ(
∑
i

ui)−
∑
|I|<m

q′′I x̃
I +Ap+1

.

If m > 0, this contradicts (1). Thus v ∈ Ap+1
. Since v = Θ(

∑
i ui) with ui of type

a− ⊗ x− ⊗ h̄⊗ f ⊗ x+ this implies, by (1) again, that
∑
i ui = 0 as wished. �

ObviouslyA acts on B(p) = Ap+1
+AA+(n′a) by left multiplication. In particular

we can define an action of L′(a) on Bp = A/B(p) by letting tr ⊗ x act by left
multiplication by (x̃a)r and KS by (k + g − gS)I.

Set Ωa = (L̃a)0 + (k + g)da. Since deg((L̃a)0) = deg(Ωa) = 0, bracketing with

(L̃a)0 and Ωa leaves Ap stable. This implies that that [Ωa, B(p)] ⊂ B(p). Indeed,

if v ∈ B(p), then, by Lemma 2, v +Ap+1
=

∑
I 6=0 qI x̃

I
a +Ap+1

, hence

[Ωa, v] +B(p) = [Ωa,
∑
I 6=0

qI x̃
I
a] +B(p) = (

∑
I 6=0

qI x̃
I
a)q +B(p)

where q =
∑
i h̃

i
a0h̃

i
a0 + (h̃2ρa)a0 + (k + g)da. We can assume that x̃Ia are weight

vectors of weight µI under the action of {h̃a0 | h ∈ h} ∪ Cda. Therefore

[Ωa, v] +B(p) = (
∑
I 6=0

qIq−µI x̃
I
a) +B(p) = B(p).

Thus bracketing with Ωa defines an operator Ωp on Bp.
Since deg(Ff ) = 0 for f ∈ Φ, we have that Ap+1

Ff ⊂ A
p+1

. The argument
above shows that B(p)Ff ⊂ B(p), hence we can define a right action of Φ on Bp.
In particular, we might consider h ∈ h⊕ Cda as a function in Φ, so we have a well
defined action ad of h + Cda on Bp given by ad(h)(x) = hx− x · h, x ∈ Bp.

For f ∈ Φ, set
Bp[f ] = {v ∈ Bp | Ωp(v) = v · f}.

Proposition 4. Assume that for all p

(8) Bp = U(L′(a))(Bn
′
a
p ).

Then
Bp =

⊕
f∈Φ

Bp[f ].

Proof. We first show that the spaces Bp[f ] generate Bp. Let x ∈ Bn
′
a
p . We can

assume that x is a weight vector for the action ad of h + Cda on Bp of weight
µ ∈ h∗ ⊕ Cδa. If x = v +B(p), then Ωp(v +B(p)) = [Ωa, v] +B(p), hence

Ωp(x) = [L̃a + (k + g)da, v] +B(p) = Fqx− xFq +B(p).

where q =
∑
i h̃

i
a0h̃

i
a0 + (h̃2ρa)a0 + (k + g)da. Hence

Ωp(x) = v(Fqµ − Fq) +B(p) = x · (qµ − q).
Since [Ωa, U(L′(a))] = 0 we obtain the our claim.

We now check that the sum is direct. Assume that v · f = 0 for a nonzero f ∈ Φ
and v ∈ Bp. Lemma 3 identifies Bp with U(n′−a )⊗S((n′p)−⊕(n′p)−)⊗Φ⊗S(n′p⊕n′p)p

so we can write accordingly v =
∑
i Θ(a−i ⊗ x

−
i ⊗ fi ⊗ x

+
i ) and assume that the

weight of x+
i under the action of h ⊕ Cda is µi. Here h ∈ h acts by the adjoint

action of h̃a0. Then v ·f =
∑
i Θ(a−i ⊗x

−
i ⊗ h̄i⊗fif−µi⊗x

+
i ) By Lemma 3, v ·f = 0

implies that fif−µi = 0 for all i. Since f is nonzero, then clearly f−µi is nonzero.
Since f, fi are holomorphic functions fif−µi = 0 implies fi = 0 for all i. Thus, if
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v · f = 0 for a nonzero f ∈ Φ, then v = 0. A standard argument of linear algebra
proves by induction on n that, if

∑n
i=1 vi = 0 with vi ∈ Bp[fi] and fi 6= fj for i 6= j

then vi = 0 for all i. �

Set G0 = (Gg,a)0. Since deg(G0) = 0, [G0,A
p
] ⊂ Ap. Moreover

[G0,AA+(n′a)] ⊆ [G0,A]A+(n′a) ⊆ AA+(n′a).

It follows that bracketing with G0 stabilizes B(p), hence induces a map d̄p on Bp.
We set

Binvp = Ker(Ωp).

It follows from Proposition 4 that we can write

Bp = Binvp ⊕W,

where W =
⊕

f 6=0 Bp[f ]. Clearly W is stable under the action of Ωp.

Lemma 5.

(1) Binvp and W are d̄p-stable.

(2) d̄2
p = 0 on Binvp .

Proof. The first statement is clear since [G0,Ω
p] = 0.

For the second statement, we start by observing that (3.12) in [3] says that

[L̃g
0, x̃r] = −(k + g)rx̃r and [L̃g

0, xr] = 0. By the definition of the product in A
and formula (3.10) of [3] (with si = 0), we see that [L̃g

0, f ] = 0 for f in F . On the
other hand [d, x̃r] = rx̃r, [d, xr] = 0 and [d, f ] = 0 for f in F . Thus bracketing

with d and L̃g
0 stabilizes the subalgebra of A generated by x̃r, xr, f and if x is in

this subalgebra, then [L̃g
0, x] = −(k+ g)[d, x]. By [3, Lemma 8.5] this subalgebra is

dense in A, hence [L̃g
0, x] = −(k + g)[d, x] for all x ∈ A.

Now notice that, if x + B(p) ∈ Binvp , then d̄2
p(x + B(p)) = [G2

0, x] + B(p), G0

being odd. It follows from [3, (4.18)] that

[G2
0, x] = [L̃g

0 − L̃a
0 − (k + g)Lp

0, x] = −[L̃a
0 + (k + g)(d+ Lp

0), x] = −[Ωa, x] ∈ B(p)

as desired. �

Identify S((n′p)−⊕ (n′p)−)⊗S(n′p⊕ n′p) with S(L(p))⊗∧L(p) (as vector spaces).
We introduce an increasing filtration Bp[0] ⊂ Bp[1] ⊂ · · · ⊂ Bp[n] ⊂ . . . on Bp by
setting Bp[n] = Θ(U(n−a )⊗Φ⊗Kp[n]) where

Kp[n] = (⊕m≤nSm(L(p))⊗ S(L(p))) ∩ (S((n′p)− ⊕ (n′p)−)⊗ S(n′p ⊕ (n′p))p).

Observe that the corresponding graded space is Gr(Bp) = ⊕nGrn(Bp) where

Grn(Bp) = U((na)−)⊗Φ⊗Kp
n,

Kp
n = (Sn(L(p))⊗ S(L(p))) ∩ (S((n′p)− ⊕ (n′p)−)⊗ S(n′p ⊕ n′p)p).

This filtration can be defined in a more natural way as follows: introduce a filtration
W[0] ⊂ W[1] ⊂ · · · ⊂ W[n] ⊂ . . . onW by giving degree 1 to x̃r if x ∈ p and degree
0 to x̃r if x ∈ a and to x̄r if x ∈ p. This filtration induces a filtration on Bp and,
since L′(a) is a subalgebra of L′(g), the two filtrations coincide. As a consequence
we have that

(9) Ωp(Bp[n]) ⊂ Bp[n].

This is due to the fact that, if x ∈ W, then Ωp(x + B(p)) = [Ωa, x] + B(p) =
[y, x] +B(p) for some y ∈ W[0] (indeed y = Ωa mod Aq, q � 0).

Let δp : S(L(p)) ⊗ ∧L(p) → S(L(p)) ⊗ ∧L(p) be the Koszul differential. Since
[G0, Ff ] = 0 for f ∈ Φ, as in the proof of Lemma 8.7 of [3] we can show that
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the map induced by d̄p on Gr(Bp) is the restriction to ⊕n(U((n′a)−)⊗Φ⊗Kp
n) of

Id⊗ Id⊗ δp. It follows that, if x ∈ Bp[n] is such that d̄p(x) = 0, then

(10) x = xa + d̄p(y) + u

with xa ∈ Θ(U(n′−a )⊗Φ) and u, y ∈ Bp[n− 1].

Proposition 6. If x ∈ Binvp and d̄p(x) = 0 then there are a ∈ A(a) and y ∈ Binvp

such that
x = a+B(p) + d̄p(y).

Proof. Assume x ∈ Bp[n]. The proof will be by induction on n.
First assume x ∈ Bp[0]. Then, by (10), we have that x = xa. Write xa =

x′a +B(p) where x′a =
∑
I x̃

IFqI with x̃I ∈ U(n′−a ) and qI ∈ Φ. Let m = max{|I| |
qI 6= 0}. Similarly to (3), we have

(11) x̃I =
∑
M≤I

aM x̃
M
a σ(θ(x)I−M )

with aI = 1, hence we can rewrite x′a as x′a =
∑
|I|=m x̃

I
aqI+

∑
|I|<m x̃

I
aq
′
I , with q′I ∈

Ξ(S(L(p̄)))FΦ, where FΦ = {Ff | f ∈ Φ}. Applying (6) we can rewrite this as x′a =∑
|I|=m x̃

I
aqI +

∑
|I|<m x̃

Iq′′I , with q′′I ∈ Ξ(S(L(p̄)))FΦ. Thus xa =
∑
|I|=m x̃

I
aqI +∑

|I|<m x̃
Iq′′′I +B(p), with q′′′I ∈ Ξ(S(L(p̄)))FΦ. Since xa and

∑
|I|=m x̃

I
aqI +B(p)

are both in Binvp , we have that
∑
|I|<m x̃

Iq′′′I + B(p) ∈ Binvp . Since 0 = d̄p(xa) =

d̄p(
∑
|I|=m x̃

I
aqI + B(p)) we have that d̄p(

∑
|I|<m x̃

Iq′′′I + B(p)) = 0. On Bp[0] the

differential d̄p is just Id ⊗ Id ⊗ δp. By exactness of δp we find that q′′′I ∈ FΦ. By

an obvious induction on m we deduce that xa = a+B(p) for some a ∈ A(a).
Assume now n > 0. Then, by (10), we have that x = xa + d̄p(y) + u with

y, u ∈ Bp[n−1]. Arguing as above we have xa =
∑
|I|=m x̃

I
aqI+

∑
|I|<m x̃

Iq′′′I +B(p).

Note that
∑
|I|<m x̃

Iq′′′I +B(p) ∈ Bp[0].

Setting u′ = u +
∑
|I|<m x̃

Iq′′′I + B(p), we have that x = a + B(p) + d̄p(y) + u′

with y, u′ ∈ Bp[n−1]. We can write y = y0 +y′ and u′ = u0 +u′′ with y0, u0 ∈ Binvp

and y′, u′′ ∈ W . Since x ∈ Binvp we can write x = a+ B(p) + d̄p(y0) + u0 so, since

d̄p(x) = d̄p(a+B(p)) = 0, we have that d̄p(u0) = 0.
By (9) we can assume u0 ∈ Bp[n−1], hence we can apply the induction hypothe-

sis, obtaining u0 = a′+B(p)+ d̄p(z) and proving that x = a+a′+B(p)+ d̄p(y0 +z).

with a+ a′ ∈ A(a). �

We now come to the proof of the main result. Let Cg be the Tits cone of L̂(g).

Let φa : ĥa → ĥ be the map defined by

(12) φa|h = Idh, φa(da) = d da(KS) = K for allS.

If f is a function on Cg we denote by f|ĥ∗a
the function on φ∗a(Cg) ∩ ĥ∗a defined by

f|ĥ∗a
(λ) = (f ◦ (φ∗a)−1)(λ).

Proof of Theorem 1. Recall that the Dirac cohomology H((Gg,a)0,M) is the L̂(a)-
module KerG0/KerG0 ∩ ImG0, where G0 is seen as an operator on M ⊗ F (p̄).

If v ∈ M ⊗ F (p̄) is a weight vector of weight
∑
kSΛS0 + ν and q ∈ Φ, we define

an action of Fq on v by setting Fq · v = q(ν)v. This extends the action of L̂(a)
on M ⊗ F (p̄) to an action of A(a). As in § 8.5 of [3] we get the existence of a
central element zf of A such that zf · v = f(Λ + ρ̂)v for any v ∈ M ⊗ F (p̄). Let

v0 +KerGM0 ∩ImGM0 be the highest vector of a L̂(a)-submodule of H((Gg,h)0,M)
with highest weight µ =

∑
S(k + g − gS)ΛS0 + µ̄ with µ̄ ∈ h∗ + Cδa. Choose p big

enough so that Ap+1
v0 = 0. Since zf is central we have that zf + B(p) ∈ Binvp



CORRIGENDUM TO “MULTIPLETS OF REPRESENTATIONS....” 7

and d̄p(zf ) = 0. Applying Proposition 6 we can write zf = a + [G0, y] + u with

a ∈ A(a) and u ∈ B(p). It follows that f(Λ + ρ̂)v0 = zfv0 = av0 +G0yv0 + uv0 =
av0 +G0yv0. Since both v0 and av0 are in KerG0 we see that G0yv0 ∈ KerG0 so
f(Λ + ρ̂)(v0 +KerGM0 ∩ ImGM0 ) = a · (v0 +KerGM0 ∩ ImGM0 ).

On the other hand, since deg(zf ) = 0 we can assume deg(a) = 0 so a = Fq + a′

with q ∈ Φ and a′ ∈ A(a)A+(n′a). It follows that f(Λ + ρ̂) = q(µ̄).
By Corollary 7.2 of [3], vΛ ⊗ 1 + KerGM0 ∩ ImGM0 is the highest vector for

a nonzero L̂(a)-submodule of H((Gg,h)0,M) having highest weight Λ + ρ̂ − ρ̂a. It
follows that f(Λ+ρ̂) = q(Λ̄+ρ−ρa) for any Λ ∈ −ρ̂+Cg. Since µ+ρ̂a ∈ Cg, it follows
that f(µ + ρ̂a) = q(µ̄) = f(Λ + ρ̂). and the first statement is proven. The second

statement follows from a theorem of Looijenga [1], asserting that holomorphic Ŵ -

invariant functions separate the orbits of the action of Ŵ on Cg. �

Proposition 7. If k + g 6= 0 then, as a L′(h)-module, Bp is generated by Bn
′
h
p .

Proof. Write for simplicity hr for (h̃h)r, h ∈ h. Consider the infinite Heisenberg
subalgebra s =

∑
r 6=0 t

r ⊗ h ⊕ CKh of L′(h). Recall that Kh acts as on Bp as

(k + g)Id. Note that Bn
′
h
p is the set x ∈ Bp such that (tr ⊗ h)x = 0 fon any h ∈ h

and r > 0. By Lemma 9.13 of [2] it suffices to check that given x ∈ Bp then
there is N such that (h1)i1 . . . (h

n)in · x = 0 whenever ij > 0 for all j and n > N
(hi ∈ h). We can clearly assume that x is homogeneous with respect to deg. Then
it is enough to choose N = −deg(x)+p, for, if n > N , then deg((h1)i1 . . . (h

n)in) =
(i1 + · · · + in) ≥ n > N . It follows that deg((h1)i1 . . . (h

n)inx) > N + deg(x) = p
so (h1)i1 . . . (h

n)inx = 0. �
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