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We have recently realized that part (2) of Lemma 8.6 of [3] is incorrect. This
invalidates the proof of Theorem 8.1 (also appearing on the Introduction as Theo-
rem 1.1). We can however prove the following weaker result (notation is as in [3];
¢q is defined in (12)).

Theorem 1. Let g be a simple Lie algebra, a a reductive quadratic equal rank
subalgebra such that assumption (8) below holds. Fiz A € E* such that A + p
belongs to the Tits cone Cy and let M be a highest weight module for g with highest
weight A. Let f be a holomorphic W -invariant function on Cy. Suppose that
a highest weight Z(a)—module of highest weight v occurs in the Dirac cohomology
H((Gg,a)0,M). Then f\ﬁ: (L + pa) = f(A+p). In particular, there is w € W such

that (65)~ (1 + pa) = w(A + 7).

As an example where the hypothesis of Theorem 1 hold, we consider in Propo-
sition 7 the case where a = §.

We specialize the setting of [3] to the case o = Id. In particular, we may simplify
the notation of [3] letting b (rather than hy) denote a Cartan subalgebra of g and
p (rather than pg) denote the Weyl vector.

Let W* = (U(L'(g))/(K — k))®F~(g) and A be the algebras defined in Sections
8.2, 8.3 of [3]. Then the map t" @ & — &, t*"2 ® y — 7, extends to an homo-
morphism Z : WF — A Set U(W @ 1,), = {z € U @1,) | deg(z) = p},
where in our context deg can be defined, for x € go, y € pg, by deg(z,) =
ht(rd + «), deg(ys) = ht(sd + ). Recall that F denotes the algebra of holo-

morphic functions on (h* @ C§) x (h* & Cdy,). Set
Ciag = {(A+cd,A+p—pa+cda) | A€b™, c€C},

let Zgiag C F be the set of functions that are zero when restricted to Cyiug and set
FiCuiag = F [ Ldiag-

By Lemma 8.5 of [3] the map x~ ® f ®@ 2T — Z(z7) fE(z™) + A" s an onto
map of vector spaces from U(nw_ @ (,)-) ® F @ U(n' @ 1), to .7417/j4pJr1 whose

kernel is U(n" @ (W,)-) ® Zaiag ® U(n' @ 7y),. Then we have an isomorphism (of

vector spaces) between U(n'_ @ (7)) ® Fic,,,, ® U ®7,), and XP/ZPH.

Let ® denote the set of holomorphic functions on h* @ Cé,. We can embed ® in

F by mapping f € ® to Fy € F, where Fy is defined by setting F(\, ) = f(p).

The map f +— Fy + Zgiaq is an isomorphism from @ to FiCaiag- 1t follows that the
1
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map from U(n & (W,)_) ® d @ U(n & 7)), to A" /A" defined by

(1) o~ ® f@at o E(a)FpE(et) + AT

—p+1 H—l
is an isomorphism of vector spaces. Since, as a vector space, A/ A" = @<, A’ / A

we obtain an isomorphism
2) A/AT 2 UM @ ([{)) @8 @ (Bug,U((W ©T),0).

Since A" is homogeneous with respect to deg, we can induce a grading on
X/ZP—H. Note that, by (1), deg(z) < p for any homogeneous element z € A/.AIH_1

Denote by A(a) the subalgebra of A generated by {Fy | f € ®} and (Z,), with
x € a, 7 € Z. Denote by A(a) its closure. Let A( ') be the subalgebra of A(a)
generated by (Z4), with " ®z € n/, and let AT (n/) be the ideal in A(n),) generated
by (Z4)r with " ® z € n.

Set B(p) = Ay AA*(nl) and B, = A/B(p). Using PBW theorem, we
dffompose U & (n;)_)iand U(n' @m,) as vector spaces as U((ng)_) ® S((n;),_ &
(@,)-), Ulng) @ S(nj, © 1) respectively. Set S(nj, & 7,)P = ®i<,pS(ny, ® W)
Using a multi- mdex notatlon similar to the one mtroduced 1n [3, (8 17)], we set, for

I = {i1,ia,...}, 21 = (Z1)"(22)* ... and similarly for z/, &l ( ).

Lemma 2. Ifv € AAT(n}), then v AT = E#O qr +A , where qr is a sum

of elements of type E(a™)=(x)FE(zT),a” € Un '_), T~ € S((n;,)f @ (W,)-),
fe® ot eSh,on,)r.

Proof. Write v = Y, P,Q; with P, € A and Q; € A" (n}). Using PBW theorem
for U(n),) we have that Ql 21750 ctxl with 2! € U(n}) and ¢ € (C Thus
vt AT = 120X )T + A" Since deg(i Iy >0 we have that A"" I'c

A" Using (1) we write >, ¢t P; + A = S, uf + A" where ul are terms

of type E(a™)Z(z7)FfE(21)Z(a™) and a= € Uy ), = € S((n,)- @ (,)-),
teUm,), zt e S(n, ®w,), f € ®. Hence
e YRR
I£0
Since Z(a™) is a linear combination of #% with z® € U(n}), we write Y, uf =
>k qr 1" with gr s a finite sum of terms of type Z(a™)ZE(z7)FfE(zt), a= €

Uy ), 2= € S((n,)- @ (m,)-), 2t € S, @ wy), f € @
Using the fact that [Z,., gjs] = 0, we have that

(3) = 3 eaolB(a) MY,

M<R

where 0(0(:01)”1 < Q(aF)e) = O(zk)me - 9(xt)™r. Moreover cg = 1. Thus

ZZQRII T —ZZ Z qr.1o(0(z) MM 5 I—i—ApH.

I#0 R I#0 R M<R
Since deg(ZM#!) > 0 we have that Az Myl AT Weite

o (B(x)"M) + AT = 3 WM 2
J

with wf’M a sum of terms of type Z(z7)=E(z") with 2~ € S(m, ™), 2™ E S(my,), so
. 1 —
we can write v + A = ZI;&OZRZMSRqR»Iij]RJM‘TéW ngA . We note
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that, if = € p,, then
(4) Ffir = jTFfoH»WL, .

Thus, by the defining relations in A, setting 77y = Zj,RzM qRwa’M, we have
that 77 is a sum of terms of type Z(a™ )=(x™)FfE(zT),a” € Uy ), 2~ €

—_ — —p+1 ~ M ~
S((np)—e@(@y)-), 2" € S(nyem,), f € ®. Hence v+ A" = D10 on TLMEY TLH
XPH. By PBW theorem, we have #M 3l = dor CT7M,I£“Z. with ¢o ar,r = 0 (since
I #0), hence, as wished

v+ .Ap+1 Z ZCT M,ITT M).’I? + .Ap+1

T#0 M,I
O

Lemma 3. The map © : U(n, )@ S((ny,) - @(ﬁ;ﬁ)@@@S(u;@ﬁ;)p — B, defined
bya - @z” @ fRat — _(a_)E(a:_)Ff (%) + B(p) is a linear isomorphism.

Proof. First we check that © is onto. By (1), if v € B, then v is a sum of terms of
type
(5) E(a7)E(x")FyE(x")E(a") + Bp )
with a= € U(ny), 2~ € S((n,)- @ (W,)-), a™ € U(ny), 2+ € S(n
We can clearly assume that a™ is a monomial, thus H(a+) =
is a constant c such that Z(at) = ! = co(0(z)!) mod AAT(n))
Remark that, setting | = deg(0(x),), then 0(x), € [],5; Wi-Wy, thus 0(z), €
v Wi—gW; mod AP Since ATAT A’ with ¢t = max(n, m+ ), we see that
there is an element of u € S(L(p)) such that o(f(z)’) = Z(u) mod A" Substitut-

ing in (5), we see that v € B, is a sum of terms of type E(a™)Z(z ™) FyE(z)E(u) +
B(p) with u € S(L(p)). It is now clear using the defining relations of A and (4) that
E(z7)FE(xzT)E(u) can be rewritten as a sum of terms of type Z(z'~)FpE(z'T)
with 2’ € S((n,)- @ (7)), f € @, 2'" € S(n, ®7,)P, thus v is in the image of O.

We now check that the map © is injective Assume that v = O()_, u;) with u;
of type a” @2~ @ f ® 2+ and that v € Ay AA*( ) This means that, as in

the statement of Lemma 2, v+ A" = D0 4 + A" Since

(6) wl=Y ensf(z) MM,

M<I

L@, fe®.
zl. By (3), there

with ¢ 1 = 1, we have that
—p+1 ~ +1
v+ AT =D " Y (O ennrqif(@) MM + A
1#0 M I>M
Arguing as in the first part of the proof we can show that ¢;0(z)! = + A=
qr.m + A" with q7.pr & sum of terms of type E(z'~ ) Fy E(2'") with 2’ € S((ny)- @
(@,)-), f' € ®, 't € S(n, ®7,)P, hence

—p+1 N N —pt1
(7) v AT = Zq;xl +Z Z a1y @ + A

T#£0 M I>M

Let m = max{|I| | ¢;Z% + A + XPH}, then

p+1 Z qu” T Z q,, 1 p+1

= [1]<m
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where the coeflicients ¢7 are obtained from (7) in the obvious way. It follows that

Z qrT +Ap+l—® Zuz Z 4z Ly

[1l= [I]<m

If m > 0, this contradicts (1). Thus v € A" Since v = O(>_, ui) with u; of type
a” ®@x” @h® f®at this implies, by (1) again, that Y, u; = 0 as wished. O

Obviously A acts on B(p) = AT A (n}) by left multiplication. In particular
we can define an action of L'(a) on B, = A/B(p) by letting t" ® x act by left
multiplication by (Z4), and Kg by (k+ g — gs)I.

Set Qq = (L%)o + (k + g)da. Since deg((L%)o) = deg(2q) = 0, bracketing with
(L%)o and Q, leaves A” stable. This implies that that [Q4, B(p)] € B(p). Indeed,

if v € B(p), then, by Lemma 2, v + AT = 217&0 qr7t +jp+l, hence
[Qq,v] + B(p) Qa,ZqIJL‘ |+ B(p quj )¢+ B(p
170 170

where ¢ = ), hi ohuo + (h2pa)uo + (k + g)ds. We can assume that & are weight
vectors of weight 7 under the action of {hqo | h € h} U Cd,. Therefore

[0, 0] + B(p) = (Y 01—, %4) + B(p) = B(p).
I£0
Thus bracketing with {2, defines an operator {2 on B,,.

Since deg(Fy) = 0 for f € ®, we have that APHF c A7 The argument

above shows that B(p)Fy C B(p ) hence we can define a right action of ® on B,.
In particular, we might consider h € h @ Cd, as a function in ¢, so we have a well
defined action ad of h + Cdy on B, given by ad(h)(z) = he —x - h, x € B,.
For f € @, set
Bplfl={veB,| QPw)=uv-f}

Proposition 4. Assume that for all p

’

(8) B, = U(L'(a))(By®).
Then
B, = P B,l/]
fed

Proof. We first show that the spaces B,[f] generate B,. Let © € B;/“. We can
assume that z is a weight vector for the action ad of h + Cd, on B, of weight
w € b*@®Céy. If © =v+ B(p), then QP (v + B(p)) = [Qa,v] + B(p), hence

OP(z) = [L* + (k + g)da,v] + B(p) = Fyz — aF, + B(p).
where ¢ = 3°, hiohio + (hap, )ao + (k + g)ds. Hence
Qp(x) = U(Fqu - Fq) + B(p) =T ((Iu -q).
Since [Qq, U(L'(a))] = 0 we obtain the our claim.

We now check that the sum is direct. Assume that v- f = 0 for a nonzero f € ¢
and v € B),. Lemma 3 identifies B, with U(n;")®S((n;,)- @(ﬁ;)_)®¢'®5(n;€aﬁ;)p
so we can write accordingly v = ). 09(a; ® z; ® fz ® x;7) and assume that the
weight of ;" under the action of h & Cd, is ;. Here h € h acts by the adjoint
action of hao. Thenv-f =3, 0(a; ®z; @h; @ f; f—,, ®x]) By Lemma 3, v-f =0
implies that f;f_,, = 0 for all <. Slnce f is nonzero, then clearly f_,, is nonzero.
Since f, f; are holomorphic functions f;f_,, = 0 implies f; = 0 for all 7. Thus, if
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v- f =0 for a nonzero f € ®, then v = 0. A standard argument of linear algebra
proves by induction on n that, if Y., v; = 0 with v; € B,[f;] and f; # f; fori # j
then v; = 0 for all 4. O

Set Go = (Gg.a)o- Since deg(Go) = 0, [Go, A”] € A”. Moreover
[Go, AAT (ny)] € [Go, A AT (n) © AAT (ng).

It follows that bracketing with Gy stabilizes B(p), hence induces a map Jp on B,.
We set

B," = Ker(QF).
It follows from Proposition 4 that we can write

B, = B;"” oW,
where W = @, By[f]. Clearly W is stable under the action of QF.

Lemma 5.

(1) Bir and W are dy-stable.
(2) JIQ) =0 on B™.

Proof. The first statement is clear since [Gy, 2] = 0.

For the second statement, we start by observing that (3.12) in [3] says that
[L8,%,] = —(k + g)r#, and [L§,Z,] = 0. By the definition of the product in A
and formula (3.10) of [3] (with s; = 0), we see that [Lg, f] = 0 for f in F. On the
other hand [d,%,] = rZ,, [d,Z,] = 0 and [d, f] = 0 for f in F. Thus bracketing
with d and ig stabilizes the subalgebra of A generated by Z,,Z,, f and if x is in
this subalgebra, then [L3,z] = —(k + g)[d, z]. By [3, Lemma 8.5] this subalgebra is
dense in A, hence [L8, z] = —(k + g)[d, z] for all z € A.

Now notice that, if x4+ B(p) € By, then d2(z + B(p)) = [G},z] + B(p), Go
being odd. It follows from [3, (4.18)] that

(8 2] = [L§ = L§ = (k + 9)LE, 2] = ~[L§ + (k + 9)(d + L}), 2] = ~[Q,2] € B(p)
as desired. (]

Identify S((n},)- @ (,)-) ® S(n, ®7,) with S(L(p)) ® AL(p) (as vector spaces).
We introduce an increasing filtration Bp[0] C Bp[1] C --- C Bp[n] C ... on B, by
setting By,[n] = ©(U(n;) ® ® ® KP[n]) where

KP[n] = (©&m<nS™ (L(p)) @ S(L(P))) N (S((ny)- & (W,)-) @ S(ny, & (W,))").
Observe that the corresponding graded space is Gr(B,) = &,Gr,(B,) where

Gry(Bp) = U((na)-) ® ® @ K7,
K2 = (S™(Lp)) © S(LE)) N (S((n)- @ (7)) @ S(n) & 5,)7)

This filtration can be defined in a more natural way as follows: introduce a filtration
WI0] C W[1] C--- C WIn| C ... on W by giving degree 1 to &, if z € p and degree
0 to Z, if x € a and to Z, if x € p. This filtration induces a filtration on B, and,

since L'(a) is a subalgebra of L'(g), the two filtrations coincide. As a consequence
we have that

(9) QP (By[n]) C Bpln.
This is due to the fact that, if z € W, then QP(x + B(p)) = [Qq,2] + B(p) =
ly, z] + B(p) for some y € W[0] (indeed y = Q4 mod A%, ¢ > 0).

Let 6, : S(L(p)) ® AL(p) — S(L(p)) ® AL(p) be the Koszul differential. Since
[Go, F¢] = 0 for f € ®, as in the proof of Lemma 8.7 of [3] we can show that
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the map induced by dj, on Gr(B,) is the restriction to &, (U((ny)-) @ ® ® KE) of
Id® Id ® 6,. It follows that, if = € By[n] is such that d,(x) = 0, then
(10) T =14 +dy(y) +u
with 2, € ©(U(n; ) @ ®) and u,y € By[n —1].
Proposition 6. If z € By and dy(x) = 0 then there are a € A(a) and y € By
such that -
z =a+ B(p) + d,(y).
Proof. Assume x € By[n]. The proof will be by induction on n.

First assume x € B,[0]. Then, by (10), we have that z = x,. Write 2z, =
z!, + B(p) where 2/, = Y, &' F,, with #/ € U(n/") and ¢; € ®. Let m = max{|I| |
qr # 0}. Similarly to (3), we have
(11) =" ani)o(0(x) M)

M<I

with a; = 1, hence we can rewrite 23 as xq =3 7_,, i‘ﬁql—&—ZuKm Tlq), with ¢} €
E(S(L(p)))Fs, where Fo = {Fy | f € ®}. Applying (6) we can rewrite this as z}, =
ltj=m Flar + Xitj<m #lqy, with ¢f € Z(S(L(p)))Fa. Thus x4 = Xltj=m Tlar +
Xitj<m #1q!" + B(p), with ¢/ € Z(S(L(p)))Fs. Since z, and 2olt|=m zlqr + B(p)
are both in Bi", we have that Z|1\<7Qilq/1” + B(p) € Bi™. Since 0 = dp(z,) =
dp (X2 11=m it_fqu + B(p)) we have that dp,(3_ 7., #1 ¢! + B(p)) = 0. On B,[0] the
differential d,, is just Id ® Id ® 6,. By exactness of 6, we find that ¢/’ € Fs. By
an obvious induction on m we deduce that x4 = a + B(p) for some a € A(a).

Assume now n > 0. Then, by (10), we have that z = x4 + d,(y) + u with
Y, u € Bp[n—1]. Arguing as above we have zq = > 7 _,, j‘:éq1+2u|<m #q)'+B(p).
Note that >° 7, g}l + B(p) € B,0]. )

Setting v’ = u+ 3 1 #q}' + B(p), we have that = = a + B(p) + d,(y) +_u'
with y,u" € Bp[n—1]. We can write y = yo +y' and v’ = uo +u" with yo,uo € B,""
and y/,u” € W. Since z € Bi" we can write = a + B(p) + dp(yo) + uo so, since
dy(x) = dp(a + B(p)) = 0, we have that d,(ug) = 0.

By (9) we can assume ug € By[n — 1], hence we can apply the induction hypothe-
sis, obtaining up = a’+ B(p) +d,(2) and proving that « = a+a’+ B(p) +dp(yo + 2).
with a + o’ € A(a). U

We now come to the proof of the main result. Let Cy be the Tits cone of E(g)
Let ¢4 : by — b be the map defined by

(12) Sajy = Idy,  da(de) =d do(Ks) = K for all S,

If f is a function on Cy we denote by f\ﬁ* the function on ¢} (Cy) N Ez defined by
Fi5: ) = (Fo (97D,

Proof of Theorem 1. Recall that the Dirac cohomology H((Gg,q)0, M) is the L(a)-
module Ker Go/Ker Gy N Im Gg, where Gy is seen as an operator on M ® F(p).
If v € M ® F(p) is a weight vector of weight > kgA§ + v and ¢ € ®, we define
an action of F, on v by setting Fy, - v = g(v)v. This extends the action of L(a)
on M @ F(p) to an action of A(a). As in § 8.5 of [3] we get the existence of a
central element z; of A such that z; - v = f(A + p)v for any v € M ® F(p). Let
vo+ Ker GY N Im G} be the highest vector of a E(a)—submodule of H((Gg,5)0, M)
with highest weight u = Y ¢(k + g — gs)A§ + i with /i € h* + Cd,. Choose p big
enough so that ZPHUO = 0. Since z5 is central we have that zy + B(p) € B;"”
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and d,(z¢) = 0. Applying Proposition 6 we can write z; = a + [Go,y] + u with
a € A(a) and u € B(p). It follows that f(A + p)vg = zpvo = avy + Goyvg + uvg =
avg + Goyvg. Since both vg and avg are in KerGgy we see that Goyvg € Ker Gg so
FA+Dp)(vo+ KerGY NnImGY) =a- (vg + Ker GY 0 Im G)Y).

On the other hand, since deg(zy) = 0 we can assume deg(a) =0so a = F; +d’
with ¢ € ® and a’ € A(a)A*(n}). It follows that f(A + p) = q(ji)-

By Corollary 7.2 of [3], vaA ® 1 4+ Ker G} N Im G)! is the highest vector for
a nonzero L(a)-submodule of H((Gg,p)o, M) having highest weight A + p — pa. It
follows that f(A+p) = g(A+p—pq) for any A € —p+Cy. Since pu+p, € Cy, it follows
that f(u+ pa) = q(f) = f(A+ p). and the first statement is proven. The second
statement follows from a theorem of Looijenga [1], asserting that holomorphic W-
invariant functions separate the orbits of the action of W on Cy. O

Proposition 7. If k+ g # 0 then, as a L'(h)-module, B, is generated by B;h.

Proof. Write for simplicity h, for (hy),, h € h. Consider the infinite Heisenberg
subalgebra s = > 1" ®@ h & CKy of L'(h). Recall that Ky acts as on B, as

(k + g)Id. Note that B," is the set 2 € B, such that (t" ® h)x = 0 fon any h €
and r > 0. By Lemma 9.13 of [2] it suffices to check that given « € B, then
there is N such that (h');, ... (h");, - * = 0 whenever i; > 0 for all j and n > N
(h* € ). We can clearly assume that z is homogeneous with respect to deg. Then
it is enough to choose N = — deg(x) +p, for, if n > N, then deg((h');, ... (h");,) =
(i1 + -+ +1in) >n > N. It follows that deg((h');, ... (h");,x) > N + deg(z) = p

so (BY)i, ... (h")i.x = 0. ’ O

i7l
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