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metrological information
Alessandro Ferrero, Fellow, IEEE, and Simona Salicone, SeniorMember, IEEE

Abstract—When dealing with measurement uncertainty, a
metrologist is required to take into consideration many different
points. The most important ones are: the uncertainty contributi-
ons affecting the measurement process; the random or systematic
nature of these contributions; the available metrological informa-
tion about these contributions. Last, but not less important, the
particular measurement process itself.

This paper shows, with two simple examples, the importance
of correctly considering all aforementioned points in evaluating
uncertainty. The GUM approach, a Monte Carlo approach,
sometimes different from the one recommended by the GUM
Supplement 1, and the RFV approach are compared, proving that
the RFV approach leads to the simplest and most straightforward
way to consider all these points.

Index Terms—Measurement uncertainty; Possibility theory;
Random contributions; Random-Fuzzy Variables; Systematic
contributions; GUM; Monte Carlo.

I. INTRODUCTION

Nowadays, the scientific community has widely accepted
that a measurement result is meaningless if not associated
to an uncertainty value. On the other hand, the mathematical
framework within which uncertainty can be better evaluated
is still under discussion. The present standards [1], [2] refer
to probabilistic approaches, while the research of the last 15
years has also focused on possibilistic approaches [3]–[20].

No matter on the followed approach, an incorrect conside-
ration of the available metrological information may lead to
the incorrect assumption that similar uncertainty contributions
should be always processed in the same mathematical way.
Indeed, the nature of the considered contributions does not
indicate, alone, how they must be combined, because the
measurement process may have a significant impact on the
way they propagate. In other words, the same uncertainty
contributions might lead to very different results when the
measurement procedure is even slightly modified. This is par-
ticularly important when systematic and unknown systematic
contributions affect the measurement procedure, as widely
discussed in the literature covering different applications [21]–
[24]. Moreover, the correct exploitation of the available me-
trological information becomes even more important when
the possibilistic approach is considered, which implies the
application of different mathematical operators, according to
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the different assumptions, thus yielding a high effectiveness in
handling the available metrological information.

In this paper, a simple example is considered under different
metrological assumptions, to show how different interpreta-
tions of the available metrological information may have a
significant impact on the obtained uncertainty value under both
the probabilistic and possibilistic approaches. The example is
intentionally chosen to be very simple, maybe also trivial, so
that the Readers do not need to concentrate on complicated
algorithms and can fully focus on the method and the obtained
results. The aim is to reaffirm the central role of each available
piece of metrological information in the evaluation of uncer-
tainty on the final measurement result. Furthermore, the RFV
approach in the possibilistic framework and the application of
the related mathematics [3], [5], [7] are reconsidered in this
paper, to give a clearer perspective on their use, when different
applications are considered.

II. THE MATHEMATICAL BACKGROUND

In this section, the probabilistic and possibilistic approaches
to the evaluation and propagation of the measurement uncer-
tainty are briefly recalled.

A. The probabilistic approach

Let us consider the measurement function Y =
f (X1, X2, ..., XN ), that links the desired physical quantity
Y to the measured physical quantities X1, X2, ..., XN .

The main assumption underlying the probabilistic approach
is that all significant systematic effects affecting the measure-
ment process have been recognized and proper compensations
applied.

1) The GUM approach: The fundamental standard docu-
ment, when dealing with measurement uncertainties, is re-
presented by the Guide to the Expression of Uncertainty in
Measurement (GUM) [1].

According to the suggestions of the GUM, it is possible to
obtain the best estimates xk of every input quantity Xk (with
k = 1...N ) and the best estimate u(xk) of the associated
measurement uncertainty [1]. Then, it is possible to evaluate
the best estimate of the output quantity Y as [1]:

y = f (x1, x2, ..., xN ) (1)
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and its associated standard uncertainty uc(y), called combined
standard uncertainty, as [1]:

uc(y)
2 =

N∑
i=1

(
df

dxi

)2

u2 (xi)+

+2

N−1∑
i=1

N∑
j=i+1

df

dxi

df

dxj
ρ(xi, xj)u(xi)u(xj)

(2)

Eq. (2) is known as the law of propagation of standard
uncertainties (LPU) and is derived by the first-order Taylor
series approximation of the measurement function f [1]. In (2):
∂f

∂xi
, called sensitivity coefficients, are the partial derivatives

of function f with respect to quantities xi, evaluated in
x1, x2...xn; u (xi) is the standard uncertainty associated to
quantity xi; ρ(xi, xj) is the estimated correlation coefficient
between xi and xj , which satisfies the following properties:
−1 ≤ ρ (xi, xj) ≤ 1, ρ (xi, xj) = ρ (xj , xi) and ρ (xi, xj) =
0 when quantities xi and xj are uncorrelated.

According to the GUM [1], uc(y) is the quantity that
correctly characterizes the dispersion of the values that could
reasonably be attributed to measurand Y . Given a coverage
probability p, the associated confidence interval, or coverage
interval, is an interval centered on y, with semi-width kpuc(y),
where kp is the evaluated coverage factor [1]:

Yp = [y − kpuc(y), y + kpuc(y)] (3)

While uc(y) does always represent, by definition, the po-
sitive square root of the second moment of the probability
distribution (PDF) associated to the values that can reasonably
be attributed to measurand Y , the correct evaluation of the
coverage factor kp depends on the exact knowledge of this
PDF and is correct only to the extent the assumptions made
on this PDF are valid [1]. A general practice, when this PDF
is not known, is to apply the Central Limit Theorem and to
use the kp values typical of a normal PDF.

2) The Monte Carlo approach: Whenever the assumptions
behind the LPU are not satisfied, the Supplement 1 to the
Guide to the Expression of Uncertainty in Measurement −
Propagation of distributions using a Monte Carlo method
(GUM1) [2] recommends a numerical approach, which is
perfectly consistent with the broad principles of the GUM [2].

The approach is simply based on Monte Carlo simulations
and allows one to obtain the histogram which approxima-
tes the PDF associated to the final measurement result Y ,
starting from the PDFs associated to the input quantities
X1, X2, ..., XN .

A correct application of the Monte Carlo method, by
providing an estimate of the final PDF of the values that
can reasonably be attributed to the measurand, overcomes
the limitations on the evaluation of the coverage probability
assigned to interval Yp defined by the expanded uncertainty.

B. The possibilistic approach

In this section, the possibilistic approach based on the
Random-Fuzzy variables (RFVs) is recalled.
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Fig. 1. Example of RFV (red + cyan lines) and its PDs: rintX (x) (cyan line),
rranX (x) (green line), rextX (x) (red line).

RFVs are type-2 fuzzy variables [25], suitably defined to re-
present a measurement result together with its uncertainty [26].
Fig. 1 shows an example of RFV, together with the possi-
bility distributions (PDs) from which it is defined [26]: the
“internal PD” rintX (x) represents the systematic and unknown
contributions to uncertainty affecting the measurement result
and the “external PD” rextX (x) represents all contributions to
uncertainty. This last PD is obtained by combining rintX (x)
with the “random PD” rranX (x), which represents only the
random contributions to uncertainty, as [26], [27]:

rextX (x) = sup
x′

Tmin
[
rranX (x− x′ + x∗), rintX (x′)

]
(4)

where x∗ is the mode of rranX and Tmin(a, b) = min(a, b) is
a fuzzy operator, belonging to the class of t-norm operators,
called min t-norm [25].

Both the internal and random PDs can be built starting from
the available metrological information, as shown in [10], [26].
In general, the information on the random contributions to
uncertainty is available in terms of PDFs. Therefore, in such
situations, the random PD is derived by applying suitable
probability-possibility transformations to the given PDF [6],
[26], [28]. On the other hand, the information about the
systematic contributions is not always given in terms of PDFs.
Very often only an interval of variation of the contribution
is given. For instance, in all data sheets and calibration
certificates, an accuracy interval is given, around the measured
value. This situation is called by Shafer [29] total ignorance
and can be represented by a rectangular PD rintX (x) over the
given interval [26].

The cuts of a PD are called α-cuts. α denotes the cut
level and, because of the normalization condition of PDs, it
is always 0 ≤ α ≤ 1. It is immediate to associate a degree
of belief to each α-cut. In particular, the one associated to
the α-cut at level α is 1 − α [26]. It can be proved [9]
that the α-cuts of a PD extend, to the possibility theory, the
probabilistic concept of coverage intervals. Therefore, in the
following, the term “coverage interval” will be used for the
sake of simplicity in both the probabilistic and possibilistic
frameworks. Furthermore, in the possibilistic framework, the
concept of degree of belief extends the probabilistic concept of
coverage probability. Therefore, when PDs are considered to
represent measurement results, it is straightforward to obtain
the coverage intervals and associated degrees of belief; as an
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example, the α-cut at level 0.05 is the coverage interval with
a 95% degree of belief, associated to the measured value.

When an RFV is considered, the α-cuts of rextX (x) provide
the coverage intervals associated with the measurement result
due to all contributions to uncertainty, while the α-cuts of
rintX (x) provide the coverage intervals due only to the systema-
tic effects. Therefore, for each degree of belief (corresponding
to the coverage probability in the probability framework), it
is known how the random and systematic contributions affect
the final measurement result [9], [15], [18], [26].

Let us now consider the measurement model z = f(x, y),
which corresponds, in the possibility domain, to the evaluation
of the RFV associated to the final measurement result1 z, given
the RFVs associated to x and y.

A general rule to perform the combination of PDs is Zadeh’s
extension principle (ZEP) [31], defined by:

rZ(z) = supz=f(x,y)( rX,Y (x, y) ) (5)

where rX,Y (x, y) is the joint possibility distribution (JPD) of
x and y. Of course, since an RFV is composed by two PDs,
(5) has to be applied twice: when the internal JPD rintX,Y (x, y)
is considered, the internal PD rintZ (z) is obtained; similarly,
when the external JPD rextX,Y (x, y) is considered, the external
PD rextZ (z) is obtained.

Within the possibility theory, the JPD is defined through
a family of mathematical operators, called t-norms [32]. In
particular, when X and Y are independent variables, the JPD
is defined as:

rX,Y (x, y) = T (rX(x), rY (y)) (6)

On the other hand, when X and Y are not independent, the
JPD is defined as:

rX,Y (x, y) = T (rX(x), rY |X(y|x)) = T (rX|Y (x|y), rY (y))
(7)

where rY |X(y|x) and rX|Y (x|y) are the conditional PDs of
Y , given X , and X , given Y , respectively [5], [7]. It can be
proved [5], [7] that the conditional PDs are derived in such
a way to keep into account the dependence of X on Y and
viceversa, thus encompassing the role played by correlation in
the probability framework.

Eqs. (6) and (7) show that the JPD is not defined in an
univocal way but, starting from the same variables, different
JPDs are obtained when different t-norms are applied. As
discussed in [5], [7], the choice of the t-norm to be employed
in (6), or (7), is a crucial point in the combination of RFVs.

In the literature, many different t-norms are defined. A very
simple t-norm, already mentioned above, is the min t-norm
Tmin. Another t-norm is, for example, the Frank parametric
family of t-norms [32]:

TFγ (a, b) =


Tmin(a, b) = min(a, b) if γ = 0
Tprod(a, b) = a · b if γ = 1
TL(a, b) = max(0, a+ b− 1) if γ =∞
logγ

(
1 + (γa−1)·(γb−1)

γ−1

)
otherwise

(8)

1The following results, derived, for the sake of simplicity, in the simple case
of a function of two variables, can be readily extended to the most general
case, because of the associative property of the employed t-norms [30].

whose behavior depends on the choice of the parameter γ.
Other t-norms depend on two parameters, as, for instance, the
generalized Dombi t-norm [32], [33].

When different t-norms are applied, different JPDs are
obtained. Similarly, when a parametric family of t-norms is
considered, different JPDs are obtained, according to the cho-
sen value of the parameters [5], [33]. In any case, regardless
to the employed t-norm, the JPD is always obtained in closed
form.

It has been shown that, when PDs are used to model measu-
rement results and the associated uncertainty, the application
of the Frank t-norm to process these PDs provides a good
estimation of the way the different uncertainty contributions
combine [5], [33]. Hence, as an example, let us see what
happens when two PDs are considered and combined to build
a joint PD, when different γ values in (8) are considered.

Let us consider Figs. 2 and 3, where different t-norms are
applied to the same PDs rX and rY , which are considered
independent, for the sake of simplicity. In particular, the min
t-norm is applied (the min t-norm is a particular Frank t-norm,
for γ = 0) in Fig. 2, while the Frank t-norm TFγ=0.1 is applied
in Fig. 3.
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Fig. 2. Joint PD rX,Y of independent PDs rX and rY obtained with
TFγ=0 = Tmin (upper plot) and its α-cuts (bottom plot).

The bottom plot of Fig. 2 shows rectangular 2D α-cuts of
the obtained JPD, while the bottom plot of Fig. 3 shows that
the 2D α-cuts of the obtained JPD show an ellipsoidal shape.
This is a general result and does not depend on the considered
initial PDs. Furthermore, for every value α, the ellipsoidal
shape is included into the rectangle, thus suggesting that the
rectangle considers all possible combinations of the values of
the initial PDs, while, in the ellipsoidal shape, a compensation
is considered, that tends to exclude, among all possible pairs
of values, those obtained by combining the values closer to
the edges of the initial PDs.

Therefore, when a Frank t-norm is applied, the optimal
choice of T in (6) and (7) translates into the optimal choice
of γ in (8). In particular, as proved in [5], [7]:
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Fig. 3. Joint PD rX,Y of independent PDs rX and rY obtained with TFγ=0.1
(upper plot) and its α-cuts (bottom plot).

• the value γ = 0 (which corresponds to the application
of the min t-norm Tmin) is the optimal one when the
available information shows that the PDs do not represent
random phenomena and their combination does not imply
any probabilistic inference;

• a value 0 < γ ≤ 1 must be used when the available
information shows that the PDs represent random pheno-
mena or when their combination implies a probabilistic
inference. In particular, it was proved that: γ = 1 (which
corresponds to the application of the product t-norm
Tprod) is the optimal value when the PDs are trian-
gular (representing, in the possibility domain, uniform
probability distributions); γ = 0.05 is the optimal value
when the PDs represent, in the possibility domain, normal
probability distributions; γ = 0.1 is the optimal value for
all other PD shapes.

The above considerations lead to conclude that, when two
RFVs shall be combined, their random JPD rranX,Y (x, y) is
always obtained by applying a Frank t-norm with 0 < γ ≤ 1,
since the combination of random contributions does always
imply a probabilistic inference. On the other hand, since the
combination of the non random contributions may, or may not,
imply a probabilistic inference, according to the considered
measurement procedure, as it will be shown in the following
examples, the internal JPD rintX,Y (x, y) can be obtained by
applying either the min t-norm Tmin or a Frank t-norm TFγ
with 0 < γ ≤ 1.

After having built the two JPDs rintX,Y (x, y) and rranX,Y (x, y),
the ZEP (5) must be applied to obtain the RFV of the final
measurement result Z. In particular, when the measurement
function f is linear, according to the law of superposition of
the effects2:

2From the practical point of view, this simpler approach, which is theore-
tically valid only for linear functions, can be also followed when function f
is approximately linear in the neighborhood of the measured value, specified
by the uncertainty value.

1) rintZ (z) is obtained starting from rintX,Y (x, y);
2) rranZ (z) is obtained starting from rranX,Y (x, y);
3) rextZ (z) is evaluated from (4).
In the more general case, when function f is non linear, it is

not possible to apply the superposition principle and therefore
it is necessary to apply the ZEP on rintX,Y (x, y) and on the
external JPD [3]:

rextX,Y (x, y) =

= sup
x′,y′

Tmin
[
rranX,Y (x− x′ + x∗, y − y′ + y∗), rintX,Y (x

′, y′)
]

(9)

where (x∗, y∗) is the mode of rranX,Y . It can be readily seen
that (9) is an extension of (4).

III. EXAMPLES

The considered examples are related to the possible situ-
ations that can be met in measuring length and width of
a small rectangular block by means of a Vernier caliper
with 0.05 mm resolution. This is such a typical situation in
many industrial applications, that it may be proposed as an
exercise in technical schools to fully understand all possible
implications when evaluating uncertainty. Therefore, for the
sake of clarity and generality, the example is here proposed
as an exercise, assigned to a class of a technical school.

A. The assumptions

The block under test is first measured by the instructor,
using a comparator and a set of Johansson gauge blocks, so
that the measured values can be considered as reference values.
The following values are supposed to be measured for length
l and width w respectively: lref = 77.32 mm and wref =
21.18 mm.

All students in the class are then requested to calibrate
their own calipers against the Johansson gauge blocks, in
the range of the dimensions of the block under test. The
deviations between the gauge block nominal values and the
values measured by the calipers represent the systematic con-
tributions to uncertainty introduced by the different calipers.
The distribution of all obtained deviations is then considered
and found to be uniform over interval ±0.1 mm.

A random contribution to uncertainty, mainly due to reading
errors, is also considered, and, for the sake of simplicity in the
following computations, it is assumed to distribute uniformly
over the ±0.05 mm interval.

B. The considered experiments

The experiments that will be considered have been designed
to reproduce some typical industrial situations related to the
way the available metrological information is exploited. The
first situation assumes that the measured values are corrected
using the calibration data related to the specific caliper em-
ployed to perform the measurement. The second situation
assumes that the measured values are not corrected, but that
the distribution of the systematic contributions is considered in
evaluating uncertainty. At last, a third situation is considered,
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where the only information available to take into account the
systematic effects in uncertainty evaluation is their interval of
variations, with no information about the distribution.

According to the above assumptions, the following experi-
ments are considered.

1) Length and width measurements: The students are re-
quested to evaluate the measurement uncertainty on the me-
asured values of length and width of the block under test,
under the three considered situations, for which the available
information is summarized in Table I.

In case 1A, the two quantities are measured with one (or
two) specific caliper(s), and the systematic error affecting the
measured values is compensated. On the other hand, in both
cases 2A and 3A, the two quantities are measured with one (or
two) caliper(s), randomly taken among all student’s calipers.
This way, it is not known which caliper is used and which
is the specific systematic error it introduces, so that it is not
possible to compensate for it. Furthermore, in case 2A, it is
supposed to know the distribution of the systematic errors over
the given interval, while, in case 3A, it is supposed to know
only the interval of variation.

The considered measured values of length and width are
denoted lm and wm respectively. In particular:
• Case 1A. When only one caliper is used to measure both

length and width, it is supposed to introduce a systematic
error elsys = ewsys = −0.06 mm, and the measured values
are supposed to be lm = 77.25 mm and wm = 21.10 mm.
On the other hand, when two different calipers are used,
it is supposed that the caliper used to measure the length
introduces a systematic error elsys = −0.06 mm and
that the measured value is lm = 77.25 mm; while it
is supposed that the caliper used to measure the width
introduces a systematic error ewsys = 0.03 mm and that
the measured value is wm = 21.20 mm.

• Case 2A and Case 3A. For these cases, we suppose that
the two measurements are taken with the same caliper.
Therefore, the considered measured values of length and
width are lm = 77.25 mm and wm = 21.10 mm,
respectively.

2) Area measurement: The students are required to evaluate
the measurement uncertainty on the area of the surface of the
block under test, evaluated starting from the measured length
and width values and uncertainty values. Therefore, from the
above three measurement conditions (Table I), five different
measurement conditions are now derived, as summarized in
Table II.

The area reference value is given by3 Aref = lref ·wref =
1637.6 mm2, while the considered measured value of the area
depends on the considered case, according to the previous
example. In particular:
• Case 1B. When the systematic error introduced by the

caliper(s) is known, it is possible to compensate for it.
Hence, the area can be obtained as:

Am = (lm − elsys) · (wm − ewsys)

3This area value and the following ones are given with one decimal digit.
Of course, the number of significant digits is related to the uncertainty values
that will be evaluated in the following sections.

When only one caliper is used to measure both length
and width, the two measured values are corrected for
the same systematic error elsys = ewsys = −0.06 mm
(according to the above assumptions), thus obtaining
Am = 1635.9 mm2. When two calipers are used, the
length is corrected for error elsys = −0.06 mm while
the width is corrected for error ewsys = 0.03 mm (ac-
cording to the above assumptions). Hence, it follows
Am = 1636.7 mm2.

• Case 2B, 3B, 4B, 5B. When the systematic error introdu-
ced by the caliper(s) is not known, it is not possible to
make any compensation. Therefore, the value of the area
is simply obtained as:

Am = lm · wm
According to the above assumptions, lm = 77.25 mm
and wm = 21.10 mm are considered for all cases, so
that the measured value is the same in all cases and
the obtained probability and possibility distributions are
centered on the same mode, thus making the compa-
rison more evident. Under this assumption, it follows
Am = 1629.9 mm2.

3) Uncertainty evaluation: For each considered case, three
approaches are followed and then the obtained results com-
pared: the application of the GUM probabilistic approach [1],
which defines the uncertainty value as the standard deviation
of the considered probability distribution and then combines
uncertainties through the LPU (in the following, GUM ap-
proach ); the application of the Monte Carlo method, which
considers the entire probability distributions and combine
them through Monte Carlo simulations (in the following, MC
approach ); the application of the possibilistic approach, as
described in Sec. II-B (in the following, RFV approach ).

It is worth noting that the Monte Carlo method considered
in the following is different from the one suggested by the
Supplement 1 to the GUM [2], when systematic errors are
involved. Indeed, Supplement 1, in a very similar example as
the one considered here, recommends to extract a new value
of the systematic error at each iteration. This approach (that
has been already challenged in the literature [21], and also
by authors that follow the theoretical approach considered
by the GUM and its Supplement 1 [24]) appears to be
not fully consistent with the need to exploit all available
metrological information when evaluating uncertainty [23]. In
the considered case, the available information shows that the
systematic error, though unknown, affects all measurements
in the same way. Therefore, a different procedure will be
proposed and employed in the following examples.

It will be shown how the considered example, though
quite simple, yields a significant comparison of the three
considered approaches, giving evidence that the RFV one is
the most versatile in taking into account the available relevant
metrological information.

IV. CASE A RESULTS

A. Case 1A
In case 1A, since the calipers are known and the systematic

errors are compensated, only random, uniformly distributed,
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TABLE I
SCHOOL WORK A: AVAILABLE METROLOGICAL INFORMATION IN THE THREE DIFFERENT CONSIDERED CASES.

RANDOM SYSTEMATIC
case 1A uniform PDF (width ±0.05 mm) compensated
case 2A uniform PDF (width ±0.05 mm) uniform PDF (width ±0.1 mm)
case 3A uniform PDF (width ±0.05 mm) interval (width ±0.1 mm)

TABLE II
SCHOOL WORK B: AVAILABLE METROLOGICAL INFORMATION IN THE FIVE DIFFERENT CONSIDERED CASES.

case procedure RANDOM SYSTEMATIC
1B known caliper(s) uniform PDF (width ±0.05 mm) compensated
2B 1 unknown caliper uniform PDF (width ±0.05 mm) uniform PDF (width ±0.1 mm)
3B 2 unknown calipers uniform PDF (width ±0.05 mm) uniform PDF (width ±0.1 mm)
4B 1 unknown caliper uniform PDF (width ±0.05 mm) interval (width ±0.1 mm)
5B 2 unknown calipers uniform PDF (width ±0.05 mm) interval (width ±0.1 mm)

contributions are present. In this case, since only random con-
tributions, with known PDF, are present, the GUM approach
can provide the correct coverage intervals of length and width,
at given coverage probabilities. The other two approaches are
nevertheless considered, for a comparison.

Let us then first consider the GUM approach. For uniform
distributions, the coverage intervals can be readily obtained.
In fact, given an uniform PDF over interval I , the coverage
interval corresponding to the coverage probability p (with 0 ≤
p ≤ 1) is a fraction p of I , centered on the same mean value
as that of I . Hence, according to the assumptions summarized
in Table I, the GUM approach provides, for this case 1A,
intervals of width 0.05 · p mm, centered on values lm − elsys
and wm − ewsys, respectively, for length and width, where the
values of elsys and ewsys are the ones given in sec. III-B1.

When the MC approach is followed, that in this case is
the same as suggested by the GUM1 approach, the PDF
of the length (or width) is equal to the PDF associated to
the random uncertainty contribution. Therefore, the possible
values of length and width distribute, respectively, according
to a uniform PDF centered on values lm−elsys and wm−ewsys,
of width 0.1 mm, where the values of elsys and ewsys are again
the ones given in sec. III-B1.

When the RFV approach is followed, the measurement
result is directly represented with a random-fuzzy variable
(RFV), as shown in previous Sec. II-B. The available metrolo-
gical information is that only random contributions are present,
and that they distribute uniformly over intervals of width
0.1 mm, centered on values lm−elsys and wm−ewsys, respecti-
vely for length and width of the block under test. Therefore,
the RFV will have nil internal PD (no systematic contributions)
and a triangular random PD, since the probability-possibility
transformation of a uniform PDF provides a triangular PD
[26]. The mean values of the triangular PDs will be the same
as those of the initial PDFs.

Figs. 4 and 5 show the results obtained by the three
approaches, when only one caliper and two different calipers
are used, respectively. The comparison is performed in terms
of possibility distributions and coverage intervals. This means
that, when the MC approach is considered, the obtained PDFs
are transformed into the equivalent PDs (by applying the
probability-possibility transformation), and when the GUM
approach is followed, the obtained intervals are drawn at levels

α = 1 − p, so that coverage intervals at the same coverage
probability can be immediately compared between the three
approaches. In particular: the green lines show the reference
values lref and wref of length and width; the cyan lines show
the RFVs, obtained by applying directly the RFV approach;
the blue dashed lines represent the result of the MC approach,
converted into a PD; the red lines show two coverage intervals
(corresponding to coverage probabilities 95.45% and 68.27%)
obtained with the GUM approach. It can be readily checked
that the blue dashed lines, representing the MC result in terms
of PD, are perfectly superposed to the external cyan PDs of
the RFVs representing the measurement results.

According to the above considerations, Figs. 4 and 5 show
that all approaches provide the same results in this case,
where only random contributions affect the final measurement
results. Figs. 4 and 5 also show the residual systematic effect
after calibration, due to the different resolution between the
employed Vernier calipers and the reference gauge blocks.

B. Case 2A

In this case, since it is not known which specific caliper
is used to measure length and width, it is not possible to
make a compensation of the systematic errors. Therefore, both
random and systematic contributions to uncertainty must be
taken into account to provide the final measurement result,
with the associated combined uncertainty.

When the GUM approach is followed, the combined uncer-
tainty is obtained by quadratically summing the uncertainties
due to the random and systematic contributions [1]:

uc =
√
u2ran + u2sys

having assumed that the contributions are independent. Since
the PDFs are assumed to be uniform, it is:

uran =
0.05√

3
mm and usys =

0.1√
3

mm.

Hence, the coverage intervals are obtained as intervals cen-
tered on lm and wm, with semi-width kp ·uc(y) [1]. According
to the GUM, the kp values can be obtained by applying
the Central Limit Theorem. In this case, as an example,
the coverage intervals at coverage probabilities 95.45% and
68.27% are obtained when kp = 2 and kp = 1 are taken.
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In this simple example of uniform PDFs, however, it is also
possible to obtain a better estimate of the coverage intervals
in an analytical way, by considering that the sum of two
uniform PDFs is a trapezoidal PDF and by evaluating in a
strict mathematical way the coverage intervals.

The GUM Supplement 1 follows the same representation
of the systematic contributions as the GUM: in the MC
simulation, it considers a different realization of the systematic
error in each considered trial and, therefore, the same result
as the one provided by the GUM is obtained [2]. However,
this approach does not represent the actual measurement
procedure.

The use of a specific caliper, whose systematic error is
represented by a given probability distribution, can be mat-
hematically represented as a single, random selection of that
caliper from the whole set of available calipers showing the
given probability distribution of the systematic error. When
the selected caliper is used in the subsequent measurement
operations, its systematic error will affect the measurement
result in the same way, though unknown. Therefore, changing
the value of this error at every trial representing a new
measurement operation, as suggested by [2], does not reflect
reality.

On the other hand, since the caliper has been randomly
selected from the available set, its systematic error is unknown
and, to consider this lack of information and the effect of this
random selection, the MC simulation is performed as follows.

• A random realization of the systematic error is conside-
red, kept constant and N (107 in the considered numerical
example) subsequent realizations of the random error are
considered.

• A new random realization of the systematic error is then
considered, representing a different possible selection of
the caliper, and the above procedure is repeated N times.
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Fig. 4. Results obtained in case 1A, when the same Vernier caliper is used
to measure width (lower plot) and length (upper plot) of the block. Green
lines: reference values. Red lines: coverage intervals provided by the GUM
approach. Blue dashed lines: PDs obtained from MC approach. Cyan lines:
RFVs.

Since the same considerations can be done for both the
length and the width measurements, let us focus only on the
length, for the sake of brevity.

According to the above considerations, in our experiment,
since a single caliper is used to measure the length, in each
different Monte Carlo iteration, a unique realization elsys of
the systematic error shall be considered, while different possi-
ble realizations erank

of the random errors are considered.
Furthermore, since, according to the assumptions in Sec.
III-B1, the same caliper is used for both length and width,
elsys = ewsys = esys. Then, according to the assumptions in
Table I, esys is one random extraction from a uniform PDF
over interval ±0.1 mm, while each erank

value is a random
extraction from a uniform PDF over interval ±0.05 mm.

The possible values of the length are then obtained as:

lk = lm + esys + erank
(10)

where k = 1...107, from which an histogram can be built.
Since, in (10), lm is a single number, esys is a single number
and erank

are extractions from a uniform PDF over interval
±0.05 mm, it follows that the obtained histogram is an approx-
imation of a uniform PDF over interval (lm+esys)±0.05 mm.
This PDF, however, refers only to one single caliper, since the
same systematic error esys is considered in (10).

Since also the other calipers could be used, as above
discussed, it is necessary to repeat the Monte Carlo simulation
(10) i = 1...107 times, each time taking a different random
realization of the systematic error esysi . Each simulation will
provide a uniform PDF over interval (lm+ esysi)± 0.05 mm.
The whole set of simulations will then provide 107 different
uniform PDFs, whose modes distribute uniformly over interval
lm ± 0.1 mm. The solution of this case 2A is therefore given
by a uniform PDF over interval lm ± 0.15 mm. This PDF is
representative of the possible measured values of the length
of the block.
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Fig. 5. Results obtained in case 1A, when two Vernier calipers are used
to measure width (lower plot) and length (upper plot) of the block. Green
lines: reference values. Red lines: coverage intervals provided by the GUM
approach. Blue dashed lines: PDs obtained from MC approach. Cyan lines:
RFVs.
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Fig. 6. Result obtained in case 2A. Upper plot: length of the block. Bottom
plot: width of the block. Green lines: reference values. Red lines: coverage
intervals provided by the GUM approach. Blue dashed lines: PDs obtained
from MC approach. Cyan lines: RFVs.

Similarly, when the width is considered, a uniform PDF
over interval wm ± 0.15 mm is obtained.

When the RFV approach is followed, RFVs are directly
built for length and width, according to the whole availa-
ble metrological information. For both width and length of
the block, the available metrological information is that the
random contributions distribute uniformly over an interval of
width 0.1 mm and that the systematic contributions distribute
uniformly over an interval of width 0.2 mm. Therefore,
according to the probability-possibility transformation [26], a
triangular random PD rran is obtained and a triangular internal
PD rint is obtained, so that, combining them according to (4),
the whole RFV is obtained. The mean values of the obtained
RFVs are lm and wm respectively.

Fig. 6 shows the results obtained by the three approaches,
represented in terms of PDs and coverage intervals: the mea-
ning of each line is the same as described in the previous case
1A. Since the dashed blue lines representing the MC results
in terms of PDs are perfectly superposed to the external cyan
PDs of the RFVs representing the measurement results, Fig.
6 clearly shows that the MC and RFV approaches provide
the same final results. Moreover, the RFV approach provides
more information, since the RFVs clearly show the effects
of the random and systematic contributions, separately. On
the other hand, the GUM approach underestimates, in this
case, the coverage intervals. This is due to the fact that the
GUM approach implies some compensation between the two
uncertainty contributions.

C. Case 3A

The difference between cases 2A and 3A is that, in case
2A, the available information shows that the contributions
distribute over given intervals according to uniform PDFs,
while, in case 3A, these PDFs are not known. Since, when
a probabilistic approach is followed, when the PDF is not

known, a uniform PDF is generally assumed, it follows that
cases 2A and 3A are handled in the same probabilistic way.
This is clearly a disadvantage of the probabilistic approach,
which is not able to handle two very different situations in a
proper way.

On the other hand, when the RFV approach is followed,
the difference between cases 2A and 3A can be suitably taken
into account. In the possibility domain, the situation in which
only an interval is given and nothing else is known about
the distribution of values over this interval is called total
ignorance and is represented by a rectangular PD [26]. It is
worth noting that total ignorance is very common in industrial
applications, since all instrument’s data sheets only provide
interval of variations, without any further information. Hence,
according to all available information, the RFVs shown in
cyan lines in Fig. 7 are obtained. The figure clearly shows
how the probabilistic approaches underestimate the coverage
intervals in this situation (the meaning of each line is the same
as described in previous case 1A).
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Fig. 7. Result obtained in case 3A. Upper plot: length of the block. Bottom
plot: width of the block. Red lines: coverage intervals provided by the GUM
approach. Blue dashed lines: PDs obtained from MC approach. Cyan lines:
RFVs.

D. Case A conclusions
By comparing the RFV in this Fig. 7 with the RFVs in

Figs. 4, 5 and 6, it can be noted that the same supports4 Sl
and Sw of the RFVs is obtained in case 2A and 3A, while
smaller supports are obtained in case 1A. This is coherent
with the fact that, in case 1A, the systematic effect has been
compensated.

Figs. 4-7 also show that the coverage intervals increase from
case 1A to case 3A, coherently to the fact that the available
metrological information decreases.

V. CASE B RESULTS

In Case B, the area of the block is evaluated, according to
the measured values considered in previous case A.

4The support of an RFV is defined as the α-cut for α = 0
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A. Case 1B

In case 1B, the employed calipers (one or two) are known
and the systematic error affecting the measurements of length
and width can be compensated for. Therefore, only random
contributions affect the final measurement uncertainty.

When the GUM approach is followed, the uncertainty as-
sociated to the measured area Am is obtained by applying the
LPU for uncorrelated quantities, since the two measurement
procedures are independent from each other:

uAm
=

√(
∂f

∂l

)2

· ul2 +
(
∂f

∂w

)2

· uw2

Since ul = uw = uran, it follows:

uAm
=

√[(
wm − ewsys

)2
+
(
lm − elsys

)2] · uran2 (11)

Then, the coverage intervals are obtained as intervals cente-
red on (lm−elsys) ·(wm−ewsys), with semi-width kp ·uAm

[1].
Of course, when the same caliper is used to measure length
and width, elsys = ewsys and, when two calipers are used,
elsys 6= ewsys, according to the assumptions in Sec. III-B2.
According to the GUM, the kp values can be obtained by
applying the Central Limit Theorem. Under this assumption,
the confidence interval at coverage probabilities 95.45% and
68.27% are obtained when kp = 2 and kp = 1 are applied.

When the MC approach is followed, the possible values of
the area are obtained as:

Ak =
(
lm − elsys + e(1)rank

)
·
(
wm − ewsys + e(2)rank

)
(12)

where e(1)rank and e
(2)
rank are two random extractions from the

uniform PDF representing the random contributions to uncer-
tainty and k = 1...107. It is elsys = ewsys if the same caliper
is used to measure length and width, while it is elsys 6= ewsys
if two different calipers are used, with the values assumed
in Sec. III-B2. The two obtained histograms approximate
two PDFs, which represent the expected distribution of the
values that can be attributed to the values of the area, in the
two different considered situations. These PDFs can be then
converted into equivalent PDs, according to the probability-
possibility transformation [26].

When the RFV approach is followed, length and width are
represented by the two RFVs (cyan lines) in Figs. 4 or 5, when
the same caliper or two calipers are used, respectively. To cor-
rectly multiply the two RFVs and obtain the RFV associated
to Am, it is necessary to correctly consider all the available
metrological information: only random contributions which
affect the measurements of length and width independently are
considered. Therefore, according to the considerations done in
Sec. II-B, the t-norm Tprod is applied to the triangular random
PDs, considering a correlation factor ρ = 0 [5], [7].

Figs. 8 and 9 show the results obtained with the three
different approaches, when the same Vernier caliper or two
different calipers are employed, respectively (the meaning of
the lines is the same as described for case 1A). They clearly
show that the RFV and MC approaches provide the same
results. On the other hand, the coverage intervals provided
by the GUM approach are different from the corresponding

coverage intervals provided by the MC and RFV approaches
at the same coverage probabilities. In particular, in this case,
greater coverage intervals are obtained at higher coverage
probabilities, while narrower coverage intervals are obtained
at lower coverage probabilities. This shows the theoretical
limitation of the GUM approach. In fact, when the PDF of
the measurement result is not known (as it generally happens
with the GUM approach, which only propagates standard
deviations), it is not possible to correctly evaluate the coverage
probabilities associated to given coverage intervals (or vice-
versa), and only approximations can be made, by applying
the Central Limit Theorem. It is also worth noting that, in
some particular practical cases, like this one, the final PDF
can be also analytically obtained, so that the correct coverage
probability can be assigned to the intervals obtained from the
combined standard uncertainty.
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Fig. 8. Result obtained in case 1B, when the same Vernier caliper is used
to measure width and length of the block. Green line: area reference value.
Red lines: coverage intervals provided by the GUM approach. Blue dashed
lines: PD obtained from MC approach. Cyan lines: RFV.
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Fig. 9. Result obtained in case 1B, when two Vernier calipers are used to
measure width and length of the block. Green line: area reference value. Red
lines: coverage intervals provided by the GUM approach. Blue dashed lines:
PD obtained from MC approach. Cyan lines: RFV.

B. Case 2B

In case 2B, one caliper is chosen randomly and it is not
possible to compensate for the systematic error it introduces,
since it is not known. It follows that both the measurements of
length and width are affected by both random and systematic
contributions to uncertainty.
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However, the knowledge that the two measurements are
taken with the same caliper allows us to state that, even if its
value is unknown, the two measurements are affected by the
same systematic error. This metrological information should be
of course taken into account when combining uncertainties.

When the GUM approach is followed, the above information
can be used to set a correlation factor ρ = 1 between
the systematic contributions; conversely, a correlation factor
ρ = 0 is considered between the random contributions. The
uncertainty uAm

affecting Am is obtained by [1]:

uAm
=
√
u2Aran

+ u2Asys
(13)

where, according to the above considerations, uAran
and uAsys

are given by:

uAran
=
√(

wm2 + lm
2
)
· uran2 (14)

uAsys =
√(

wm2 + lm
2 + 2 · lm · wm

)
· u2sys (15)

Hence, the coverage intervals are obtained as intervals
centered on Am with semi-width kpuAm [1]. According to the
GUM, the kp values can be obtained by applying the Central
Limit Theorem. Under this assumption, the coverage interval at
coverage probabilities 95.45% and 68.27% are obtained when
kp = 2 and kp = 1 are applied.

When the MC approach is followed, according to the
considerations already reported for case 2A, the following
Monte Carlo simulation can be performed:

Ak =
(
lm + esys + e(1)rank

)
·
(
wm + esys + e(2)rank

)
(16)

where k = 1...107. e(1)rank and e
(2)
rank are two random ex-

tractions from the PDF representing the distribution of the
random contributions, while esys is a single random extraction
from the PDF representing the distribution of the possible
systematic errors. The same extraction esys applies to both
measurements because, according to Table II, a single caliper
is used in this case 2B and elsys = ewsys = esys. Moreover,
the same extraction esys applies to every run k, since one
specific caliper always affects the measured values with the
same systematic error.

When a generic caliper is considered, (16) provides the red
histogram shown in Fig. 10. Since also the other calipers could
be used, it is necessary to repeat the Monte Carlo simulation
(16) i = 1...107 times, each time taking a different random
extraction esysi . These simulations provide histograms with a
similar shape as the red one in Fig. 10, centered on different
values (lm + esysi) · (wm + esysi). In particular, in Fig. 10,
the lowest and the highest of all obtainable histograms are
reported5 (green and violet histograms respectively). The final
solution of the MC approach is therefore given by the whole
family of the obtainable histograms. The orange line in Fig.
10 shows the boundary of this family. From this curve, by
applying the normalization condition for probability distribu-
tions, the final result given by the MC approach in terms

5The lowest and the highest of all obtainable histograms are obtained, for
case 2B, by setting, in (16), the minimum and the maximum possible values,
respectively, for esys (i. e. esys = −0.1 mm for the lowest histogram;
esys = 0.1 mm for the highest histogram).
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Fig. 10. A generic (in red color), the lowest (in green color) and the
highest (in violet color) histograms obtained with the Monte Carlo simulation
expressed by (16). The orange line shows the boundary of all the obtainable
histograms and represents the final solution of the MC approach in case 2B.
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Fig. 11. Result obtained in case 2B. Green line: area reference value. Red
lines: coverage intervals provided by the GUM approach. Blue dashed lines:
PD obtained from MC approach. Cyan lines: RFV.

of a PDF is obtained. This PDF can be then converted into
the corresponding PD by applying the probability-possibility
transformation [26].

When the RFV approach is followed, the RFVs of length
and width are the RFVs of Fig. 6 (cyan lines). In order to
obtain the RFV associated to Am, according to the above
considerations, t-norm Tprod is applied to the random PDs and
ρ = 0 is considered; t-norm Tmin is applied to the internal PDs
and ρ = 1 is considered. The closed-form equations derived
in [5], [7] are employed to get the desired PDs.

Fig. 11 shows the results obtained with the three different
approaches. The meaning of the lines is the same as described
for case 1A.

Fig. 11 shows that very similar results are obtained when the
MC and RFV approaches are followed, since the blue dashed
PD representing the result of the MC simulations is almost
totally overlapping the external PD of the obtained cyan RFV.
On the other hand, the GUM approach provides, in this case,
narrower coverage intervals and this is mainly due to the fact
that, because of (13), the systematic and random uncertainties
compensate with each other.

It is the Author’s opinion that this compensation is not me-
trologically correct, and this is proved by the results obtained
following the RFV and the Monte Carlo approaches, which
both have correctly considered the non-random impact of the
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systematic contribution on the measurement procedure.

C. Case 3B
In case 3B, the same PDFs are associated to the random

and systematic contributions, as in case 2B, but length and
width are measured with two different calipers. Under this
new assumption, even if the systematic errors introduced by
the two calipers are unknown, it is possible to state that
they are surely different and independent of each other. This
different metrological information is taken into account when
combining uncertainties, by considering a correlation factor
ρ = 0 also between the systematic contributions. Hence, the
following applies.

When the GUM approach is followed, uAm is still given by
(13), where uAran is still given by (14), while uAsys is now
given by:

uAsys =
√(

wm2 + lm
2
)
· usys2 (17)

Hence, the coverage intervals are obtained as intervals
centered on Am with semi-width kpuAm

[1]. According to the
GUM, the kp values can be obtained by applying the Central
Limit Theorem. Under this assumption, the confidence interval
at coverage probabilities 95.45% and 68.27% are obtained
when kp = 2 and kp = 1 are applied.

When the MC approach is followed, according to the same
considerations as in the previous cases, the following Monte
Carlo simulation can be performed:

Ak =
(
lm + e(1)sys + e(1)rank

)
·
(
wm + e(2)sys + e(2)rank

)
(18)

where where k = 1...107. e(1)rank and e
(2)
rank are two random

extractions from the PDF representing the random contributi-
ons, while e(1)sys and e(2)sys are two random extractions from the
PDF representing the distribution of the possible systematic
errors. Two different extractions now are taken, since two
calipers are used, according to Table II. Moreover, as long as
the same calipers are supposed to be employed in the Monte
Carlo simulations, the measured values are affected by the
same systematic error, and therefore no different extractions
are taken for the different runs k.

The histogram obtained from (18) (red colour in Fig. 12)
is representative of one possible pair of calipers. Since also
other pairs could be randomly chosen, it is necessary to repeat
the Monte Carlo simulations i = 1...107 times, each time
taking two different random extractions e(1)sysi and e

(2)
sysi . The

green and violet histograms in Fig. 12 represent the lowest and
highest of all obtainable histograms6. Similarly to Case 2B,
from the orange line in Fig. 12, which envelopes all obtainable
histograms, it is possible to build the PDF associated to the
area value, according to the Monte Carlo simulations. Further-
more, by applying the probability-possibility transformation
[26], a corresponding PD is obtained.

6In case 3B, the lowest of all obtainable histograms is obtained by setting, in
(18), e(1)sys = −0.1 mm and e(2)sys = e

(1)
sys+0.01 mm. In fact, the two calipers

must introduce, in this case, the lowest possible values of the systematic errors.
Since two different calipers are employed, they cannot assume the same value
of the systematic error. Therefore, a difference of 0.01 mm is considered,
which corresponds to the Johansson gauge blocks accuracy (which are used to
calibrate the calipers themselves). Similarly, the highest histogram is obtained
by setting e(1)sys = 0.1mm and e(2)sys = e

(1)
sys − 0.01mm.
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Fig. 12. A generic (in red color), the lowest (in green color) and the
highest (in violet color) histograms obtained with the Monte Carlo simulations
expressed by (18). The orange line shows the boundary of all the obtainable
histograms and represents the final solution of the MC approach in case 3B.
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Fig. 13. Result obtained in case 3B. Green line: area reference value. Red
lines: coverage intervals provided by the GUM approach. Blue dashed lines:
PD obtained from MC approach. Cyan lines: RFV.

When the RFV approach is followed, the RFVs of the length
and width are the ones in Fig. 6. However, with respect to pre-
vious case 2B, the different metrological information imposes
to choose different t-norms to be applied. In particular, for
both the random and internal PDs, t-norm Tprod is applied
and a correlation factor ρ = 0 is considered [5], [7].

Fig. 13 shows the obtained results with the three different
approaches (the meaning of the lines is the same as described
for case 1A). This figure allows to draw similar considerations
as those drawn at the end of case 2B.

D. Case 4B

In case 4B, one single caliper is used to measure length
and width, as well as in previous case 2B. However, in this
case, the available metrological information changes: no PDF
is associated to the distribution of the possible systematic
errors and only an interval of variation is given, while the
same uniform PDF is associated to the random contributions
affecting the measurement procedure.

As already discussed for previous case 3A, the probabilistic
(GUM and MC) approaches cannot distinguish the two situa-
tions in which a uniform PDF is given and only an interval is
given but no PDF (total ignorance). Hence, case 4B falls in
case 2B, as far as these two approaches are concerned.
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Fig. 14. Result obtained in case 4B. Red lines: coverage intervals provided
by the GUM approach. Blue dashed lines: PD obtained from MC approach.
Cyan lines: RFV.

On the other hand, when the RFV approach is followed,
the different metrological information of this case 4B is
transferred into the different shape of the RFVs, as shown
in Fig. 7. To obtain the RFV of Am, according to the the
same considerations as in case 2B, t-norm Tprod is applied
to the random PDs and ρ = 0 is considered; t-norm Tmin
is applied to the internal PDs and ρ = 1 is considered [5],
[7]. This leads to the RFV shown in cyan lines in Fig. 14.
In this figure, the red and dashed blue lines report the GUM
and MC results, as evaluated for case 2B. As expected, since
the probabilistic approaches cannot consider total ignorance in
the correct mathematical way, they provide narrower coverage
intervals than the RFV approach.

E. Case 5B

In case 5B, two calipers are used to measure length and
width, as in previous case 3B. However, in this case, the
available metrological information changes: no PDF is asso-
ciated to the distribution of the possible systematic errors and
only an interval of variation is given, while the same uniform
PDF is associated to the random contributions affecting the
measurement procedure.

According to the considerations done for previous case 4B,
the GUM and MC approaches cannot distinguish cases 3B and
5B. On the other hand, when the RFV approach is followed,
the RFVs of width and length are the ones in Fig. 7. To obtain
the RFV of Am, according to the same assumptions as in case
3B, for both the random and internal PDs, t-norm Tprod is
applied and a correlation factor ρ = 0 is considered [5], [7].
This leads7 to the RFV in cyan lines in Fig. 15. The results
obtained with the GUM and MC approaches are also reported
(as obtained in case 3B) for a more immediate comparison.
Since the probabilistic approaches cannot consider total igno-
rance in the correct mathematical way, they provide narrower
coverage intervals than the RFV approach.

7It can be noted that the RFV in Fig. 15 is equal to the RFV in Fig. 14.
This is due to the fact that the internal PDs of the RFVs of width and length
are rectangular. In fact, when rectangular PDs are combined, the application
of whichever t-norm always provides the same result. However, this is only
a particular situation and not a general rule, as also proved by the RFVs in
Figs. 11 and 13.
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Fig. 15. Result obtained in case 5B. Red lines: coverage intervals provided
by the GUM approach. Blue dashed lines: PD obtained from MC approach.
Cyan lines: RFV.

F. Case B conclusions

By comparing Figs. 8, 9, 11, 13-15, same considerations as
the ones reported for case A can be drawn.

VI. CONCLUSIONS

This paper has shown how the possibilistic approach to
measurement uncertainty can always consider, represent and
propagate, in a correct mathematical way, all available metro-
logical information.

Different sets of possible relevant metrological information
have been considered and discussed through simple examples
of typical measurement situations. It has been proved that the
available information must be correctly employed to identify
the most suitable way to represent and combine the measu-
rement results, and to represent the different contributions to
uncertainty, no matter on the approach followed to evaluate
uncertainty.

The paper has proved that the same measurement results and
uncertainty contributions, although represented by the same
variables (PDFs or RFVs), must be processed in different
ways, according to the available information on the way the
uncertainty contributions originated and/or interact.

Three different approaches (GUM, MC and RFV) have
been applied and the obtained results compared. The obtained
results are summarized in Table III, where the X symbol
does not forcefully mean that the provided result is totally
incorrect, but only that the considered method refers to a
mathematical approach [26], [29] that is not theoretically
capable of handling the available information, even in those
cases where the provided numerical results approximate, often
by chance, the correct one.

Table III shows that only the RFV approach can handle
all considered metrological situations. This is a direct conse-
quence of being based on a mathematical theory which is more
general than the probability theory [26], [29]. In particular, it
can be stated that, when there is full knowledge of the PDFs
associated to all uncertainty contributions, the Monte Carlo
simulations and the RFV approach provide the same results.
Hence, in this case, both approaches can be applied. The RFV
approach, however, has also the advantage to be faster in
the implementation, since it does always refer to closed-form
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TABLE III
COMPARISON OF THE THREE APPROACHES.

case GUM MC RFV
1A OK OK OK
2A X OK OK
3A X X OK
1B X OK OK
2B X OK OK
3B X OK OK
4B X X OK
5B X X OK

algebraic formulas, and provide additional information about
the final measurement result, with respect to Monte Carlo.
In fact, as shown in Figs. 4-6 and 8-13, the Monte Carlo
simulations are able to provide only the external PD of the final
RFV. This means that only the overall uncertainty is obtained,
while the RFV approach provides information on the effect of
each single contribution (the random and the systematic ones)
to the final measurement result.

On the other hand, only the RFV approach is able, according
to the mathematical theory of possibility [26], [29] to consider
also situations of poor knowledge, where not all PDFs are
known (total ignorance), as shown in Figs. 7, 14 and 15.
This capability is very useful in the industrial field, where
the majority of the measurement procedures are characterized
by poor knowledge.

This paper considered a few, simple and didactic examples
to give evidence of the above statement in simple cases,
easily understandable. Of course, the simplest the examples,
the weakest the reasons supporting an approach might appear.
However, several applications of the RFV approach in different
and definitely more complex situations have been published
[34]–[36], proving that this approach provides solutions ot-
herwise not satisfactory.
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