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1. Introduction

Relativistic causality is the requirement that causal processes 
cannot propagate faster than the speed of light. That is a constraint 
determining the causal structure of Minkowski spacetime in 
Einstein's theory of special relativity, which appears to be at 
variance with the quantum non-locality characterizing entangled 
states across spacelike separated systems. There lies a seeming 
inconsistency between quantum mechanics and special relativity. 
However, relativistic versions of quantum mechanics, such as Local 
Quantum Field Theory, have been successfully formulated. Even 
within such a framework, though, there remains some outstanding 
philosophical problems. A theorem by Reeh and Schlieder (1961) is 
a purely relativistic result in local quantum field theory, which is 
often regarded as raising a conflict with relativistic causality. 
Allegedly, under an operational interpretation, the theorem would 
entail non-local effects, in that by performing local operations 
within a certain region of spacetime one could instantaneously 
change the state of the field over another spacelike separated 
region. In particular, this may occur even in the vacuum. Puzzled 
reactions have been expressed by several physicists and philoso-
phers of physics, most notably by Segal and Goodman (1965), who

first referred to such non-local effects as “bizarre” and “physically 
quite surprising”,  as well as by Haag (1992), Redhead (1995), 
Fleming (2000), Fleming and Butterfield (1999), and Clifton and 
Halvorson (2001), among others. But does the Reeh–Schlieder 
theorem really violate relativistic causality? In this paper we claim 
that it does not. In fact, we wish to show that the alleged conflict is 
only apparent.

To be sure, various attempts to solve the conundrum have been 
developed in the literature. For instance, Redhead (1995) and 
Clifton and Halvorson (2001) suggested that not all local opera-
tions within a spacetime region retain full physical content, and 
hence the change of state of the field over another spacelike 
separated region ought to be traced back to a mere artifact of the 
mathematical formalism. More radically, Fleming (2000) and 
Fleming and Butterfield (1999) proposed to adopt a heterodox 
quantization scheme for quantum fields, so that to avoid the 
theorem and its consequences for the vacuum altogether. Instead, 
our purported solution rests on a careful analysis of the status of 
relativistic causality in local quantum field theory and its relation 
with the non-locality predicted by the operational interpretation of 
the Reeh–Schlieder theorem. Let us outline the structure of our 
argument, which we develop in the rest of the paper.

In special relativity, relativistic causality is meant to 
guarantee that an effect cannot temporally precede its cause. 
So, if it is violated, an event may actually occur before the event 
which causes
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it: one could then interfere with one's own past, thereby giving rise 
to causal paradoxes, such as the Grandfather Paradox. Yet, there are 
different ways to intend the prohibition of faster-than-light propa-
gation of causal processes, depending on what one takes to be the 
relevant processes. In particular, such a constraint can be under-
stood as a condition of no superluminal signalling or, alternatively, 
as a condition of no superluminal propagation of matter and energy 
carried by a field. In a recent paper Butterfield (2007) identified 
three main formulations of relativistic causality, corresponding to 
as many independent axioms of Local Quantum Field Theory: that 
is, Microcausality, the Spectrum Condition, and Local Primitive 
Caus-ality. Each axiom can be regarded as expressing the 
prohibition of superluminal propagation of causal processes 
intended either in the sense of signalling or in the sense of matter 
and energy carried by a field. Our argument shows that none of 
these formulations of relativistic causality is really in conflict with 
the Reeh–Schlieder theorem. For one, Microcausality is interpreted 
as assuring that signals cannot travel faster than light, at least when 
they are enacted by non-selective local operations. If so, given that 
such an axiom is invoked to make the case for the non-local effects 
implied by the theorem, the latter cannot entail a violation of no 
super-luminal signalling. On this point, though, more needs to be 
said about selective local operations. We argue that, even if one 
grants that such operations would enact superluminal signals, in 
the context of the Reeh–Schlieder theorem the resulting signals 
cannot be controlled, and hence one may not exploit them to 
interfere with one's own past, thereby evading the causal 
paradoxes arising from the failure of relativistic causality. As for the 
Spectrum Condition, it is regarded by Butterfield as “the most direct 
expression of the prohibition of spacelike processes” (p. 303), in 
that it requires that the spectrum of the energy–momentum 
operators of a field is confined to the future light cone. We observe 
that, since this condition is involved in the derivation of the Reeh–
Schlieder theorem itself, the latter cannot entail any superluminal 
propagation of matter and energy in the relevant sense. Finally, Local 
Primitive Causality reflects the hyperbolic character of the underlying 
equations of motion. As we suggest here, it is the most appropriate 
formulation of no superluminal propagation of the field. Provably, it is 
fully consistent with the assumptions from which the Reeh–Schlieder 
theorem is proven. Thus, in the last analysis, we conclude that the 
Reeh–Schlieder theorem is not in conflict with relativistic causality at 
all.

The paper is organized as follows. We begin in Section 2 by 
reviewing the structure of Local Quantum Field Theory in its axio-matic 
formulation (Section 2). In particular, we emphasize in what sense the 
theory naturally embodies a concept of locality, which we contrast 
with the Bell-type non-locality due to the presence of entangled states. 
We then present the Reeh–Schlieder theorem and explain how it 
supposedly entails non-local effects (Section 3). In order to set its 
operational interpretation in precise terms, we cast the content of the 
theorem in terms of the notion of local operations: in doing so, we draw 
from a proposal by Clifton and Halvorson (2001), but we correct their 
formalization of the proper operations to associate with local 
observables. In Section 4 we take up the issue whether the theorem is 
at variance with the requirement that one cannot signal faster than 
light: in particular, we survey the attempt to explain away the non-
local effects caused by selective operations by arguing that they are not 
fully physically significant; then, we argue that, even if one does not 
exclude superluminal signalling, the latter cannot be controlled in the 
context of the Reeh–Schlieder theorem, and hence it may not be used 
to give rise to causal paradoxes. In the last section, we conclude by 
discussing the condition of no super-luminal propagation of matter 
and energy carried by a field, and we propose that the most 
appropriate formulation of relativistic causality is captured by the 
axiom of Local Primitive Causality, which is fully consistent with the 
Reeh–Schlieder theorem.

2. Causality and non-locality in Local Quantum Field Theory

Local Quantum Field Theory has its standard axiomatic for-
mulation in Rudolph Haag's (1992) seminal book, wherein the 
content of the theory is cast in terms of algebras of observables. 
For that reason, it is referred to as Algebraic Quantum Field Theory 
(AQFT). The structure of the relevant algebras is determined by a 
set of physically and mathematically motivated axioms. Here, we 
review the main axioms by placing particular emphasis on their 
relevance for the concepts of locality and causality.

Let us first recall some basic algebraic notions. The algebra BðHÞ
represents the set of all bounded operators acting on the Hilbert
space H, which describes non-relativistic quantum systems. Then,
any subalgebra ADBðHÞ is a (concrete) Cn-algebra just in case it is
closed under the operator norm topology, which requires that, if
the sequence

A 
of operators

A 
fA
A
ng in A conv 

A
erges in norm to some

operator ABðHÞ, i.e. j n � j⟶0, then belongs to A. Von
Neumann algebras arise as a special class of Cn-algebras. Indeed,
the algebra M is a von Neumann algebra just in case it is closed 
under the strong operator topology (that is weaker than the 
operator norm topology), according to which, given the sequence
of operat 

A
ors fAng in M, if for all

A 
vect 

A
ors ψ in H 

A
there exists some 

operator ABðHÞ such that nψ⟶ ψ , then belongs to M. 
An algebra is called unital if it contains the identity transformation
I on H. Throughout the paper we always assume that the algebras 
we are dealing with are unital. As it turns out, the algebras 
describing relativistic quantum field systems in AQFT can be 
shown to be factors of von Neumann algebras of type III. For the 
sake of this paper, we do not really need to specify what factors of 
type III are, except for noting that they are proper subalgebras of

BðHÞ. Let us also stress that we assume that the states defined on
the relevant algebras are normal, that is countably additive.

The fundamental local character of AQFT is emphasized by 
Horuzhy (1990) in the following quote, which highlights the 
central role of causality constraints in the construction of the 
theory.

[T]here is a fundamental property which appears already at the 
early stage and deeply affects the conceptual (and, consequently, 
the mathematical) structure of algebraic quantum field theory. 
This property is locality, which is, in its turn, a combination of 
two properties: localization and causality. The former means 
that since any physical experiment takes place in a finite space-
time region, each physical quantity determined directly from the 
experiment is also associated with some region (localized in it). 
As to the latter property, one should keep in mind that no signal 
velocity can exceed the velocity of light, and no processes taking 
place in spacetime regions separated by spacelike intervals can 
affect each other (Einstein's causality principle). Consequently, 
each observable must also be causal, i.e. compatible with any 
other observable if their localization regions are mutually
space-like. [Horuzhy (1990), p. 3]

According to Horuzhy, locality results from the combination of
two further conditions, namely localization and causality. That
offers a useful starting point for our discussion. So, let us see in
detail how the intended conditions are built into the postulates of
the theory.

The primitive object in the algebraic description of a quantum
field system is the mapping

O⟶AðOÞ
from any bounded region O of Minkowski spacetime M, within
which the system is thought of as being localized, onto a
corresponding local algebra AðOÞ. Localization guarantees that
the latter contains all the observables one can measure in the
corresponding spacetime region. Accordingly, all the elements of



AðOÞ are referred to as local observables. The underlying intuition
is that only the spatiotemporal localization of observables is
necessary for a description of quantum fields. Yet, it is important
to stress that the relevant physical information is encoded in the
way in which the algebras of observables in the net fAðOÞjO�Mg
are linked together. In fact, one does not need to specify what
observables have physical significance: it is sufficient to investi-
gate the net structure of the local algebras.

With the notion of localization at hand, one can now state the
first axiom, expressing the fact that any observable that can be
measured in a region O1 is also measurable in a larger region O2

containing O1. That is:

1. Isotony: If O1 �O2, then AðO1Þ �AðO2Þ

If this holds for all regions of the spacetime manifold M, then
there is a Cn-algebra A arising as the inductive limit of the net of
local algebras. The elements of such a quasi-local algebra can thus
be uniformly approximated by local observables.

The second axiom captures the notion of causality referred to
by Horuzhy. Let the causal complement of O be the region O0

comprising all the points in Minkowski spacetime that is spacelike
separated from every point in O. For any pair of regions O1 and O2,
one requires the following:

2. Microcausality: If O1DO2
0, then ½AðO1Þ;AðO2Þ� ¼ f0g.

It means that, if O1 and O2 are spacelike separated regions, the
corresponding local algebras are mutually commuting, that is
AðO1ÞDAðO2Þ0 (where the apex 0 denotes the commutant of an
algebra, namely the set of bounded of operators that commute
with all elements of the algebra). That captures the idea that
measurements of observables localized in spacelike separated
regions are co-possible, in the sense that they do not disturb each
other. Such a postulate is often called Einstein's principle of
causality, as in Horuzhy's quote. On the basis of this interpretation,
one can characterize microcausality as a condition of mutual
independence between distant quantum field systems. Yet, Hor-
uzhy suggests that it also bears direct causal significance as a
prohibition of faster-than-light signals. As we argue in Section 4,
though, the latter claim is true only under a rather special under-
standing of no superluminal signaling. For now, we just wish to
point out that the condition of mutual commutativity between the
algebras describing distant systems can actually be formulated in
ordinary non-relativistic quantum mechanics too, although the
localization of the observables would not be explicit there in that
one lacks an association of the relevant algebras with spacetime
regions. The next postulates of AQFT, instead, introduce purely
relativistic constraints with no non-relativistic analogs.

Let P†
þ be the identity-connected component of the Poincaré

group. The third axiom assures the Poincaré symmetry of the
theory:

3. Relativistic Covariance: On the underlying Hilbert space H
there exists a strongly continuous unitary representation
UðΛ; αÞ of P†

þ , where Λ a proper Lorentz transformation and α
a four-vector in M, such that

UðΛ; αÞAðOÞUðΛ; αÞ�1 ¼AðΛðOÞþαÞ
for all regions O of Minkowski spacetime M.

Such a postulate embodies Einstein's principle of relativity,
reflecting the Lorentz invariance of all physical laws: thus, the
results of an experiment do not depend on the choice of any
inertial reference frame. In particular, relativistic covariance
includes the requirement of translation covariance.

There exist several different physically relevant representa-
tions. We here choose to work with the irreducible vacuum

representation. Accordingly, all the local algebras in the net
fAðOÞjO�Mg are assumed to act on the same (separable) Hilbert
space H, in which there is defined a distinguished unit vector ψ0
corresponding to the vacuum that is invariant under UðΛ; αÞ. One
then places the following axiom:

4. Spectrum Condition: The spectrum of the self-adjoint gen-
erators of the strongly continuous representation of the trans-
lation sub-group of P†

þ must lie in the closed forward light
cone.

The spectrum of such generators is given by the physical
interpretation of the global energy–momentum spectrum of the
theory. Hence, this postulate corresponds to the requirement that
energy is positive in every Lorentz frame. Assuming the spectrum
condition is actually crucial in the derivation of the Reeh–Schlieder
theorem. On the other hand, some authors have even identified it
as an expression of relativistic causality in AQFT.

A further axiom is commonly made when dealing with the
vacuum representation, that is

5. Weak Additivity: For all regions O in M, A is the smallest
Cn-algebra containing ⋁αAðOþαÞ.

Since the relevant bounded regions can be chosen to be
arbitrarily small, this postulate guarantees, in particular, that the
spacetime continuum is completely homogeneous.

Typical bounded regions in AQFT are the double cones. Let us
consider two points x and y of Minkowski spacetime such that the
former lies in the forward light cone of the latter: an (open) double
cone is the intersection of the causal future of y and the causal past
of x. Two spacelike separated double cones are said to be tangent if
their closure intersects at a single point; else, they are strictly
separated. For simplicity, we restrict our attention to the simplest
example of double cones, namely the diamond regions, for which
the said points x and y have the same time coordinate. Diamonds
have the remarkable property that the commutant of their local
algebra coincides with the local algebra associated with their
causal complement, that is AðOÞ0 ¼AðO0Þ. In particular, local
algebras associated with such regions naturally satisfy the axiom
of Local Primitive Causality, which we regard as the appropriate
expression of relativistic causality embodying the condition of no
superluminal propagation of a field. We show this in the last
section, where we also state the postulate explicitly.

To be sure, even when all the above axioms are satisfied,
including those expressing causality and locality requirements,
Bell's inequality is violated in Local Quantum Field Theory. In fact,
in this setting the failure of Bell-type locality is even more
dramatic than in non-relativistic quantum mechanics. For, let the
normal global state ϕ be defined on the joint algebra AðO1Þ3
AðO2Þ formed by the local algebras associated with the spacelike
separated regions O1 and O2. Provably, an algebraic version of 
Bell's inequality fails for all global states across pairs of tangent 
regions as well as for all global states across pairs of strictly 
spacelike separated regions whose minimal Minkowski distance is 
not large enough (see Summers & Werner, 1987, 1988). 
Moreover, Clifton and Halvorson (2000) demonstrated that, 
even in those cases where there exist some unentangled states, 
Bell's inequality is (maximally) violated by a norm dense set 
of global states, including the vacuum state, which implies that 
such global states
are all entangled across AðO1Þ and AðO2Þ. As a matter of fact, this 
just arises as a consequence of the Reeh–Schlieder theorem. One
may perhaps interpret the failure of Bell-type locality entailed by 
the theorem as a good indicator of a violation of relativistic 
causality. But is that really the case?



3. The operational interpretation of the Reeh–Schlieder
theorem

Before stating the Reeh–Schlieder theorem and explaining its
content, we ought to recall some further relevant algebraic
notions. A vector ψ in the underlying Hilbert space H is said to
be cyclic for M just in case the set fAψ : AAMg is norm dense in
H. That implies that, given every ξAH, for any ϵ40 there exists an
operator A in M such that JAψ�ξJoϵ: in other words, by
applying a given element of the algebra to ψ one can approximate
as closely as one wishes any other vector. As a shorthand for this
fact, in the rest of the paper we use the notation JAψ�ξJ-0,
although strictly speaking it is meaningless in the sense that there
is no series that tends to zero here. Moreover, ψ is said to be a
separating vector for M just in case Aψ ¼ 0 implies A¼0 for all
AAM. As a consequence, for any two elements A and B of M, if
ðA�BÞψ ¼ 0 then A and B must coincide. That means that ψ is rich
enough to distinguish different observables in the algebra. If there
is a separating vector for an algebra, any normal state on such an
algebra is a vector state (Kadison and Ringrose, 1997, Theorem
7.2.1): that is, for any normal state ϕ on M, there is a vector ξAH
such that ϕ¼ ϕξ where ϕξð�Þ ¼ 〈ξ; ð�Þξ〉=〈ξ; ξ〉. One can thus generate
all states by means of the vectors belonging to the underlying
Hilbert space. In the context of von Neumann algebras, a vector is
separating for an algebra if and only if it is cyclic for its commutant.

The Reeh–Schlieder theorem can be derived from the above
axioms of AQFT. In particular, it follows just from the requirement
of translation invariance included in relativistic covariance, the
spectrum condition and weak additivity. In its general formula-
tion, the theorem is about vectors that are analytic in the energy,
yet here we just present its statement for vectors of bounded
energy. Specifically, a vector ψAH has bounded energy if Eð½0; r�Þψ ¼
ψ for some ro1, with E being the spectral measure of the global
Hamiltonian of the field.

Reeh–Schlieder theorem: For all bounded regions O in M, if
the vector ψ has bounded energy, then ψ is cyclic for the local
algebra AðOÞ.

Let us stress how strong and far-reaching such a result proves 
to be: it establishes that vectors of bounded energy are cyclic for 
any local algebra. In particular, since the global Hamitonian of the 
field takes on the value 0 in the vacuum vector ψ0, the theorem 
entails the cyclicity of ψ0 for all local algebras.

To illustrate the startling implications of the Reeh–Schlieder 
theorem for the issue of non-locality, let us begin by quoting a 
comment by Haag (1992), where the crucial role of the spectrum 
condition in its derivation is also emphasized:

the theorem tells us that for any chosen state vector ξ one can
always find an operator AAAðOÞ which, applied to the vacuum,
produces a state vector arbitrarily close to ξ. To achieve this the
operator must judiciously exploit the small but non-vanishing
long distance correlations which exist in the vacuum as a
consequence of the spectral restrictions for energy–momentum
in the theory. (p. 102, where the formalism has been suitably
modified)

It would thus seem that, owing to the presence of entangled
correlations in the vacuum,1 by operating within a certain space-
time region an experimenter could steer the vacuum into any
other desired global state of the field. In order to achieve this, one
needs to invoke microcausality. Indeed, while such an axiom is not

required in the proof of the theorem, it is indispensable to make
the argument for the ensuing non-local effects. Since the vacuum
vector ψ0 is cyclic for the local algebra AðO1Þ associated with the
diamond region O1, it is separating for the local algebra AðO1Þ0
associated with its causal complement O1

0, and hence it is
separating for the local algebra AðO2ÞDAðO1Þ0 associated with
any spacelike separated region O2. Likewise, since ψ0 is cyclic for
AðO2Þ, it is separating for AðO1Þ as well. It then follows that ψ0 is
separating for the joint algebra AðO1Þ3AðO2Þ, which means that
any global state of the field is generated by some vector ξ in the
underlying Hilbert space H. Now, by exploiting the cyclicity of the
vacuum for AðO1Þ, for each ξ one can find an observable A
localized in the region O1 such that JAψ0�ξJ-0. This implies
that the global state ϕξ on AðO1Þ3AðO2Þ is approximated in
norm2 by the state ϕAψ0

generated by the vector produced by
hitting ψ0 with the operator A, that is JϕAψ0

�ϕξ J-0.
In particular, by operating in region O1 an experimenter could

steer the vacuum into some global state of the field that looks like
very different from the vacuum within the spacelike separated
region O2. In fact, she could generate a state ϕ on AðO1Þ3AðO2Þ 
whose restriction to the local algebra associated with O2 no longer
coincides with the vacuum, in the sense that ϕjAðO2 Þ aϕψ0 

jAðO2 Þ. 
Such a non-local change of state would take place instantaneously,
thereby raising an apparent conflict with relativistic causality. That
is the puzzle we wish to resolve.3

To this extent, we point out another remarkable property of the
vacuum established by Redhead (1995) as a corollary of the Reeh–
Schlieder theorem, namely the existence of vacuum fluctuations.
In Redhead's terminology, Prψ ðP ¼ 1Þ is the probability that a 
measurement represented by a projection P yields a positive
outcome in the vector-state ψ: by construction, it corresponds to
the value of the state ϕψ evaluated on P. Redhead then proved that 
such a probability cannot vanish for any non-zero projection in the
local algebra AðOÞ. Consider a projection P2 localized in the region 
O2 spacelike separated from O1, and suppose, for purpose of
reductio ad absurdum, that Prψ0 ðP2 ¼ 1Þ ¼ 0 in the vacuum. 
It follows straightforwardly that 〈ψ0jP2ψ0〉 ¼ 〈P2ψ0jP2ψ0〉 ¼ 0, and
hence P2ψ0 ¼ 0. Since ψ0, being cyclic for AðO1Þ, is also separating 
for AðO2Þ, then P2 must be equal to zero. By contraposition, one 
can thus infer that for any non-zero projection P2 the probability
Prψ0 ðP2 ¼ 1Þ that the corresponding measurement yields a positive 
outcome in the vacuum ψ0 cannot be zero. It means that, quite
surprisingly, any possible outcome of measurements performed
within a spacetime region has a finite, non-vanishing probability 
to occur in the vacuum. As Redhead put it, “[i]n the long run
anything that is possible will happen in the vacuum” (p. 128), 
which illustrates his remark that, locally, the vacuum is “seething
with activity” (p. 123). Actually, in our view, this point tends to 
obscure the possibility of evaluating alleged non-local, a-causal
effects. In fact, if something happens in region O2, one cannot be
sure that it is an effect of some action in region O1 instead of being 
just a spontaneous fluctuation of the vacuum. On the other hand, it 
would also be a quite surprising coincidence that such a random
fluctuation occurs exactly at the same time when an experimenter 
performs a measurement somewhere else.

1 Such correlations are actually known to decrease exponentially with the 
minimum Minkowski distance between spacelike separated regions, but they will 
never vanish completely (see Fredenhagen, 1985).

2 The norm of a state ϕ on the von Neumann algebra M is defined by
JϕJ � fjϕðAÞj : A¼ AnAM; JAJr1g.

3 Actually, Haag himself calls the possibility of steering the vacuum into any
global state a “superficial paradox”, in that he argues that, if one is allowed to
operate in such a way to involve just a physically reasonable expenditure of energy,
one could approximate only a subset of the state space. Yet, this requires one to
appeal to the nuclearity condition, which does not hold in general. More
importantly, though, the fact remains that one could still change the state of the
field in a spacelike separated region.



Be that as it may, the seeming violation of relativistic causality 
described above rests on an operational interpretation of the 
Reeh–Schlieder theorem. In the formulation adopted in the quote 
by Haag, though, the idea of operating within a spacetime region is 
cast in terms of the operators in the corresponding local algebra 
hitting the vacuum vector. However, the recent literature in 
quantum theory generalizes the notion of measurements in the 
language of operations (see Doplicher, Haag, & Roberts, 1971, 1974; 
Hellwig & Kraus, 1969, 1970; Kraus, 1983), which are maps over an 
algebra of observables rather than elements of the algebra. So, in 
order to make precise the operational interpretation of the 
theorem one ought to lift the discussion from the level of local 
observables to the level of local operations. We show how this can 
be done here below.

3.1. From local observables to local operations

Operations are the mathematical representative of actual 
operations, such as measurements, that an experimenter can 
perform on quantum systems. An operation is defined as a
completely positive linear map T : M⟶M such that TðIÞr I. It is a 
non-selective operation if it preserves the identity, that is
TðIÞ ¼ I; otherwise, it is a selective operation. Furthermore, it is said 
to be projective just in case T2 ¼ T . Given the initial 

n

state ϕ on M, 
the operation-conditioned state is denoted by T ϕ ¼ ϕ○T , where Tn 

is the dual of T acting on the state space of M. As we
deal with normal states, we consider just normal (i.e. s-weakly 
continuous) operations, in that their dual transforms normal states
into normal states. Operations mapping from BðHÞ onto itself can 
be given an explicit decomposition in terms of the Kraus repre-
sentation theorem (Kraus, 1983): for any (normal) operation T :

BðHÞ⟶BðHÞ there is at least one countable collection of Kraus
operators fKigDBðHÞ such that

Tð�Þ ¼∑
i
Kn

i ð�ÞKi

where Or∑iK
n

i Kir I. If the sum is infinite, convergence is intended
in the sense of the weak-* topology, which guarantees that T is
normal. For example, the Lüders rule for quantum measurements
can be expressed in terms of operations. Let Pi

A's be the spectral
projections of some discrete observable A¼∑iλiP

A
i in the algebraM

describing a quantum system: a measurement of A is represented
by the non-selective (projective) operation TA

Projð�Þ ¼∑iP
A
i ð�ÞPA

i ;
instead, the fact that a measurement of A yields a specific outcome
corresponding to the eigenvalue λi is represented by the selective
(projective) operation TA

Pi
ð�Þ ¼ PA

i ð�ÞPA
i .

Local operations are a particular kind of operations expressing
the idea of acting on a systemwithout causing non-local effects on
other distant systems. Here below we state the standard notion of
local operations in its general algebraic formulation. Recall that the
von Neumann algebra generated by M and its commutant M0

coincides with the algebra of all bounded operators on the
underlying Hilbert space H, that is M3M0 ¼ BðHÞ. One can then
define a local operation admitting a Kraus decomposition as follows:

Local operations: A local operation in M is an operation T :

BðHÞ⟶BðHÞ whose representation is given in terms of Kraus
operators KiAM.

Having this formulation at hand, we now proceed to spell out the 
connection of the thus-defined local operations with the content 
of cyclicity of a vector ψ for the algebra M. Subsequently, we 
explain in what sense such operations can be thought of as 
embodying a locality requirement by showing how it applies to 
the local algebras of AQFT.
Clifton and Halvorson (2001) stressed the importance of cast-ing 

the meaning of cyclicity into the language of operations in

order to clarify the operational interpretation of the Reeh–Schlie-
der theorem. To this extent, one needs to construct a local
operation that corresponds to the action of the operator A on the
cyclic vector ψ for M such that JϕAψ �ϕξ J-0 for any chosen state
defined by vector ξ in the underlying Hilbert space H. Clifton and
Halvorson submitted the following proposal for the sought-after
operation:

ϕAψ is just the state one gets by applying the pure operation
given by the Kraus operator A=JAJ AM to ϕψ . If follows that if 
ψ is cyclic for M, one can get arbitrarily close in norm to any
other pure state of BðHÞ by applying an appropriate pure local 
operation in M to ϕψ . [Clifton and Halvorson (2001), p. 17,
where the formalism has been suitably modified]

While Clifton and Halvorson's intuition is certainly on the right
track, we would like to observe that their suggested choice of local
operation is not correct. For, let us consider an observable A in the
algebra M for which ψ is cyclic. If the Kraus operator associated
with the action of A on ψ were given by A=JAJ , the corresponding
operation would take the form TAψ ð�Þ ¼ An=JAJ ð�ÞA=JAJ . That is
indeed a pure local operation in M. In order to assure that such an
operation would produce the state generated by the vector Aψ
when being applied to ϕψ , one ought to argue that Tn

Aψϕψ is close to
ϕAψ in norm. Nevertheless, an explicit calculation shows that one
obtains

Tn

Aψϕψ ð�Þ ¼
ψ ;

An

JAJ
ð�Þ A

JAJ
ψ

� �

〈ψ ;ψ〉
¼ 〈Aψ ; ð�ÞAψ〉

‖A‖2〈ψ ;ψ〉

and this is in general not equal to ϕAψ ð�Þ ¼ 〈Aψ ; ð�ÞAψ〉=〈Aψ ;Aψ〉. For
instance, let A be a non-zero projector onto a subspace orthogonal
to ψ: then 〈Aψ ;Aψ〉¼ 0 while ‖A‖2〈ψ ;ψ〉a0, and thus the denomi-
nators in the expressions for ϕAψ and Tn

Aψϕψ do not coincide.
Instead, it turns out that the correct expression for the local
operation in M corresponding to the action of A on ψ is given by

TAψ ð�Þ ¼
Anð�ÞA
ϕψ ðAnAÞ

So, at least when A is a positive operator such that AnAr I, one can
conclude that the appropriate choice for the Kraus operator is
AJψ J=JAψ J . Obviously, this definition would coincide with the
one provided by Clifton and Halvorson just in the trivial case in
which A is the identity I in the algebra M.

Next, we turn to the locality requirement characterizing the
notion of local operations. In order to make it more conspicuous
from a physical point of view, we discuss its meaning in the
context of AQFT. Let the von Neumann algebra M be the local
algebra AðO1Þ associated with a region O1. Its causal complement
O0

1 is associated with the algebra AðO0
1Þ, which by the diamond

property corresponds to AðO1Þ0. Accordingly, a local operation T in
AðO1Þ is an operation defined on AðO1Þ3AðO1Þ0 ¼ BðHÞ. The fact
that its representation is given in terms of Kraus operators Ki taken
from the algebraAðO1Þ guarantees that one is operating within the
region O1. The idea that performing such an operation does not
have non-local effects is captured by the requirement that T does
not change the state of the field over the causal complement of O1,
in the sense that for any global state ϕ its restriction to AðO1Þ0
remains invariant, i.e. TnϕjAðO1Þ0 ¼ ϕjAðO1Þ0 . Provably, for non-
selective operations such a locality requirement is always satis-
fied.4 Thus, a fortiori, a non-selective local operation in AðO1Þ does

4 For this reason, the thus-defined (non-selective) local operations are labeled
absolutely local operations by Valente (2013). However, if one wishes to consider
(non-selective) local operations in AðO1Þ that leave invariant the state of the field 
just over the region O2 , rather than over the entire causal complement O0

1 , one
ought to construct different maps, called relatively local operations. Actually, since



not change the state of the field over any region O2 spacelike 
separated from O1.

However, notice that the above definition of local operations 
includes selective operations as well. If T is a selective local
operation in AðO1Þ, then TðBÞ ¼ Tð

n

IÞB for all BAAðO1Þ0. That implies 
that, for any global state ϕ, T ϕðBÞ ¼  ϕðTðIÞBÞ=ϕðTðIÞÞ, which is 
certainly different from ϕðBÞ for some observable B localized in 
O1

0. Therefore, selective local operations do change the state of the
field over the causal complement of the region O1. It follows that
TnϕjAðO2 Þ aϕjAðO2 Þ when the region O2 is spacelike separated from 
O1. Whether or not such a change of state counts as a violation of
locality depends on one's physical interpretation of local opera-
tions. We shall return to this issue in Section 4.1.

Having formulated the operational interpretation of the Reeh–
Schlieder theorem in precise terms, we can now tackle its alleged 
conflict with relativistic causality. We first address the question 
whether it violates the requirement of no superluminal signalling. 
Then, we discuss whether it infringes on the relativistic constraint 
of no superluminal propagation of matter and energy carried by a 
quantum field.

4. No superluminal signalling

According to the quotation from Horuzhy in Section 2, the 
rationale for ascribing causal significance to the axiom of micro-
causality is two-fold: first, it would guarantee the co-possibility of 
physical processes, such as measurements, taking place at the same 
time in different spacelike separated regions; second, it would 
impose constraint forbidding signals to travel faster than light. As 
we already emphasized, under the first characterization 
microcausality appears as a condition of mutual independence 
between distant quantum field systems. Yet, there is a hierarchy of 
independence conditions formulated in the literature depending 
on what one takes to be the relevant physical process (see 
Summers, 1990 for a thorough discussion), and microcausality is 
not even the strongest among such conditions. For instance, Rédei 
and Summers (2008) proposed a condition of operational inde-
pendence demanding that general operations performed on 
spacelike separated regions do not disturb each other and can be 
performed simultaneously. Such a requirement is satisfied when 
the split property holds. The latter is a strengthening of micro-
causality, which also entails a condition of statistical independence 
for spacelike separated quantum fields.5 However that may be, it is 
only the second characterization of microcausality as a prohibition 
of faster-than-light signals that would enforce a direct connection 
with relativistic causality. But why should the requirement of 
mutual commutativity of the local algebras associated with space-
like separated regions assure no superluminal signalling?

This issue is highly sensitive to what one takes to constitute a 
signalling procedure, which in general requires one to specify 
some mechanisms for both the emission and the reception of a 
signal, as well as a means of transmission (Weinstein, 2006 offers a 
review of various options). Setting these concerns aside, the 
standard answer to the above question is based on a theorem by 
Schlieder (1968) involving the quantum-mechanical Lüders rule. 
To illustrate the operational content of Schlieder's result in the
context of AQFT, let us consider the operation TA

Projð�Þ ¼ ∑iPi
Að�ÞPiA

representing the measurement of some discrete observable A

localized in region O1, whose spectral decomposition is given in 
terms of the projections PiA's. The theorem guarantees that such an 
operation does not change the state of the field on the spacelike
separated region O2, i.e. TAn

ProjϕjAðO2 Þ ¼ ϕjAðO2 Þ for any initial global 
state ϕ, if and only if the local algebras AðO1Þ and AðO2Þ are 
mutually commuting. Therefore, no possible signal enacted by
performing a measurement in O1 could be detected in O2, in that 
the state of the field within the latter region remains invariant. One 
may actually object that here the relevant notion of signal is 
restricted to non-selective projective operations. Yet, the fact that, 
as we explained at the end of the previous section, all non-
selective local operations in AðO1Þ leave unchanged the restriction 
of any global state ϕ to AðO2Þ provides an operational general-
ization of Schlieder's theorem. Accordingly, microcausality would
yield necessary and sufficient conditions for no superluminal 
signalling, at least under the present notion of local operations.6

To come back to the Reeh–Schlieder theorem, one may think 
that these considerations lead one to dissolve the conflict with 
relativistic causality intended as a constraint of no faster-than-light 
signalling. Nevertheless, we believe that one is not out of the 
woods yet. For one, although microcausality is not needed to derive 
the theorem, its puzzling non-local effects would arise just in case 
one adds such an axiom. This point is hard to square with the claim 
that microcausality prohibits superluminal signals. Furthermore, 
such a claim can be maintained only if one considers non-selective 
operations. Indeed, we know that selective opera-tions performed 
in one region change the state of the field within its causal 
complement. To cope with this fact there are two main strategies 
available: either one tries to explain away the apparent non-local 
effects by arguing that those local operations that would cause an 
instantaneous change of state in a distant region do not retain full 
physical content; or one shows that, even if the possibility of 
superluminal signaling is not excluded, the resulting signals are 
necessarily uncontrollable, and thus they may not be used to give 
rise to causal paradoxes. In the rest of this section, we examine 
such options in that order.

4.1. What local operations are physical?

When discussing the operational interpretation of the Reeh–
Schlieder theorem, Redhead (1995) proposed a distinction between 
physical and mathematical operations in order to solve the puzzle 
of non-locality arising from the cyclicity of the vacuum. His 
classification was developed at the level of local observables, rather 
than local operations. He listed the operations of “making 
measurements, selecting subensembles according to the outcomes of 
measurements, and mixing ensembles with probabilistic weights” (p. 
128) as physical; whereas he characterized the operation of producing 
superpositions of states as mathematical. Then, on the basis of an 
analogy with the singlet state in the non-relativistic case, he observed 
that one could only approximate all possible global states if one also 
applies such mathematical operations. While this analysis is correct, 
Redhead failed to recognize that a local operation corresponding to an 
observable localized in a given region can change the state of a field 
over another spacelike separated region just in case it is selective.

By stressing this point, Clifton and Halvorson (2001) put 
forward a different distinction. For them, only non-selective opera-
tions retain full physical significance, whereas selective operations 
contain also a conceptual component. In fact, a non-selective

(footnote continued)
such operations are defined on AðO1Þ3AðO2Þ, which in general is a proper sub-
algebra of BðHÞ, they do not always admit a Kraus decomposition, contrary to 
absolutely local operations.
5 Summers (2009) offers an illuminating review of the split property as a sufficient 

condition for microscopic subsystems to be conceived as independent.

6 With regard to this point, it should be stressed that such a claim holds true just 

for absolutely local operations (see footnote 4). In fact, the existence of relatively 
local operations in AQFT is assured under the split property, as it was proven by 
Rédei & Valente (2010), and hence microcausality is not sufficient for a prohibition 
of faster-than-light signals enacted by such operations.



operation is conceived as representing the actual, physical inter-
action between a quantum system and the measurement appara-
tus, whereby an ensemble of copies of the system is decomposed
into different subensembles corresponding to all the possible
outcomes of the measurement. Instead, a selective operation
ought to be understood as a combination of a non-selective
operation, due to the physical act of performing a measurement,
and the additional purely conceptual operation of singling out the
subensemble corresponding to a specific outcome of such a
measurement, while discarding the other non-relevant subensem-
bles. Accordingly, in our example of application of the Lüders rule,
TProj
A enacts a partition of the ensemble into as many subensembles

as the possible outcomes of a measurement of the observable A in
AðO1Þ, whereas TA

Pi
further selects the subensemble corresponding

to the specific eigenvalue λi. Since non-selective operations per-
formed in one region cannot change the state of the field over any
other region in its causal complement, the change of state caused
by a selective local operation is to be traced back to its conceptual
component. By applying their proposed distinction to the opera-
tional interpretation of the Reeh–Schlieder theorem, Clifton and
Halvorson concluded that:

the correct way to view the physical content of cyclicity is that
changes in the global state are partly due to an experimenter's
ability to perform a generalised measurement [in region O1],
and partly due (pace Redhead) to the purely conceptual opera-
tion of selecting a subensemble based on the outcome of the
experimenter's measurement together with the consequent
“change” in the state [over region O2] via the EPR correlations.
[p. 19, where the text has been suitably modified]

The upshot of their analysis is that the change of state of the field 
within region O2 being due to the conceptual component of a 
selective operation in region O1 ought not to be regarded as a real, 
physical change. Rather, it just reflects a mere change of knowl-
edge of the experimenter in light of learning that her measure-
ment has elicited a certain outcome. This offers an argument in 
support of the claim that selective operations whose representa-
tion is given in terms of Kraus operators localized in O1 should
count as local operations in AðO1Þ, notwithstanding their seeming 
violation of the locality requirement for local operations, which we
described at the end of Section 3.1.

Admittedly, Clifton and Halvorson's purported interpretation of 
selective operations as being partially unphysical is rather con-
troversial. In fact, as they themselves observed, it rests on an 
alleged solution of the infamous measurement problem according 
to which quantum states are ascribed an epistemic content. 
Nonetheless, they do not offer any further independent argument 
in favor of this position. To be sure, the measurement problem 
could be resolved on the basis of a complete description of the 
interaction between physical systems and measurement apparata, 
which is not currently available in AQFT. Yet, one ought to 
recognize that the present situation is in no way worse than that 
in ordinary quantum mechanics. On the positive side, though, we 
now wish to argue that in the relativistic case there is a more 
advantageous prospect to cope with the threat of superluminal 
signals that is made by selective operations, at least in the context 
of the Reeh–Schlieder theorem.

4.2. Can signals be controlled?

Bell (1975) argued that the quantum non-locality due to the 
violation of Bell's inequality would not infringe on relativity 
theory, in so far as superluminal signals are not controllable. This 
point is further developed by Maudlin (1994). Yet, various authors, 
such as Jones and Clifton (1993), Berkovitz (1998a, 1998b) and

Weinstein (2006), objected that the intended notion of controll-
ability suffers from being vague. In fact, in ordinary quantum 
mechanics the issue whether or not faster-than-light signals, 
associated with the failure of outcome independence in the 
decomposition of Bell-type locality, can be controlled remains 
unsettled. On the contrary, there is a sense in which the kind of 
superluminal signalling predicted by the operational interpreta-
tion of the Reeh–Schlieder theorem is provably uncontrollable. We 
would like to offer two reasons in support of this thesis.

The first reason rests on topological considerations. Recall that, 
in the spirit of cyclicity, the sense in which one can steer the 
vacuum into any desired global state of the field by means of local 
operations is that of an approximation in norm. According to the 
uniform topology, two states ϕ and ϕ0 on the von Neumann
algebra M approximate each other in norm, i.e. Jϕ0 �ϕJ-0, just 
in case they dictate close expectation values for all observables in
M. Yet, this does not mean that such states coincide: they are just 
topologically indistinguishable. Now, suppose that, for the sake of 
superluminal communication, an experimenter sets herself to
change the vacuum state ϕψ0 

into a global state ϕ which looks 
like different from the vacuum within a region O2 spacelike 
separated from the region O1 where the experimenter is operat-
ing, so that ϕjAðO2 Þ aϕψ0 

jAðO2 Þ. To accomplish this task, she can 
certainly choose an appropriate selective local operation TAψ0 

in

AðO1Þ such that JTn

Aψ0
ϕψ0

�ϕJ-0, in agreement with the opera-
tional interpretation of the Reeh–Schlieder theorem. Nevertheless,
once she performed her operation, although she has changed the
state of the field over the region O2, she is not entitled to conclude
that she has effectively obtained the sought-after global state ϕ.
In fact, from a purely topological point of view, she has no means
to determine whether this is the case. Only if she could do so, may
she have full control on her signalling procedure.

The second reason is a refinement of an argument made by
Redhead (1995). As a corollary of the Reeh–Schlieder theorem,
he proved that, for all projections P2AAðO2Þ, there is a projection
P1 in AðO2Þ such that the probability that a local measurement
of P2 yields a positive outcome in the vacuum given that the
measurement of P1 has yielded a positive outcome is close to one,
that is Prψ0

ðP1 ¼ 1jP2 ¼ 1Þ ¼ 1�ϵ for any arbitrarily small real num-
ber ϵ40. However, he also showed that, as a consequence of the
axioms of AQFT, such a conditional probability can never be equal
to 1. If one casts this point in the language of operations, one can see
how superluminal signals, if they are possible at all, cannot really be
controlled. By construction, the conditional probability corresponds
to the value of the operation-conditioned state Tn

P1ψ0
ϕψ0

for P2. Now,
let us assume, for purpose of reductio ad absurdum, that Tn

P1ψ0
ϕψ0

ðP2Þ
is equal to 1. That implies Tn

P1ψ0
ϕψ0

ðI�P2Þ ¼ 0 where the projection
I�P2 belongs to AðO2Þ too. It follows straightforwardly that
〈P1ψ0jðI�P2ÞP1ψ0〉¼ 〈ψ0jPn

1ðI�P2ÞP1ψ0〉¼ 0, and by microcausality
〈ψ0jPn

1P1ðI�P2Þψ0〉¼ 0. One can thus infer that P1ðI�P2Þψ0 must be
equal to zero, and since ψ0 is separating for AðO1Þ3AðO2Þ one has
P1ðI�P2Þ ¼ 0. However, this is in flat contradictionwith the Schlieder
property in AQFT, which establishes that for any two non-null
elements of the mutually commuting local algebras AðO1Þ and
AðO2Þ, respectively, their product cannot be zero. So, one concludes
Tn

P1ψ0
ϕψ0

ðP2Þa1. It means that one cannot control the long distance
correlations present in the vacuum in such a way as to trigger a
positive outcome of a measurement of P2 by performing a measure-
ment of P1. That ought to be contrasted with the non-relativistic case,
where, as Redhead himself pointed out, if one employs the singlet
state instead of the vacuum state, the above conditional probability
can be made equal to one for a suitable choice of projections.

The upshot is that, if an experimenter has no control on the
signals she purports to send, she cannot reliably interfere with her
past, even if such signals could in principle travel faster than light.
Hence, causal paradoxes may not arise. Indeed, as Bell intimated,



uncontrollable superluminal signaling is not really at odds with
the spirit of Einstein's theory of special relativity. For that matter,
this claim is further corroborated by the recognition that in a field
theory, such as special relativity, relativistic causality has a more
natural understanding as a constraint on the speed of propagation
of matter and energy carried by a field, rather than on the
transmission of (non-material) messages. How the condition of
no superluminal propagation of a field can be formulated in local
quantum field theory is the subject of next section.

5. No superluminal propagation of a field

In order to complete our argument that the Reeh–Schlieder 
theorem does not violate relativistic causality, we now need to 
show that it does not entail any superluminal propagation of a 
quantum field. There are two main candidates to express the 
constraint that matter and energy cannot travel faster than light in 
local quantum field theory: the Spectrum Condition and Local 
Primitive Causality. Provably, none of the them is in conflict with 
the Reeh–Schlieder theorem.

Let us begin by evaluating the Spectrum Condition, which 
Butterfield (2007) suggests is a direct expression of relativistic 
causality in AQFT. The rationale for such a claim can be given along 
the following lines. Let us stress that, on the basis of the Stone–
Naimark–Ambrose–Godement theorem, the strongly continuous
unitary implementation TðαÞ≔Uð1; αÞ of the translation group of 
Minkowski spacetime M can be written as

TðαÞ ¼  eiðα0P0 � α1P1 � α2P2 � α3P3 Þ

in terms of the commuting self-adjoint operators Pa, with
2 
a ¼

2 
0; 

1;
2
2; 3.

2 
The Spectrum Condition requires that P0 Z0 and P0 �P1 � 

P2 �P3 Z0, thereby ensuring the positivity of energy in all inertial 
frames. Then, if the generators Pa of TðαÞ are identified with the 
energy–momentum operators of a field, the spectrum of such
operators ought to lie in the forward light cone. It thus seems that 
the energy–momentum flow of the field is bound to propagate 
along non-spacelike trajectories. Yet, one may still raise doubts 
about whether this is necessarily the case. Indeed, Earman and 
Valente (2014) observed that, even if the spectrum condition holds, 
the positivity of energy is not guaranteed at small scales: for 
instance, Epstein et al. (1965) showed that the value of the energy 
density of quantum fields can be negative at some points of 
Minkowski spacetime.7

However that may be, as it is emphasized in the quotation from 
Haag at the beginning of Section 3, the Spectrum Condition is a 
crucial ingredient in the derivation of the Reeh–Schlieder theorem. 
To make this point more explicit, such an assumption implies that, 
whenever a vector ψ in the underlying Hilbert space H is analytic 
for the generator P0 of time translations, and therefore it is a vector
of bounded energy, the vector TðαÞψ has an analytic continuation, 
so that by means of the axiom of weak additivity one can then
show that ψ is cyclic for the local algebra AðOÞ of any arbitrary 
region O. This means that, if one wishes to express the prohibition
of faster-than-light propagation of matter and energy carried by a 
field by means of the spectrum condition, there cannot be any 
possible conflict between the Reeh–Schlieder theorem and relati-
vistic causality, since the former would just be a consequence of 
the latter.

In our view, though, it is the axiom of Local Primitive Causality
that ought to be regarded as the most appropriate expression of
relativistic causality in AQFT. In order to state it explicitly, let DðOÞ
be the domain of dependence of the region O, that is the union of
Dþ ðOÞ and D� ðOÞ, namely the future domain of dependence and
the past domain of dependence of O, respectively: specifically,
Dþ ðOÞ is defined as the region comprising all points p in M such
that every past inextendible causal curve passing through p
intersects O, whereas D� ðOÞ is defined analogously. The axiom
then reads as follows:

Local Primitive Causality: AðOÞ ¼AðDðOÞÞ for any O

It means that all one can measure within a given spacetime
region, namely the observables localized in it, fixes the local 
algebra associated with its causal domain of dependence. To put
it informally, whatever happens in Dþ ðOÞ is determined just by 
what happens in O (likewise, whatever happens in O is deter-
mined by what happens in D� ðOÞ). The above condition trivially 
holds for diamond regions, in that they coincide with their causal
domain of dependence, that is O ¼ DðOÞ. Local Primitive Causality 
is provably satisfied by many models of concrete quantum fields,
such as the Klein–Gordon field and the Dirac field (Dimock, 1982). 
Indeed, it reflects the hyperbolic character of the underlying
equations of motions. As such, this postulate captures the require-
ment of no superluminal propagation of a field, and hence it
assures that matter and energy carried by the field cannot travel 
faster than light. All relevant physical processes must then evolve
in the course of time within light cones.

To enforce this claim, we wish to stress that Local Primitive
Causality entails a condition of Local Quantum Determinism that 
Earman and Valente (2014) formulated as a direct generalization
of the constraint of no faster-than-light propagation for classical 
field theories to relativistic quantum field theory. The idea is that
classical fields obey symmetric, quasi-linear, hyperbolic partial 
differential equations (pdes), whose initial value formulation

has a nice locality property: namely, given a Cauchy surface Σ of 
Minkowski spacetime, the initial data on any subset S � Σ

uniquely determines a solution of the relevant pdes over the
domain of dependence DðSÞ of S. That guarantees no superluminal 
propagation of a classical field defined on the manifold M (see
Geroch, 2011 for a detailed discussion). The quantum analog of
such a locality property in the context of AQFT is given by

Local Quantum Determinism: For any O�M and any pair of
states ϕ and ϕ0 on the quasi-local algebra A¼ fAðOÞjO�Mg, if
ϕjAðOÞ ¼ ϕ0jAðOÞ then ϕjAðDðOÞÞ ¼ ϕ0jAðDðOÞÞ

In fact, this condition requires that, whenever two states coincide
over the local algebra associated with a given region, in the sense
that they assign the same value to any observable localized in it,
then they cannot differ with respect to any observable belonging
to the local algebra associated with its causal domain of depen-
dence. In other words, any state of the field over the region O
uniquely determines its extension over DðOÞ. Accordingly, once
the state of the field over a region O2 is fixed, nothing that an
experimenter can do in the spacelike separated region O1 outside
DðO2Þ would have any instantaneous detectable effect within O2
(or even within its entire causal domain of dependence). It follows 
straightforwardly from the above definition that Local Primitive 
Causality is sufficient for Local Quantum Determinism to hold, and 
hence for no superluminal propagation of a relativistic quantum 
field to be satisfied.

In order to ensure that the Reeh–Schlieder theorem is fully con-
sistent with relativistic causality, we wish to note that Local Primitive 
Causality is completely independent from the other main axioms 
of AQFT, as it has been demonstrated by Haag and Schroer (1962).

7 Incidentally, this would also prevent one from finding direct quantum 
analogs of the Dominant Energy Condition, formulated as a constraint that the flow 
of energy and matter cannot travel faster than light. See Earman (2014) for an 
argument that such a condition is not necessary for no superluminal propagation of 
a field.



In particular, it can hold together with those postulates from 
which the theorem and its alleged non-local effects are derived,
namely relativistic covariance, the spectrum condition, weak 
additivity and microcausality. Therefore, in the last analysis, we
conclude that the Reeh–Schlieder theorem does not violate rela-
tivistic causality at all.
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