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Abstract 

Radical desorption from polymer particles is a kinetic event peculiar of the emulsion 

polymerization process. A careful modeling of this phenomenon is highly valuable in order to 

achieve accurate predictions of polymerization rate and average properties of molecular 

weight. In this work, radical desorption is described accounting for an aspect fully neglected 

in previous modeling literature. Specifically, particle state dependent desorption coefficients 

are used instead of a single average coefficient and the corresponding rate expressions are 

developed and applied to the solution of the well-known Smith-Ewart equations. Parametric 

model simulations show that the higher level of detail introduced in the description of radical 

desorption improves the accuracy of the predicted values of the average number of radicals 

per particle, especially in the cases of high desorption rate and slow reactions in the aqueous 

phase. 
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1. Introduction 

Due to the major role which radical desorption from polymer particles may play in 

determining the reaction rate in emulsion polymerization, several models have been 

developed for the description of this process step.1 Two main types of modeling approaches 

have been proposed so far: fully deterministic and based on Brownian dynamics.2 Even 

though the latter models have proven to be more general, we focus here on the former type of 

models. As a matter of fact, such models have been widely applied to emulsion 

polymerization, are well assessed and involve parameters with readily understandable 

physical meaning. Most of the deterministic models assume that the desorbing species is a 

one-unit radical originated by chain transfer reaction to a monomer molecule or to some other 

small molecule (e.g., chain transfer agent). In order to overcome the limitations of the model 

proposed by Nomura,3 which neglects aqueous phase reactions and assumes the system to be 

strictly zero-one, a more general model has been developed by Asua et al.4. This probabilistic 

model is able to explain experimental results which Nomura's model could not. Claiming that 

Asua's model did not properly distinguish between entry given by reabsorption of previously 

desorbed monomeric radicals (re-entry) and that of initiator-derived or thermally-generated 

radicals, Casey et al.5 developed a kinetic model which leads to equations for the average 

number of radicals per particle 𝑛𝑛� and for the rate of re-entry 𝜌𝜌𝑟𝑟𝑟𝑟 in terms of rate coefficients 

of the elementary processes of the reaction and of measurable concentrations. With respect to 

Asua's results, however, the equations derived suffer stronger limitations: the system is 

considered to be zero-one and propagation of desorbed monomeric radicals in the aqueous 

phase is neglected. Later on, Barandiaran and Asua6 devoted a full paper to demonstrate the 

complete equivalence of a kinetic approach such as that by Casey et al.5 and the probabilistic 

approach by Asua et al.4. 



 4 

All of the works mentioned above deal with radical desorption from polymer particles by 

considering a single, average value of the desorption coefficient, which is independent of the 

particle state (i.e., of the number of contained radicals). A more recent paper by Asua7 

describes desorption as dependent from particle state; however the overall rate of radical exit 

is then obtained by summing over all particle states and only a single coefficient for net 

desorption is then calculated from this rate, not providing in this sense a real distinction from 

previous models. By “net desorption”, as referred to in this publication, it is meant desorption 

minus reabsorption of monomeric radicals.  An even more recent work by the same author 

and coworkers8 develops a model where desorption and reabsorption are considered 

separately and modeled as functions of particle state. However, the implications of such an 

approach in comparison to previous ones are not discussed. Interestingly, this paper 

recognizes that for the calculation of the distribution of particles with n radicals by population 

balance equations it is more convenient to consider desorption and reabsorption separately, 

rather than combined into net desorption. 

In the present work, the relevancy of correctly describing desorption by particle state 

dependent parameters is discussed, and important considerations are made on the desorption 

terms which appear in the classical Smith-Ewart equations. This is done starting from the 

definition given by Asua et al.4 of the rate of desorption 𝑅𝑅𝑑𝑑𝑑𝑑 from particles containing a 

given number of radicals. Namely, two equivalent models aimed to express particle state 

dependent desorption coefficients are proposed. Such expressions are then used in the Smith-

Ewart equations: it is shown that the use of a single, average value of the desorption 

coefficient may lead to significant errors in the prediction of the average number of radicals 

per particle, especially when the probability of reaction of desorbed monomeric radicals in 

the aqueous phase is negligible with respect to that of their re-entry into polymer particles. In 

this case, the use of particle state dependent desorption coefficients is required, and an 
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effective, simplified expression for the evaluation of these parameters is derived in this work. 

Finally, the full equivalence between the kinetic model by Casey et al.5 and the probabilistic 

approach by Asua et al.4 is further confirmed in a simple as well as general way. 

 

2. Desorption from Particles in a Given State 

In the probabilistic approach developed by Asua et al.4, the rate of desorption from 

particles in a given state n, 𝑅𝑅𝑑𝑑𝑑𝑑, is calculated as the rate of production of monomeric radicals 

in particles already containing n radicals times the probability that the resulting radicals 

desorb from such particles. The rate of production of monomeric radicals in particles 

containing n radicals is in turn given by the concentration of the same particles, 𝑁𝑁𝑛𝑛, times the 

frequency of any reaction causing a monomeric radical to appear in these particles, namely, 

chain transfer to a small molecule or re-entry of a previously desorbed radical. Accordingly, 

the following equation can be written:4 

 

𝑅𝑅𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛𝑁𝑁𝑛𝑛𝑃𝑃𝑛𝑛 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁𝑛𝑛𝑃𝑃𝑛𝑛+1 (1) 

 

where 𝑘𝑘𝑓𝑓𝑓𝑓 is the rate constant of the chain transfer to monomer reaction, 𝐶𝐶𝑚𝑚 is the monomer 

concentration in the particles, 𝜌𝜌𝑟𝑟𝑟𝑟 is the frequency of reabsorption of exited monomeric 

radicals into the particles, and 𝑃𝑃𝑛𝑛 is the probability of desorption (instead of propagation or 

termination) of a monomeric radical from a particle containing n radicals. The latter two 

parameters are defined as in Equations 2 and 3, respectively: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑛𝑛�(1 − 𝛽𝛽) (2) 
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𝑃𝑃𝑛𝑛 =
𝑘𝑘𝑑𝑑𝑑𝑑

𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑝𝑝1𝐶𝐶𝑚𝑚 + 2𝑐𝑐1(𝑛𝑛 − 1) (3) 

 

In Equation 2, 𝑘𝑘 is the average desorption frequency, 𝑛𝑛� is the average number of radicals per 

particle, the product 𝑘𝑘𝑛𝑛� gives the average frequency of desorption and β is the probability for 

a desorbed monomeric radical of undergoing a reaction in the aqueous phase. Such 

probability is given by: 

 

𝛽𝛽 =
𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎[𝑇𝑇 ∙] + 𝑘𝑘𝑝𝑝,𝑎𝑎𝑎𝑎

1 [𝑀𝑀]𝑎𝑎𝑎𝑎

𝑘𝑘𝑟𝑟𝑟𝑟
𝑁𝑁𝑇𝑇
𝑁𝑁𝐴𝐴

+ 𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎[𝑇𝑇 ∙] + 𝑘𝑘𝑝𝑝,𝑎𝑎𝑎𝑎
1 [𝑀𝑀]𝑎𝑎𝑎𝑎

 (4) 

 

where 𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎 and 𝑘𝑘𝑝𝑝,𝑎𝑎𝑎𝑎
1  are the bimolecular termination and propagation rate constants for a 

monomeric radical in the aqueous phase, [𝑇𝑇 ∙] and [𝑀𝑀]𝑎𝑎𝑎𝑎 are the concentrations of radicals 

and of monomer in the same phase, 𝑘𝑘𝑟𝑟𝑟𝑟 is the rate constant for re-entry of monomeric radicals 

into polymer particles, and 𝑁𝑁𝐴𝐴 is Avogadro's constant. Constant 𝑘𝑘𝑟𝑟𝑟𝑟 is related to the 

frequency of re-entry by: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟[𝑀𝑀 ∙]𝑎𝑎𝑎𝑎 (5) 

 

where [𝑀𝑀 ∙]𝑎𝑎𝑎𝑎 is the concentration of the monomeric free radicals in the aqueous phase. In 

Equation 3, 𝑘𝑘𝑑𝑑𝑑𝑑 and 𝑘𝑘𝑝𝑝1 are the rate of diffusion out of a particle and the propagation rate 

coefficient for a monomeric radical, respectively, and 𝑐𝑐1 is the pseudo-first order rate 

coefficient for bimolecular termination of the monomeric radical in the polymer particle: 
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𝑐𝑐1 =
𝑘𝑘𝑡𝑡1

2𝑁𝑁𝐴𝐴𝑉𝑉𝑃𝑃
 (6) 

 

where 𝑉𝑉𝑃𝑃 is the volume of the swollen polymer particle, and 𝑘𝑘𝑡𝑡1 is the bimolecular 

termination rate constant for the low molecular weight, rapidly-diffusing monomeric radical 

(usually greater than that calculated as an average from the overall termination rate in a bulk, 

𝑘𝑘𝑡𝑡[𝑅𝑅 ∙]2, where 𝑅𝑅 ∙ is the total radical concentration). 

Equations 2 to 5 above refer to radicals of monomeric length. Looking in particular at 

Equation 4, it must be pointed out that propagation of such a radical leads of course to its 

disappearance but to the appearance of a longer active species, which will be easily absorbed 

by polymer particles and further propagate in the particle phase. Such irreversible re-entry 

𝜌𝜌𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖𝑖𝑖 has rigorously to be taken into account in the calculation of the global entry 

coefficient. 

Note that the probability 𝑃𝑃𝑛𝑛+1 appears in the last term of Equation 1, since re-entry of a 

monomeric radical into a particle in state n causes the particle to pass on to state n+1. Re-

desorption of such a radical would get the particle back to state n. It is therefore clear that, 

given this definition of 𝑅𝑅𝑑𝑑𝑑𝑑, the rate of desorption from particles in state n does not coincide 

with the rate of disappearance of particles in state n due to the same process. 

If the rate of desorption from particles in state n is instead calculated as the rate of 

production of monomeric radicals in particles in the same state (after the appearance of the 

desorbing species) times the probability for the monomeric radical to actually desorb, 

Equation 1 has to be slightly modified: 

 

𝑅𝑅′𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛𝑁𝑁𝑛𝑛𝑃𝑃𝑛𝑛 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁𝑛𝑛−1𝑃𝑃𝑛𝑛 (7) 
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With this new definition, the rate of desorption from state n particles is actually equal to the 

rate of disappearance of particles in state n as a consequence of desorption. This is of course 

also equal to the rate of production of particles in state n-1 from particles in state n. 

The two definitions of 𝑅𝑅𝑑𝑑𝑑𝑑 and 𝑅𝑅′𝑑𝑑𝑑𝑑 lead to the same overall rate of desorption as 

summation upon all particle states: 

 

𝑘𝑘𝑛𝑛�𝑁𝑁𝑇𝑇 = �𝑅𝑅𝑑𝑑𝑑𝑑

∞

𝑛𝑛=0

= �𝑅𝑅′𝑑𝑑𝑑𝑑

∞

𝑛𝑛=1

 (8) 

 

where k is the average desorption frequency mentioned above (Equation 2). However, the 

definition of 𝑅𝑅′𝑑𝑑𝑑𝑑 is more convenient because its expression can be compared to the 

desorption terms 𝑘𝑘𝑘𝑘𝑁𝑁𝑛𝑛 and 𝑘𝑘(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+1 in the Smith-Ewart equations as ordinarily written: 

 

𝑑𝑑𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑁𝑁𝑛𝑛−1 − [𝜌𝜌 + 𝑘𝑘𝑘𝑘 + 𝑐𝑐𝑐𝑐(𝑛𝑛 − 1)]𝑁𝑁𝑛𝑛 + 𝑘𝑘(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+1

+ 𝑐𝑐(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+2 

(9) 

 

with: 

 

𝑐𝑐 =
𝑘𝑘𝑡𝑡

2𝑁𝑁𝐴𝐴𝑉𝑉𝑃𝑃
 (10) 

 

In Equation 9, k is the average desorption frequency, and ρ is the overall frequency of entry 

of initiator-derived, thermally-generated and previously desorbed monomeric radicals: 

 

𝜌𝜌 = 𝜌𝜌𝐼𝐼 + 𝜌𝜌𝑡𝑡ℎ + 𝜌𝜌𝑟𝑟𝑟𝑟 (11) 
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As discussed above, a term 𝜌𝜌𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖𝑖𝑖 (stemming from radicals desorbed and propagated in the 

aqueous phase) should be added in the calculation of the overall frequency of entry. However 

in this paper the contribution of all terms of ρ except for 𝜌𝜌𝑟𝑟𝑟𝑟 is parameterized and such rigor 

would not change the conclusions of the work. 

 

2.1 Particle State Dependent Desorption Coefficients: Model 1. The term −𝑘𝑘𝑘𝑘𝑁𝑁𝑛𝑛 in the 

Smith-Ewart equations (Equation 9) represents the rate of consumption of particles in state n 

due to desorption, which corresponds to a production rate of particles in state n-1. As already 

mentioned, this term can be expressed through the rate of desorption from particles in state n, 

𝑅𝑅′𝑑𝑑𝑑𝑑, defined by Equation 7. While it is generally assumed in the term −𝑘𝑘𝑘𝑘𝑁𝑁𝑛𝑛 that the 

desorption coefficient is independent of particle state and it is assigned an average value, this 

is not true a priori.  Accordingly, a particle state dependent desorption frequency parameter 

𝑘𝑘𝑛𝑛 has to be considered and its expression is obtained by imposing the following equality: 

 

𝑘𝑘𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛 = 𝑅𝑅′𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛𝑁𝑁𝑛𝑛𝑃𝑃𝑛𝑛 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁𝑛𝑛−1𝑃𝑃𝑛𝑛 (12) 

 

Combining Equations 12 and 2 one obtains: 

 

𝑘𝑘𝑛𝑛 =
𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛𝑁𝑁𝑛𝑛𝑃𝑃𝑛𝑛 + 𝑘𝑘𝑛𝑛�(1 − 𝛽𝛽)𝑁𝑁𝑛𝑛−1𝑃𝑃𝑛𝑛

𝑛𝑛𝑁𝑁𝑛𝑛
 (13) 

 

An expression of the average value k in terms of particle distributions 𝑁𝑁𝑛𝑛 and desorption 

probabilities 𝑃𝑃𝑛𝑛 can be obtained from Equation 8 taking advantage of 𝑅𝑅′𝑑𝑑𝑑𝑑 as given by 

Equation 7 and expressing 𝜌𝜌𝑟𝑟𝑟𝑟 through Equation 2: 
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𝑘𝑘 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚
∑ 𝑛𝑛𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛

𝑁𝑁𝑇𝑇
∞
𝑛𝑛=1

𝑛𝑛� �1 − (1 − 𝛽𝛽)∑ 𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑇𝑇

∞
𝑛𝑛=1 �

 (14) 

 

This is exactly the expression previously derived by Asua et al.4. Now, if one substitutes 

Equation 14 for k in Equation 13, the following expression for 𝑘𝑘𝑛𝑛 is finally obtained: 

 

𝑘𝑘𝑛𝑛 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃𝑛𝑛 �1 + (1 − 𝛽𝛽)
𝑁𝑁𝑛𝑛−1
𝑛𝑛𝑁𝑁𝑛𝑛

∙
∑ 𝑛𝑛𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛

𝑁𝑁𝑇𝑇
∞
𝑛𝑛=1

1 − (1 − 𝛽𝛽)∑ 𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑇𝑇

∞
𝑛𝑛=1

� (15) 

 

which,  in general, is a function of the particle state n. Notably, the relationship between the 

average desorption coefficient k and the corresponding particle state dependent 𝑘𝑘𝑛𝑛 is readily 

worked out through Equations 8 and 12 as follows: 

 

𝑘𝑘 =
∑ 𝑘𝑘𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛∞
𝑛𝑛=1

𝑛𝑛�𝑁𝑁𝑇𝑇
 (16) 

 

The Smith-Ewart equations are rigorously written introducing the particle state dependent 

desorption frequencies given by Equation 15: 

 

𝑑𝑑𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑁𝑁𝑛𝑛−1 − [𝜌𝜌 + 𝑘𝑘𝑛𝑛𝑛𝑛 + 𝑐𝑐𝑐𝑐(𝑛𝑛 − 1)]𝑁𝑁𝑛𝑛 + 𝑘𝑘𝑛𝑛+1(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+1

+ 𝑐𝑐(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+2 

(17) 
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Equations 15 and 17, along with Equations 2, 3, 11 and 16, constitute a system of 3n+3 

equations, which can be readily solved iteratively. 

For the sake of clarity, it has to be pointed out that the desorption coefficients k and 𝑘𝑘𝑛𝑛 

above are by no means elemental rate coefficients but lumped parameters resulting from the 

combination of a number of processes. These parameters allow to express the desorption 

process in terms of frequencies of radical exit from polymer particles. k and 𝑘𝑘𝑛𝑛 are in fact 

frequencies (per radical and per particle, dimension s-1) at which a monomeric radical appears 

to exit the particle phase, such that the products 𝑘𝑘𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛 and 𝑘𝑘𝑛𝑛�𝑁𝑁𝑇𝑇 express a total rate of 

desorption (from state-n particles and from all particles, respectively) to the water phase. 

 

2.2 Particle State Dependent Desorption Coefficients: Model 2. The Smith-Ewart 

equations worked out considering particle state dependent desorption coefficients (Equation 

17) in combination with the definition of entry and desorption given by Equations 11 and 7, 

respectively, imply the following assumptions: 

- an entry event takes place whenever a radical of any type enters a particle, independent of 

its fate within the particle; 

- a desorption event occurs whenever a (monomeric) radical exits a particle, independent of 

its origin (chain transfer in the same particle or re-entry from the aqueous phase). This feature 

is consistent with the definitions of entry and exit (or desorption) variously adopted in 

previous literature including Asua et al.4 and Casey et al.5. 

Now, considering Equation 12 and substituting it in Equation 17, the latter can be re-

written as follows: 

 

𝑑𝑑𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= (𝜌𝜌 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑃𝑃𝑛𝑛)𝑁𝑁𝑛𝑛−1 − �𝜌𝜌 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑃𝑃𝑛𝑛+1 + 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛𝑃𝑃𝑛𝑛 + 𝑐𝑐𝑐𝑐(𝑛𝑛 − 1)�𝑁𝑁𝑛𝑛

+ 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚(𝑛𝑛 + 1)𝑃𝑃𝑛𝑛+1𝑁𝑁𝑛𝑛+1 + 𝑐𝑐(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+2 

(18) 
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Defining the two new quantities: 

 

𝜌𝜌𝑛𝑛′ = 𝜌𝜌 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑃𝑃𝑛𝑛+1 =  𝜌𝜌𝐼𝐼 + 𝜌𝜌𝑡𝑡ℎ + 𝜌𝜌𝑟𝑟𝑟𝑟(1 − 𝑃𝑃𝑛𝑛+1) (19) 

 

𝑘𝑘𝑛𝑛′ = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃𝑛𝑛 (20) 

 

the Smith-Ewart equations can be written in the following form, which is alternative to 

Equation 17: 

 

𝑑𝑑𝑁𝑁𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑛𝑛−1′ 𝑁𝑁𝑛𝑛−1 − [𝜌𝜌𝑛𝑛′ + 𝑘𝑘𝑛𝑛′ 𝑛𝑛 + 𝑐𝑐𝑐𝑐(𝑛𝑛 − 1)]𝑁𝑁𝑛𝑛 + 𝑘𝑘𝑛𝑛+1′ (𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+1

+ 𝑐𝑐(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑁𝑁𝑛𝑛+2 

(21) 

 

Once more, particle state dependent coefficients are involved. The particle state dependent 

entry coefficient defined by Equation 19 states that a radical has “effectively” entered a 

particle only when its fate is different from re-desorption. If a previously desorbed radical re-

enters a state-n particle (which is turned into a state-n+1 particle) and then desorbs again 

(therefore with probability 𝑃𝑃𝑛𝑛+1), this event is considered as “neutral” (i.e., the particle state 

is not considered to be changed). This conceptual model for entry is reasonable, since a 

radical entering from the aqueous phase (homogeneous phase) and exiting again to the same 

phase without undergoing any other reactions leaves the particle and the whole 

polymerization system unchanged. Accordingly, since this entry-exit event of a monomeric 

radical is neglected as a whole, it does not have to be accounted for when calculating the 

desorption rate. Consistently, the newly defined particle state dependent desorption 

coefficients (Equation 20) account uniquely for exit of radicals originated by chain transfer to 
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monomer, thus at their first desorption event (desorption of “newborn” monomeric radicals). 

Subsequent re-entry and re-desorption is then computed as “ineffective re-entry”. 

In general, coefficients 𝜌𝜌𝑛𝑛′  and 𝑘𝑘𝑛𝑛′  are a function of n through 𝑃𝑃𝑛𝑛 (i.e., the probability of a 

radical of re-exiting a particle after re-entry or of desorbing after chain transfer depends on 

how many radicals are in the same particle). Particularly, 𝜌𝜌𝑛𝑛′  are functions of 𝜌𝜌𝑟𝑟𝑟𝑟, whose 

evaluation requires the knowledge of k, as shown in Equation 2, and therefore of 𝑘𝑘𝑛𝑛, 

according to Equation 16. 

In order to estimate the parameters of Model 2, the following correlation between 𝜌𝜌𝑟𝑟𝑟𝑟 and 

the “effective” average desorption coefficient 𝑘𝑘′ has been determined: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 =
𝑘𝑘′𝑛𝑛� (1 − 𝛽𝛽)

1 − (1 − 𝛽𝛽)∑ 𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑇𝑇

∞
𝑛𝑛=1

 (22) 

 

with: 

 

𝑘𝑘′ =
∑ 𝑘𝑘𝑛𝑛′ 𝑛𝑛𝑁𝑁𝑛𝑛∞
𝑛𝑛=1

𝑛𝑛�𝑁𝑁𝑇𝑇
 

(23) 

 

 

The product 𝑘𝑘′𝑛𝑛�𝑁𝑁𝑇𝑇 represents the overall rate of desorption of “newborn” monomeric 

radicals (radicals generated by chain transfer to monomer at their first desorption event) from 

the particle phase to the water phase. 

Details about the mathematical derivation of Equation 22 are given in the Appendix. 

Equations 19, 20 and 21, along with Equations 22, 3, 11 and 23, constitute a system of 4n+3 

equations, which, again, can be solved iteratively. 
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2.3 Equivalence of the two Models. Although desorption and entry parameters are defined 

and evaluated in different ways, the same predictions of particle state distribution  𝑁𝑁𝑛𝑛 have to 

be provided by the two models presented above: this equivalence is numerically checked in 

this subsection. Namely, both the models have been run using the parameter values reported 

in Table 1 while assuming constant input values of 𝛽𝛽 (= 0.1) and 𝑐𝑐 = 𝑐𝑐1 (= 20 𝑠𝑠−1) as well 

as of the overall entry contributions from initiator-derived and thermally-generated radicals 

(𝜌𝜌𝐴𝐴 = 𝜌𝜌𝐼𝐼 + 𝜌𝜌𝑡𝑡ℎ = 0.01 𝑠𝑠−1). The model results are compared in Table 2. 

 

TABLE 1 

 

TABLE 2 

 

The equivalence between the two models is apparent. In the same table, the difference 

between 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑛𝑛′  values at corresponding n is also reported: not only the portion of re-

desorbing radicals (𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑛𝑛′ ) is notable with respect to that of the “newborn” desorbing ones, 

but this fraction increases with n (i.e., the 𝑘𝑘𝑛𝑛 values increase while the 𝑘𝑘𝑛𝑛′  values change very 

slightly as n increases). The mathematical relationship between desorption coefficients 𝑘𝑘𝑛𝑛 

and 𝑘𝑘𝑛𝑛′  and their averages k and 𝑘𝑘′ is reported in the Appendix. As expected, the two models 

predict also an identical value of the overall re-entry frequency (𝜌𝜌𝑟𝑟𝑟𝑟 = 3.86 10-2 s-1). 

The complete equivalence of the two models is thus fully confirmed. Therefore, the 

selection of one specific model can be made based on convenience of use. Although Model 2 

involves a larger number of equations (4n+3, versus 3n+3 for Model 1), only 2n+3 equations 

need to be solved inside the iterative loop for both models. Therefore, Model 1 and Model 2 

are fully equivalent also from the point of view of computational complexity. On the other 

hand, Model 1 provides an average desorption coefficient (Equation 16) directly comparable 
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to that of the particle state independent parameter conventionally considered in the Smith-

Ewart equations. Accordingly, this model has been selected to develop a model comparison 

aimed at clarifying the role of particle state dependent desorption coefficients. This 

comparison is reported in the section 3. 

 

2.4 Meaning of the desorption parameters. Considering the behavior of the desorption 

coefficients 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑛𝑛′  in Table 2, the fact that the dependency of 𝑘𝑘𝑛𝑛′  on particle state is weak 

while that of 𝑘𝑘𝑛𝑛 is strong can be explained by their definition. 𝑘𝑘𝑛𝑛′  expresses a desorption 

frequency (per radical) as a result of a chain transfer to monomer event followed by exit (with 

a certain probability 𝑃𝑃𝑛𝑛), see Equation 20. It has been previously shown4 that probability 𝑃𝑃𝑛𝑛 is 

most often weakly dependent upon particle state: therefore, 𝑘𝑘𝑛𝑛′  is also a weak function of the 

particle state. 𝑘𝑘𝑛𝑛, instead, includes the contribution of redesorption. This contribution 

becomes increasingly important, compared to the desorption of “newborn” radicals, at 

increasing particle states. This is because particles in state n containing a monomeric radical 

which can re-desorb originate, via reabsorption, from particles in state n-1. These are 

normally much more numerous than particles in state n in systems with a low average 

number of radicals per particle. This is increasingly true at increasing n and is represented by 

the ratio 𝑁𝑁𝑛𝑛−1 𝑛𝑛𝑁𝑁𝑛𝑛⁄  increasing strongly with n, which implies the coefficient 𝑘𝑘𝑛𝑛 to 

correspondingly increase at constant (or quasi-constant) 𝑘𝑘𝑛𝑛′  (cf. the relationship between these 

two parameters, equation B of the Appendix). 

For the sake of clarity, it has to be pointed out that all the desorption coefficients in this 

work (k, 𝑘𝑘𝑛𝑛, 𝑘𝑘′ and 𝑘𝑘𝑛𝑛′ ) are associated to desorption of radicals from the particle phase to the 

water phase, i.e. to a flow of radicals out of the particles 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜. In this sense, their meaning is 

analogous to e.g. the parameter 𝑘𝑘𝑑𝑑 employed by Asua et al.4. Reabsorption represents a flow 

of radicals 𝑅𝑅𝑖𝑖𝑖𝑖 in the opposite direction (from the water phase to the particles). Net 
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desorption, as e.g. employed by Asua,7 is obtained by subtracting reabsorption from 

desorption: 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑖𝑖𝑖𝑖. By expressing desorption and reabsorption through the 

desorption and re-entry coefficients, one obtains: 

 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑘𝑘𝑛𝑛�𝑁𝑁𝑇𝑇 −  𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁𝑇𝑇 = 𝑘𝑘𝑛𝑛�𝑁𝑁𝑇𝑇 − 𝑘𝑘𝑛𝑛�(1 − 𝛽𝛽)𝑁𝑁𝑇𝑇 = 𝛽𝛽𝛽𝛽𝑛𝑛�𝑁𝑁𝑇𝑇 (24) 

 

If net desorption is expressed through a desorption coefficient 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 such that: 

 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑁𝑁𝑇𝑇 (25) 

 

it is then apparent that: 

 

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛽𝛽𝛽𝛽 (26) 

 

Note that 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 has an equivalent meaning as e.g. the parameter 𝑘𝑘𝑑𝑑 employed by Asua7. The 

physical limits of 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 are correct: for 𝛽𝛽 = 1 (no re-entry), 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘, i.e. net desorption 

corresponds to desorption; for 𝛽𝛽 = 0 (all desorbed radicals re-enter),  𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 0, i.e. net 

desorption is zero. 

This clarification about desorption and net desorption has been felt necessary due to some 

confusion existing in the previous literature related to the two parameters here referred to as 𝑘𝑘 

and 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛. For example, Asua7 criticizes the equation for the calculation of 𝑘𝑘𝑑𝑑 employed by 

Asua et al.4 (equation 16 of that paper) as erroneous and with inconsistent limits in the cases 

of 𝛽𝛽 = 0 and 𝛽𝛽 = 1. The new (approximate) expression derived by the same Author is 

identical except for a coefficient 𝛽𝛽 (cf. equation I-7 of this paper7). Actually, both equations 

are correct, once the correct physical meaning is assigned to the two coefficients, the first one 
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associated to an overall desorption and the second one to a net desorption flow. Also, in the 

extensive review on desorption by Hernandez and Tauer1, Table I reports all desorption 

coefficients previously derived in the relevant literature, without however appropriately 

distinguishing between desorption and net desorption. 

 

3. Assessment of the Proposed Model 

In order to study the impact on model predictions of particle state dependent desorption 

coefficients, the relative error between the average number of radicals per particle calculated 

considering (𝑛𝑛�𝐶𝐶) or neglecting (𝑛𝑛�𝑁𝑁) this dependence can be defined as follows: 

 

𝜀𝜀 = 100 ∙
𝑛𝑛�𝐶𝐶 − 𝑛𝑛�𝑁𝑁
𝑛𝑛�𝐶𝐶

 (27) 

 

where 𝑛𝑛�𝐶𝐶  is calculated through Equations 15 and 17, thus considering particle state dependent 

desorption frequencies 𝑘𝑘𝑛𝑛, and 𝑛𝑛�𝑁𝑁 is calculated through Equations 9 and 14, thus assuming a 

single, average value of k for all of the particle states (prior-art approach). 

In Figure 1, the relative error ε is reported as a function of 𝑛𝑛�𝐶𝐶  (varied by modifying the 

entry parameter 𝜌𝜌𝐴𝐴 previously defined) at different values of the parameter β. 

 

FIGURE 1 

 

Once more the parameter values in Table 1 have been used, while the bimolecular 

termination frequency c has been set again equal to 20 s-1. Frequency 𝜌𝜌𝑟𝑟𝑟𝑟 has been calculated 

through Equation 2 and the bimolecular termination frequency 𝑐𝑐1 has been assumed equal to 

c. Note that β = 0 and β = 1 correspond to the two limits of complete re-entry and no re-entry, 
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respectively. Even though β is a function of 𝑛𝑛� through the radical concentration in the 

aqueous phase, [𝑇𝑇 ∙], constant β values have been used for simplicity. With respect to this 

assumption, it is worth noting that smaller values of 𝜌𝜌𝐴𝐴, corresponding to smaller values of 

𝑛𝑛�𝐶𝐶  in Figure 1, imply a lower concentration of radicals [𝑇𝑇 ∙] in water phase, thus lower β 

values. This means that, at decreasing 𝑛𝑛�𝐶𝐶  values in the figure, the trajectory describing the 

evolution of a real polymerization would actually cross the curves at constant β moving from 

higher to lower β values. 

Figure 1 shows that the error in the prediction of 𝑛𝑛� increases at decreasing β values, 

achieving maximum values in the limit of complete re-entry. Approaching this limit, 

significant values of the error are obtained (up to 180%) in a wide region of 𝑛𝑛� values lower 

than 0.5. Accordingly, in these conditions a model accounting for particle state dependent 

desorption coefficients is necessary for an accurate kinetic description of the system. In the 

opposite limit of β = 1, the predicted relative error ε is virtually zero at all 𝑛𝑛� values. This 

feature can be readily understood by considering the expression of 𝑘𝑘𝑛𝑛 (Equation 15) for β = 

1: 

 

𝑘𝑘𝑛𝑛
(𝛽𝛽=1) = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃𝑛𝑛 (28) 

 

Equation 28 states that, in absence of re-entry, the frequency (per active chain) of desorption 

from a state n particle is simply given by the frequency of chain transfer (per active chain) 

times the desorption probability of the resulting monomeric radical. Since, as shown by Asua 

et al.4, probability 𝑃𝑃𝑛𝑛 decreases slowly at increasing n values (at least when the particle 

volume 𝑉𝑉𝑃𝑃 is not too small), if the maximum particle state 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 is low enough (i.e., 𝑛𝑛� is not 

too high), 𝑃𝑃𝑛𝑛 can be considered independent of particle state and equal to 𝑃𝑃1. Thus: 
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𝑘𝑘𝑛𝑛
(𝛽𝛽=1) ≅ 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1                 ∀𝑛𝑛 ≥ 1 (29) 

 

Namely, desorption coefficients 𝑘𝑘𝑛𝑛 become approximately particle state independent and 

equal to the average desorption coefficient k in the limit β = 1, thus resulting in a negligible 

error. 

At high 𝑛𝑛� values the error tends to disappear for all β values. This is also expected because 

in this limit 𝑛𝑛� becomes independent of desorption9 (at least for values of the ratio 𝑚𝑚 =

𝑘𝑘 𝑐𝑐 ≤ 1⁄ ) and dependent only upon the ratio between the entry frequency 𝜌𝜌𝐴𝐴 and the 

bimolecular termination frequency c. Accordingly, 𝑛𝑛� values are not sensitive to inaccuracies 

in the evaluation of the desorption frequency. 

The fact that the probabilities 𝑃𝑃𝑛𝑛 are approximately constant at low enough 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 values 

(low 𝑛𝑛�) and that 𝑛𝑛� is not sensitive at high values to inaccuracies in the desorption frequency 

evaluation, can suggest a simplified general expression for the desorption coefficients. This is 

obtained from Equation 15 by assuming 𝑃𝑃𝑛𝑛 ≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃1, ∀𝑛𝑛 ≥ 1: 

 

𝑘𝑘𝑛𝑛 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1 �1 +
(1 − 𝛽𝛽)𝑃𝑃1

1 − (1 − 𝛽𝛽)𝑃𝑃1
∙
𝑛𝑛�𝑁𝑁𝑛𝑛−1
𝑛𝑛𝑁𝑁𝑛𝑛

∙� (30) 

 

It is readily verified that Equation 30 satisfies the condition imposed by Equation 16. In fact, 

averaging the 𝑘𝑘𝑛𝑛 coefficients given by Equation 30 in agreement with Equation 16, one 

obtains: 

 

𝑘𝑘 =
𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1

1 − (1 − 𝛽𝛽)𝑃𝑃1
 (31) 
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which is the average desorption frequency given by Equation 14 when 𝑃𝑃𝑛𝑛 = 𝑃𝑃1, ∀𝑛𝑛 ≥ 1 is 

assumed. 

The accuracy of the approximation implied in Equation 30 can be verified by studying the 

error introduced in the calculation of the average number of radicals per particle, 𝑛𝑛�. To this 

purpose, the relative error 𝜀𝜀𝐴𝐴 is defined: 

 

𝜀𝜀𝐴𝐴 = 100 ∙
|𝑛𝑛�𝐶𝐶 − 𝑛𝑛�𝐴𝐴|

𝑛𝑛�𝐴𝐴
 (32) 

 

where 𝑛𝑛�𝐴𝐴 and 𝑛𝑛�𝐶𝐶  are calculated through the approximated (Equation 30) and complete 

(Equation 15) expressions, respectively, as before coupled to the Smith-Ewart equations 

(Equation 17). In Figure 2, error 𝜀𝜀𝐴𝐴 is plotted versus 𝑛𝑛�𝐶𝐶  for several β values; all model 

parameter values are the same adopted for Figure 1 and reported in Table 1. 

 

FIGURE 2 

 

The error is seen to be negligible at all 𝑛𝑛�𝐶𝐶  values, and the effectiveness of the approximate 

expression (Equation 30) is confirmed. 

Turning back to the analysis of Figure 1, it can be seen that the error ε approaches zero at 

𝑛𝑛�𝐶𝐶  → 0 for all values of β. Actually, for 𝜌𝜌𝐴𝐴 → 0 any model must predict 𝑛𝑛�  → 0, no matter 

how desorption is accounted for, and this has to result in an absolute error |𝑛𝑛�𝐶𝐶 − 𝑛𝑛�𝑁𝑁| → 0. 

Moreover, in the same limit, only desorption from state one particles is important and, 

accordingly, a single desorption frequency 𝑘𝑘1 has to be calculated, which must coincide with 

the average desorption frequency. This implies that the two approaches (i.e., accounting for 

and neglecting the dependency of desorption coefficients upon particle state) necessarily 
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converge one to the other at 𝜌𝜌𝐴𝐴 → 0. However, since at 𝜌𝜌𝐴𝐴 → 0 the quantity 𝑛𝑛�𝐶𝐶  → 0, the 

relative error ε going to zero requires the difference |𝑛𝑛�𝐶𝐶 − 𝑛𝑛�𝑁𝑁| to approach zero faster than 

𝑛𝑛�𝐶𝐶 . This actually happens at all values of β. 

In Figure 3a and 3b, the relative error ε is plotted as a function of 𝑛𝑛�𝐶𝐶  for β = 0 and β = 0.5, 

respectively, and several values of the bimolecular termination frequency c. 

 

FIGURE 3 

 

The values of all the other model parameters are again those reported in Table 1. These 

figures show that, moving from low (c = 0.1 s-1) to high (c = 20 s-1) c values, the maximum 

error increases; however, the error decays more rapidly at increasing 𝑛𝑛� values. Moving 

further to higher c values, (c = 100 s-1), the maximum error starts decreasing again, and the 

decay at increasing 𝑛𝑛� values is even faster (i.e., ε becomes smaller at all 𝑛𝑛� values). It is 

noteworthy that the error on 𝑛𝑛� introduced neglecting particle state dependency of desorption 

coefficients is significant for low β values in a wide range of values of the bimolecular 

termination frequency, c, and of 𝑛𝑛� itself. For greater β values, the uncertainties affecting 

some of the model parameters (such as the entry rate 𝜌𝜌𝐴𝐴 or the transport coefficient for exit 

𝑘𝑘𝑑𝑑𝑑𝑑) can lead to errors of comparable, if not greater, magnitude. Accordingly, the use of the 

detailed model for desorption developed in this work is not relevant in gaining accuracy on 

the calculated average number of radicals per particle in this case. 

 

Real Case Study: Methyl Methacrylate at 50°C. Due to the rather high water solubility 

of methyl methacrylate, radical desorption plays a major role in determining the kinetics of 

its emulsion polymerization. Although the average number of radicals per particle in this 

system is often smaller than 0.5, especially at low conversion, the zero-one system 
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assumption is not valid (with the exception of the extreme case of particles less than 10 nm in 

swollen radius), since desorption is more probable than bimolecular combination when a 

monomeric radical re-enters a particle already containing a growing chain5. Accordingly, the 

“instantaneous termination” assumption does not hold, and a model allowing for the 

existence of particles of state higher than one is required. Considering the water phase 

kinetics, it has been shown5 that re-entry is the most probable fate of exited monomeric 

radicals (𝛽𝛽 → 0) at all possible initiator concentrations and typical concentrations of polymer 

particles (𝑁𝑁𝑇𝑇≥ 1012 cm-3). 

The results shown above suggest that high desorption frequencies and low β values make 

this system a good candidate for testing the usefulness of the detailed desorption model here 

developed on a real system of significant importance. The relative error ε between the 

average number of radicals calculated neglecting and considering particle state dependent 

desorption coefficients (cf. Equation 27) is shown in Figure 4 at different values of the 

swollen particle radius 𝑟𝑟𝑃𝑃. 

 

FIGURE 4 

 

As in the previous figures, the average number of radicals per particle is varied in a wide 

interval by modifying the entry frequency 𝜌𝜌𝐴𝐴. Values of 𝑛𝑛� reported in the literature for this 

system extend across a very wide range, from magnitudes in the order of 10-2 to several 

hundred (at high conversion).10-12 The parameter values selected for methyl methacrylate 

have been calculated from the parameters (cf. Table I in Casey et al.5) and relations reported 

by Casey et al.5, and are reported in Table 3 (𝑟𝑟𝑃𝑃 independent quantities) and Table 4 (𝑟𝑟𝑃𝑃 

dependent quantities). 
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TABLE 3 

 

TABLE 4 

 

The only exception is represented by the bimolecular termination frequency c, calculated 

from the average bulk value of the bimolecular termination rate constant 𝑘𝑘𝑡𝑡 = 6.9·1010 cm3 

mol-1 s-1 through Equation 10.13 The β values have been calculated through Equation 4 

assuming a particle concentration of 1013 cm-3, an initiator concentration [𝐼𝐼] = 5·10-6 mol cm-

3 and low initiator efficiency:10 [𝑇𝑇 ∙] = (2𝑘𝑘𝐼𝐼[𝐼𝐼] / kt,aq)1/2. Although, as already discussed, β is 

actually dependent upon 𝑛𝑛�, considering a single value of β for each particle radius introduces 

small errors since the aqueous phase reaction of monomeric radicals is negligible at all 

initiator concentrations (i.e., β values are always very close to zero). This also justifies the 

rough calculation of β mentioned above. 

In Figure 4, significant values of ε have been obtained in a wide range of 𝑛𝑛�𝐶𝐶  values smaller 

than 0.5, justifying the need for the more detailed model in this region. Note that Figure 4 has 

been obtained assuming a value of c corresponding to the average bulk value of the rate 

coefficient 𝑘𝑘𝑡𝑡 in the solution of the Smith-Ewart equations (Equations 9 and 17). However, 

bimolecular terminations between short and long chain radicals can be very significant in 

emulsion polymerization and higher values of the coefficient c are required for a correct 

evaluation of 𝑛𝑛�. For our purposes, it is sufficient to repeat the calculations at the highest limit 

of bimolecular termination values (i.e., assuming c = c1): the true values will stand 

somewhere in the middle and will be in general a function of 𝑛𝑛�. The results obtained 

assuming c = c1 are shown in Figure 5. 

 

FIGURE 5 
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It can be seen that relevant differences with respect to Figure 4 arise only in the range 0.45 < 

𝑛𝑛� < 0.7. This is expected, since at low 𝑛𝑛� values bimolecular termination doesn't play any 

significant role due to high radical compartmentalization, while at high 𝑛𝑛� values ε must go to 

zero, as already discussed. Since the results are practically unchanged within the region 𝑛𝑛� < 

0.45, where the error is the largest, the need of a model accounting for particle state 

dependent desorption coefficients is confirmed for this case of practical interest. 

 

4. Comparison between Kinetic and Probabilistic Model 

As already mentioned in the Introduction, the complete equivalence of Casey’s kinetic 

approach5 and Asua’s probabilistic one4 has been demonstrated by Barandiaran and Asua.6 

However, this has been done by writing a rather complicated balance for monomeric radicals 

in particles containing i active chains (particles in “state i”) and by introducing some 

simplifications which do not appear through the probabilistic treatment. In this last section of 

the work, the equivalence of the two approaches in the limiting case considered by Casey et 

al.5 (zero-one system where propagation of monomeric radicals in the aqueous phase is 

negligible) is confirmed in a more simple way by deriving the general form of Casey's 

equation for 𝑛𝑛� using the cited probabilistic approach. Moreover, it is shown that the same 

expression for the frequency of re-entry 𝜌𝜌𝑟𝑟𝑟𝑟 is obtained through the two approaches. 

 

4.1. Average Number of Radicals per Particle. For a zero-one system where particle 

nucleation does not occur, the balance equation for the concentration of particles containing 

one radical 𝑁𝑁1 can be written as: 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑁𝑁0 − (𝜌𝜌 + 𝑘𝑘)𝑁𝑁1 
(33) 
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where 𝑁𝑁0 is the concentration of particles containing no radicals. Following Asua's approach, 

the rate of desorption from particles containing one radical is given by: 

 

𝑅𝑅𝑑𝑑1 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑁𝑁1𝑃𝑃1 (34) 

 

which represents the rate of production of monomeric radicals through chain transfer 

𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑁𝑁1 times the probability 𝑃𝑃1 for a monomeric radical to desorb rather than to propagate. 

The probability 𝑃𝑃1 is given by: 

 

𝑃𝑃1 =
𝑘𝑘𝑑𝑑𝑑𝑑

𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑝𝑝1𝐶𝐶𝑚𝑚
 (35) 

 

The rate of desorption from particles containing no radicals is given by: 

 

𝑅𝑅𝑑𝑑0 = 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁0𝑃𝑃1 (36) 

 

where 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁0 is the rate of re-entry into particles containing no radicals. The overall rate of 

desorption is therefore given by: 

 

𝑅𝑅𝑑𝑑 = 𝑅𝑅𝑑𝑑0 + 𝑅𝑅𝑑𝑑1 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑁𝑁1𝑃𝑃1 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁0𝑃𝑃1 (37) 

 

which corresponds to Equation 7 written for n = 1. Since 𝑅𝑅𝑑𝑑 = 𝑘𝑘𝑁𝑁1 for a zero-one system, 

one can substitute Equation 37 in Equation 33 obtaining: 
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𝑑𝑑𝑁𝑁1
𝑑𝑑𝑑𝑑

= (𝜌𝜌 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑃𝑃1)𝑁𝑁0 − �𝜌𝜌 + 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1�𝑁𝑁1 (38) 

 

Considering that 𝑁𝑁0 = 𝑁𝑁𝑇𝑇 − 𝑁𝑁1 and dividing by 𝑁𝑁𝑇𝑇, Equation 38 can be rewritten in the 

form: 

 

𝑑𝑑𝑛𝑛�
𝑑𝑑𝑑𝑑

= 𝜌𝜌(1 − 2𝑛𝑛�) − 𝜌𝜌𝑟𝑟𝑟𝑟𝑃𝑃1(1 − 𝑛𝑛�) − 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1𝑛𝑛� (39) 

 

Finally, introducing the definition of 𝑃𝑃1 in Equation 39, one obtains: 

 

𝑑𝑑𝑛𝑛�
𝑑𝑑𝑑𝑑

= 𝜌𝜌(1 − 2𝑛𝑛�) −
𝜌𝜌𝑟𝑟𝑟𝑟𝑘𝑘𝑑𝑑𝑑𝑑

𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑝𝑝1𝐶𝐶𝑚𝑚
(1 − 𝑛𝑛�) −

𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑘𝑘𝑑𝑑𝑑𝑑𝑛𝑛�
𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑝𝑝1𝐶𝐶𝑚𝑚

 (40) 

 

which is identical to the equation derived by Casey et al.5 through a kinetic approach. 

 

4.2. Frequency of Re-Entry. Following the probabilistic approach, if one takes Equation 4 

for β and neglects the propagation of monomeric radicals in the aqueous phase, as done by 

Casey et al., β reduces to: 

 

𝛽𝛽 =
𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎[𝑇𝑇 ∙]

𝑘𝑘𝑟𝑟𝑟𝑟
𝑁𝑁𝑇𝑇
𝑁𝑁𝐴𝐴

+ 𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎[𝑇𝑇 ∙]
 (41) 

 

Dividing Equation 37 by 𝑁𝑁𝑇𝑇, where 𝑅𝑅𝑑𝑑 𝑁𝑁𝑇𝑇⁄ = 𝑘𝑘𝑛𝑛�, one obtains: 

 

𝑘𝑘𝑛𝑛� = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛�𝑃𝑃1 + 𝜌𝜌𝑟𝑟𝑟𝑟(1 − 𝑛𝑛�)𝑃𝑃1 (42) 
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By introducing this new expression for 𝑘𝑘𝑛𝑛� in Equation 2, the latter can be rewritten as: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 = �𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛�𝑃𝑃1 + 𝜌𝜌𝑟𝑟𝑟𝑟(1 − 𝑛𝑛�)𝑃𝑃1�(1 − 𝛽𝛽) (43) 

 

Solving for 𝜌𝜌𝑟𝑟𝑟𝑟 leads to: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 =
𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛�𝑃𝑃1(1 − 𝛽𝛽)

1 − (1 − 𝑛𝑛�)𝑃𝑃1(1 − 𝛽𝛽) =
𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛�

1
𝑃𝑃1(1 − 𝛽𝛽) − (1 − 𝑛𝑛�)

 (44) 

 

which, upon substitution of the definitions of probabilities 𝑃𝑃1 (Equation 35) and β (Equation 

41), leads to: 

 

𝜌𝜌𝑟𝑟𝑟𝑟 =
𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑛𝑛�

�1 +
𝑘𝑘𝑝𝑝1𝐶𝐶𝑚𝑚
𝑘𝑘𝑑𝑑𝑑𝑑

��1 +
𝑘𝑘𝑡𝑡,𝑎𝑎𝑎𝑎[𝑇𝑇 ∙]

𝑘𝑘𝑟𝑟𝑟𝑟
𝑁𝑁𝑇𝑇
𝑁𝑁𝐴𝐴

� − (1 − 𝑛𝑛�)

 
(45) 

 

This equation is identical to that obtained by Casey et al. through the kinetic approach. 

It is therefore proven that the equations derived by Casey et al.5 for the description of the 

radical desorption process are easily re-obtained through the probabilistic approach proposed 

by Asua et al.4. The latter approach is however more general since it is not limited to the case 

of zero-one system. Moreover, differently from what stated by Casey et al., distinction is 

made between re-entry of previously desorbed free radicals and absorption of other kinds of 

radicals (i.e., initiator-derived and thermally-generated): the re-entry after desorption process, 
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which involves specifically the monomeric radicals created by chain transfer, is described 

independently of any other absorption process. 

 

5. Conclusions 

The desorption terms in the Smith-Ewart equations have been critically examined in this 

work. Making use of a probabilistic approach, which has the advantage of a greater 

simplicity, detailed expressions for particle state dependent desorption coefficients have been 

derived. Specifically, two equivalent models accounting for this feature have been developed, 

differing in the way the re-entry and re-desorption terms are considered in the definitions of 

entry and exit of monomeric radicals from particles. A comparison with the results obtained 

by the use of a single, average desorption coefficient in the Smith-Ewart equations (as 

ordinarily written) reveals that neglecting the dependency of the desorption coefficients upon 

particle state may lead to significant errors in the calculation of the average number of 

radicals per particle 𝑛𝑛� (i.e., of the reaction rate). This is especially true in the limit of 

complete re-entry of desorbed radicals and for values of 𝑛𝑛� typical of systems characterized by 

high desorption rates. In these conditions a detailed model is required, accounting for particle 

state dependent desorption frequencies. The following, generally valid, simplified expression 

for these parameters has been derived: 

 

𝑘𝑘𝑛𝑛 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝑚𝑚𝑃𝑃1 �1 +
(1 − 𝛽𝛽)𝑃𝑃1

1 − (1 − 𝛽𝛽)𝑃𝑃1
∙
𝑛𝑛�𝑁𝑁𝑛𝑛−1
𝑛𝑛𝑁𝑁𝑛𝑛

�  

 

An analysis of a real system of considerable importance, methyl methacrylate polymerized at 

50°C, has been conducted revealing the usefulness of the detailed model here developed at 𝑛𝑛� 
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< 0.45. Finally, the complete equivalence between kinetic and probabilistic approaches 

(previously proved in the literature) is re-established in a more direct and simple way. 
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List of Figures 

 

 

Figure 1. Relative error (ε) between the average number of radicals per particle calculated 
considering particle state dependent desorption frequency (𝑛𝑛�𝐶𝐶) and constant desorption 
frequency, as a function of 𝑛𝑛�𝐶𝐶 . Curves calculated at different β values. 
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Figure 2. Relative error (𝜀𝜀𝐴𝐴) between the average number of radicals per particle calculated 

considering particle state dependent probabilities 𝑃𝑃𝑛𝑛 (𝑛𝑛�𝐶𝐶) and an approximated expression for 
the desorption frequencies assuming a constant value of 𝑃𝑃𝑛𝑛 = 𝑃𝑃1, as a function of 𝑛𝑛�𝐶𝐶 . Curves 
calculated at different β values. 
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Figure 3. Relative error (ε) between the average number of radicals per particle calculated 

considering particle state dependent desorption frequency (𝑛𝑛�𝐶𝐶) and constant desorption 
frequency, as a function of 𝑛𝑛�𝐶𝐶 . Curves calculated at different c values, with: (a) β = 0 and (b) 
β = 0.5. 
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Figure 4. Relative error (ε) between the average number of radicals per particle calculated 
considering particle state dependent desorption frequency (𝑛𝑛�𝐶𝐶) and constant desorption 
frequency, as a function of 𝑛𝑛�𝐶𝐶  for the case of methyl methacrylate at 50°C. Curves calculated 
at different particle radius (𝑟𝑟𝑃𝑃) values. 
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Figure 5. Relative error (ε) between the average number of radicals per particle calculated 

considering particle state dependent desorption frequency (𝑛𝑛�𝐶𝐶) and constant desorption 
frequency, as a function of 𝑛𝑛�𝐶𝐶  for the case of methyl methacrylate at 50°C and considering 
the high limit of bimolecular termination values (c = c1). Curves calculated at different 
particle radius (𝑟𝑟𝑃𝑃) values. 
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List of Tables 

 

Table 1. Numerical values of the model parameters. 

Parameter Value 

𝐶𝐶𝑚𝑚 4.8·10-3 mol cm-3 

𝑘𝑘𝑓𝑓𝑓𝑓 10 cm3 mol-1 s-1 

𝑘𝑘𝑝𝑝1 1.26·105 cm3 mol-1 s-1 

𝑘𝑘𝑑𝑑𝑑𝑑 5·103 s-1 
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Table 2. Comparison between the performances of the two models accounting for particle 
state dependent desorption coefficients. 

 Model 1 Model 2 Comparison 
N 𝑵𝑵𝒏𝒏 𝒌𝒌𝒏𝒏 𝑵𝑵𝒏𝒏 𝒌𝒌𝒏𝒏′  𝒌𝒌𝒏𝒏 − 𝒌𝒌𝒏𝒏′  

0 8.01 10-1 - 8.01 10-1 - - 

1 1.99 10-1 1.82 10-1 1.99 10-1 4.28 10-2 1.39 10-1 

2 7.13 10-5 4.76 101 7.13 10-5 4.25 10-2 4.76 101 

3 8.70 10-9 9.29 101 8.70 10-9 4.22 10-2 9.29 101 

4 5.39 10-13 1.36 102 5.39 10-13 4.19 10-2 1.36 102 

5 < 10-15 1.77 102 < 10-15 4.16 10-2 1.77 102 

Average 0.199 2.16 10-1 0.199 4.28 10-2 1.73 10-1 
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Table 3. Numerical values of the model parameters for methyl methacrylate. Particle size 
independent coefficients. 

Parameter Value 

𝐶𝐶𝑚𝑚 6.6·10-3 mol cm-3 

𝑘𝑘𝑓𝑓𝑓𝑓 23 cm3 mol-1 s-1 

𝑘𝑘𝑝𝑝1 5.8·105 cm3 mol-1 s-1 
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Table 4. Numerical values of the model parameters for methyl methacrylate. Particle size 
dependent coefficients. 

Parameter rP = 50 nm rP = 100 nm rP = 150 nm 

c 109.4 s-1 13.7 s-1 4.0 s-1 

c1 1.66·104 s-1 2.07·103 s-1 6.13·102 s-1 

𝑘𝑘𝑑𝑑𝑑𝑑 4.31·104 s-1 1.08·104 s-1 4.78·103 s-1 

β 8.7·10-3 4.4·10-3 2.9·10-3 
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Appendix 

Relationship between the desorption coefficients of Model 1 and Model 2 

Starting from Equation 12 and recalling the definition of 𝑘𝑘𝑛𝑛′  (Equation 20) one can write: 

𝑘𝑘𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛 = 𝑘𝑘𝑛𝑛′ 𝑛𝑛𝑁𝑁𝑛𝑛 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑁𝑁𝑛𝑛−1𝑃𝑃𝑛𝑛  (A) 

which immediately gives the relationship between the particle state dependent desorption 

coefficients according to the two models: 

𝑘𝑘𝑛𝑛 = 𝑘𝑘𝑛𝑛′ + 𝜌𝜌𝑟𝑟𝑟𝑟
𝑁𝑁𝑛𝑛−1
𝑛𝑛𝑛𝑛𝑛𝑛

𝑃𝑃𝑛𝑛  (B) 

In order to obtain the relationship between their average values: 

𝑘𝑘 =
∑ 𝑘𝑘𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛∞
𝑛𝑛=1

𝑛𝑛�𝑁𝑁𝑇𝑇
 

and 

𝑘𝑘′ =
∑ 𝑘𝑘𝑛𝑛′ 𝑛𝑛𝑁𝑁𝑛𝑛∞
𝑛𝑛=1

𝑛𝑛�𝑁𝑁𝑇𝑇
 

summation of Equation A upon all particle states (from 1 to infinity) can be carried out: 

𝑘𝑘𝑛𝑛�𝑁𝑁𝑇𝑇 = 𝑘𝑘′𝑛𝑛�𝑁𝑁𝑇𝑇 + 𝜌𝜌𝑟𝑟𝑟𝑟 �𝑁𝑁𝑛𝑛−1𝑃𝑃𝑛𝑛

∞

𝑛𝑛=1

 

Substituting Equation 2 for 𝜌𝜌𝑟𝑟𝑟𝑟 and solving for 𝑘𝑘 yields: 

𝑘𝑘 =
𝑘𝑘′

1 − (1 − 𝛽𝛽)∑ 𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑇𝑇

∞
𝑛𝑛=1

 
 (C) 

which correlates the average desorption coefficients according to Model 1 and Model 2. By 

substituting Equation B for 𝑘𝑘 in Equation 2, the following expression for 𝜌𝜌𝑟𝑟𝑟𝑟 as a function of 

𝑘𝑘′ is obtained (cf. Equation 22 in the main text): 

𝜌𝜌𝑟𝑟𝑟𝑟 =
𝑘𝑘′𝑛𝑛� (1 − 𝛽𝛽)

1 − (1 − 𝛽𝛽)∑ 𝑃𝑃𝑛𝑛𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑇𝑇

∞
𝑛𝑛=1

 


