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Generic Platform for Manufacturing Execution System Functions in 

Knowledge-Driven Manufacturing Systems 

Information technologies grow rapidly nowadays with the advance and extension 

of computing capabilities. This growth affects several fields, which consume these 

technologies. Industrial Automation is not an exception. This publication describes 

a general and flexible architecture for implementing Manufacturing Execution 

System (MES) function, which can be deployed in multiple industrial case. These 

features are achieved by combining the flexibility of knowledge-driven systems 

with the vendor-independent property of RESTful web services. With deployment 

of this solution, MES functions may gain more versatility and independency. This 

research work is a continuation of the development of the OKD-MES (Open 

Knowledge-Driven Manufacturing Execution System) framework during the 

execution of the eScop project. The OKD-MES framework consists on a semantic-

based solution for controlling and enhancing the flexibility and re-configurability 

of MES. In such scope, this research presents MES functions architecture that 

might be implemented in the OKD-MES framework in order to increase the 

flexibility of event-driven manufacturing systems. 

Keywords: knowledge-driven manufacturing systems; manufacturing execution 

system functions; semantics. 

1. Introduction 

Manufacturing systems’ enterprises seek for the employment of the latest 

technologies for elevating the features of the end products and services. This is a need in 

order to meet the incessant demand of products that in turn, creates an intensive 

competition in the development of highly efficient manufacturing systems. Currently, 

many research works are targeting the enhancement of the Manufacturing Execution 

Systems (MES) with novel ideas, as discussed in (Papakostas et al. 2012; Helo et al. 2014; 

Alexopoulos et al. 2016; Cheng et al. 1999). Fundamentally, MES binds the upper level 

(i.e., Enterprise Resource Planning (ERP)) with the lower level (i.e., factory shop floor) 

of manufacturing enterprises. Through this strategy, different organizations define and 



 

 

categorize the functionalities of MES into the so-called MES functions, which, in turn, 

are standardized by different organisations, such as the Manufacturing Enterprise 

Solutions Association (MESA), the International Society of Automation (ISA) or the 

Verein Deutscher Ingenieure (VDI) according to (Iarovyi et al. 2016). These functions 

are the source of the bond that MES provides for the manufacturing system. 

Recently, the Embedded Systems Service-based Control for Open Manufacturing and 

Process Automation European project, known as eScop1 project, has produced a research 

work in the scope of MES (Iarovyi et al. 2016). Particularly, the aforementioned article 

presents one of the main results of the eScop project, which is a Cyber-Physical System 

(CPS) presented as a flexible and reconfigurable solution for contemporary 

manufacturing systems. The eScop solution has defined a specific concept named as the 

Open Knowledge-Driven Manufacturing Execution System (OKD-MES) and created a 

framework for its implementation (Fumagalli et al. 2014; Negri et al. 2015). Principally, 

the OKD-MES allows enhancing the efficiency of factories by reducing the time and 

effort consumption needed for configuration, maintenance and scheduling orders and 

resources. 

In this context, this article presents a compatible solution with the existing OKD-MES 

framework, which eScop project provided, for extending the implementation of MES 

functions. In other words, the presented solution is an extension for the existing 

framework in order to cover additional functionalities. More precisely, the contribution 

of this research work is a solution that enhances the flexibility, re-configurability and 

interoperability of event-driven manufacturing systems. This is done by the definition of 

standard MES functions and their encapsulation in services for permitting a modularized 
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methodology to add new functionalities to the OKD-MES framework. Nevertheless, the 

presented solution is not restricted to systems that implement the OKD-MES concept. 

The rest of the paper is structured as follows: Section 2 describes the research 

background. Then, Section 3 presents the architecture and implementation of the MES 

functions platform including its main components, their interactions and, as well, a case 

study. Afterwards, Section 4 provides the benefits and drawbacks of the presented 

approach. Finally, Section 5 concludes the article and presents the work to be done in the 

future. 

2. State of The Art 

2.1. Manufacturing Execution System 

In the field of manufacturing systems, MES is considered as key supporting tools for 

production management because it plays the important role of bridging the ERP systems 

and the systems that operate at the physical field. In many companies, such bridge is 

delegated to a human activity, which compromises the optimization of the whole system. 

As an example, optimization might be applied on resources scheduling or labours 

exploitation. Moreover, such manual interaction often causes large efforts spent in the 

optimization of activities at ERP level, as well as implementation of important automation 

solutions at the shop floor level that will be further not used. 

MES fills this gap in the automation chain, serving as a mediator or central layer 

integrating higher and lower levels of the ISA-952 automation pyramid. Nevertheless, 

MES cannot be seen as a simple and unique tool that transports information. Instead of 

that, MES represents a complex system where many functionalities are encompassed. 
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The Manufacturing Enterprise Solutions Association3 (MESA) defined 11 MES 

functions that  are listed in Table 1 and described in more detail in (Iarovyi et al. 2016). 

MESA created the list in the late 90s and updated it along following decades as a union 

of all the functionalities that MES may have. However, the factory does not have to 

implement all the 11 functions to be optimally functional. In fact, the implementation of 

MES functions depends on several factors as e.g., the industry type or the automation 

level in the factory. 

[Table 1 near here] 

As highlighted in the Introduction section, different definition of MES functions may 

be found e.g., ISA95 or VDI4. MESA definition separates the MES functions in terms of 

scope of functionality. Hence, the eScop project involved MESA definition as the MES 

functions baseline.  

On the other hand, from a research perspective, it is important to keep a 

comprehensive view embracing any possible function. In fact, it is recommended for any 

of the possible new research architecture to support the MES functions in order to keep 

the highest possible level of applicability in industrial environments. Different 

researchers have discussed MES application and MES functions (Marik and McFarlane 

2005; Shaohong and Qingjin 2007). In fact, in (Younus et al. 2010), the authors review 

the development of MES applications and highlight the benefits of exploiting other 

technology fields (i.e. Information and Computer Technology). In the context of MES, 

the authors of (Valilai and Houshmand 2013) present an approach for MES as distributed 

systems that exploits service-oriented approach and multi-agent systems following the 

                                                

3 http://www.mesa.org/en/index.asp 
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ISO 10303 standard. Besides, (Efthymiou et al. 2015) presents an approach for using 

knowledge-based systems for planning and designing manufacturing systems. The 

approach benefits from the features of Knowledge-Based System, which include 

reasoning and flexibility, and virtual factories concept to provide assessment during the 

design phase. Commonly, recent research work tends to fulfil the following requirements: 

(1) The capability to have flexible functions that can guarantee complete automation 

of the proposed solution avoiding human activity by-pass;  

(2) The capability to involve the operators, thus fostering the concept of man-in-the-

loop, enabling the functions to be implemented by operators that can 

communicate with the MES systems thank to PDA (Personal Digital Assistant), 

RFID (Radio-Frequency Identification) reader, Barcode scanner, tablets, etc. 

(3) The interoperability of the MES functions that can be guaranteed only if all the 

functions are implemented within the same software package or if a flexible 

alternative is available. This gap is the one fulfilled within the eScop project 

approach as presented in (Iarovyi et al. 2016). 

In the domain of MES, several solutions can be found in the market nowadays. These 

solutions may vary from standalone solutions to service based solution or specific 

functionality oriented to general purpose oriented. In this research work, some of the 

solutions, which include POMSNet from Honeywell Process Solutions (“Life Sciences 

MES | by POMS” n.d.), ABB MES (“ABB Manufacturing Execution System - MES for 

Industrial Plants” n.d.), Rockwell Automation MES (“Manufacturing Execution 

Systems” n.d.), Siemens SIMATIC IT (“Industrial Automation Systems SIMATIC” n.d.) 

and GE Intelligent Platforms (“Plant Applications” 2016), have been studied in order to 

create a reference point for this research. More information is presented in Table 2. 

[Table2 near here] 



 

 

2.2.Interoperability 

2.2.1. Communication 

Communication is usually defined as the action of exchanging information. In the field 

of information technology, the communication is seen as a protocol for the exchange of 

information. The increased demand of communication protocols led to founding the 

World Wide Web Consortium (W3C) by Tim Berners-Lee at MIT in 1994 (Berners-Lee 

1996). At that time, the W3C presented the Hypertext Transfer Protocol (HTTP) protocol. 

Since then, the W3C has provided various communication protocols for different use. On 

the other hand, in the same era, Organization for the Advancement of Structured 

Information Standards (OASIS) provided a reference architecture for managing the web 

services, such as the so called Service Oriented Architecture (SOA) (Papazoglou and Van 

Den Heuvel 2007; Jammes and Smit 2005). Accordingly, it was considered as an 

advantage for industrial devices to support the SOA architecture. Moreover, the SOA is 

implemented within the Devices Profile for Web Services (DPWS) for web services 

discovery and management (Jammes et al. 2005). The DPWS is based on Web Service 

Definition Language (WSDL). In parallel, W3C provided REpresentation State Transfer 

(REST) definitions for the web services. REST is based on HTTP request/response 

method. The request for REST services can be seen as the Create, Read, Update and 

Delete (CRUD) term. REST represents web resources using a uniform set of stateless 

operations. Furthermore, REST architecture supports several different data formats as 

e.g., XML, HTML, plain text and JSON. Although REST is not standardized yet, it 

features light weight processes and fault-tolerant (Ondřej Severa and Roman Pišl, 2015). 

2.2.2. Semantics and Knowledge-Based Systems 

Knowledge Representation (KR) and reasoning is a branch of Artificial Intelligence 



 

 

that describes and analyses human reasoning behaviour to support formal calculation and 

deduction. It defines symbols and languages that allow formalising knowledge in a 

precise semantics (Davis, Shrobe, and Szolovits 1993). In other words, KR allows the 

definition of the logical consequences that are understandable and automatically 

derivable by computer systems with reasoning algorithms (Motik and Rosati 2008). A 

key point in the knowledge formalization is the choice of the formal language, which 

must be sufficiently expressive to allow the description of the domain of interest and 

efficient enough for (1) not requiring too long reasoning time and (2) ensuring 

decidability (Negri et al. 2016). The container of KR formal descriptions is usually called 

a Knowledge Base (KB), which stores complex structured and unstructured information 

through a finite set of propositions on the domain of interest written in the chosen 

language. Knowledge-Based System (KBS) include both the syntax of the domain of 

interest (i.e., definition of rules to define acceptable interpretations of propositions) and 

a set of operators that provide a meaning or a value to the propositions (Yue, Liu, and 

Hunter 2007). On the other hand, KBSs offer a distributed data structure, contrarily to 

databases that provide a fixed data one (Astrova, Korda, and Kalja 2007). They answer 

to different data needs and it is the main reason for the origination of knowledge bases as 

an alternative to the traditional hierarchical and relational databases: the KR should not 

follow a tabular structure with rows and columns, but it is more convenient to use object 

modelling with a hierarchy of classes, subclasses, relationships and instances. As 

described in (Opdahl, Henderson-Sellers, and Barbier 2001), these features are perfectly 

provided by ontologies. 

In literature, ontologies are defined as explicit specifications of a conceptualisation 

(Gruber 1995) for a shared understanding of information (Guarino 1998). In particular, a 

domain ontology is an abstract representation of reality within a certain scope. Ontologies 



 

 

are the natural candidates for implementing KBS, because they formalize knowledge 

about a domain improving expertise reusability in knowledge based systems (Giovannini 

et al. 2012). By their nature, ontologies do not have a specific application domain, but 

they may be the means to represent knowledge in any domain, in order to make it shared, 

explicit and formal. In particular, in the manufacturing domain, ontologies have a high 

potential application for unambiguous communication, to create a shared terminology and 

semantic alignment, meta-data in computational form for the information infrastructure 

(Schlenoff et al. 1999). The uses of ontology in the manufacturing domain could be 

several: from the knowledge sharing and reuse, to supporting interoperability in different 

systems.  

The advent of modern smart technologies and distributed control in manufacturing 

environments has brought to light a promising application of ontologies. In fact, a 

production system consists of different independent and smart modules that are aware of 

the capabilities that they can offer to the system but do not have any knowledge on the 

role they have to play together in the production from a systemic point of view (M. Garetti 

et al. 2013; Marco Garetti, Fumagalli, and Negri 2015). Ontologies are the perfect means 

for providing such kind of knowledge to distributed control architectures. In fact, in 

centralized control architectures, the different system components do not require control 

information on the role. Instead of that, the logics of the system has been integrated in the 

design of the system. On the contrary, distributed control is made of smart components 

that act as independent elementary modules that perform their local control and require a 

centralized representation of their role in the system. This role must be formalized through 

a shared representation of the domain, characteristics that are supplied by ad hoc 

ontologies (M. Garetti and Fumagalli 2012). The modular approach of this kind of 

production systems allows reducing building, ramp up and reconfiguration time of 



 

 

manufacturing automation systems significantly, because when a module is removed, 

modified or included, the knowledge of the system - on which the control is based - is 

easily updated. 

The available semantic languages that can be used for implementing ontologies are 

several, each of them characterized by different syntax, reasoning capabilities and 

complexity among other features (Giunchiglia et al. 2010). A comparison of semantic 

languages against a set of collected requirements from the manufacturing domain is found 

in (Negri et al. 2016). The languages that are advised for this domain are the Web 

Ontology Language5 (OWL) and the OWL sublanguages (Lite and DL). They are based 

on Resource Description Framework6  (RDF) and are able to represent semantic 

information in a simple and meaningful manner (through the so-called Triples: Subject-

Predicate-Object). They can be queried with the SPARQL language (i.e., recursive 

acronym for SPARQL Protocol and RDF Query Language) to retrieve the information 

stored in the KBS (Negri et al. 2016). 

2.3. Open Knowledge-Driven Manufacturing Execution Systems 

Referring to the previous subsections, a particular approach for the implementation 

of the MES was proposed. This approach aims to provide high level of modularity and 

re-configurability for the MES solution and underlying automation field layers. The 

approach combines the capabilities of embedded devices and web services with the 

advanced approach for the knowledge management and will be referred further as OKD-

MES. 
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6 http://www.w3.org/RDF/ 



 

 

The OKD-MES provides a reference architecture including four core layers: Physical 

Layer (PHL), Representation Layer (RPL), Orchestration Layer (ORL), Visualization 

Layer (VIS), and a layer of loosely-coupled deployable MES functions as can be observed 

on Figure 1. 

[Figure 1 near here] 

The PHL addresses the problem of integration of factory shop-floor equipment to the 

OKD-MES ecosystem. PHL is deployed in the form of RESTful web-service enabled 

controllers. The PHL devices expose the contract and related services required to interact 

with the controlled equipment. As well, the part of discovery mechanism is implemented 

in the PHL, which allows keeping the system representation in sync with the real world. 

The RPL hosts a manufacturing domain ontology that serves as semantic representation 

of the production systems, that is instantiated for the specific industrial application case. 

As such, it offers the capabilities of ontologies, which is presented in Section 3.2 allowing 

interoperability and knowledge sharing along Cyber-Physical Systems in the OKD-MES 

(Legat et al. 2014). Having a knowledge base in its core, the RPL is capable for some 

complex data querying and possibly reasoning. Considering the implementation of 

independent service and capabilities description, the RPL allows an interface for a 

dynamic dependency injection. In addition to the ontology, the RPL implements part of 

discovery mechanism, which interacts with PHL devices, through the ontology service 

that exposes the ontology as a service on the web service architecture. 

Meanwhile, orchestrators in the ORL resolve the coordination task in OKD-MES 

solution. The orchestrators are capable to execute service compositions based on abstract 

process definitions. Such definitions can be resolved in interactions with RPL to 

executable service invocations, which are handled by ORL. The process definitions are 

also defining the error and emergency handling in OKD-MES. 



 

 

The Visualization Layer, on the other hand, provides a generic interface between the 

users and the application. Each OKD-MES component can use declarative User Interface 

(UI) definition, which is materialized to a web application interface by the VIS. This 

declarative definition allows a dynamic UI generation based on user specified rules. 

The four layers mentioned above provide the ground for implementation of MES 

functions. Technically, any MES function can be defined as a process definition with a 

corresponding UI. Unfortunately, such approach will lead to an overcomplicated process 

definition and will reduce systems performance due to the natural compromises between 

the flexibility and performance. 

3. Manufacturing Execution Systems Platform Architecture 

Lately, with the available computational resources, the installation of manufacturing 

system, configuration and running costs and time have been significantly reduced (Cheng 

et al. 1999). Thanks to the intensive research work that has been conducted on this field. 

Similarly, this research work presents a dynamic, flexible and reconfigurable platform for 

providing the MES functionalities for manufacturing systems as services. The platform 

employs the KBS and RESTful web services to allow dynamic and autonomous 

interaction of the components in the manufacturing system. With such solution, it is 

expected for the manufacturing systems to be used as a distributed solution or cloud-

based application. 

The suggested platform allows the user to implement particular MES functions. 

According to the user needs, MES functions may be provided as web services. 

Accordingly, these services might require some logical or arithmetical calculations. 

While the calculations might be defined in the form of the functional scripts. This section 

presents the structure of the platform and defines the workflow of the platform. It consists 



 

 

of four subsections; in the first one, the components of the platform are described. The 

second subsection presents the ontology model that has been used for building a 

knowledge-based system. Meanwhile, the third subsection shows the interactions with 

the provided solution. Finally, the forth subsection provides a case scenario as a proof of 

the concept. 

3.1.Components 

As the majority of web applications, this MES functions platform provides its own 

services through the web. As well, it is designed to be configurable in running time 

manners. Accordingly, the platform needs to have an interface with the external 

environment and systems. Moreover, it has to possess some capabilities to persist internal 

information. Besides, the platform should provide the consumers (the manufacturing 

systems) with a specific functionality. To satisfy the aforementioned requirements, the 

presented approach consists of a Service Manager (SM), which facilitates the interactions 

with the environment, an Ontology Manager (OM) for providing the tools to persist the 

internal information and a Function Manager (FM) that enables the processing of the 

information in the system and supports the binding to the corresponding interfaces. Some 

information about the component design is presented in the following subsections, and 

implementation details can be found in KPI case study subsection. 

[Figure 2 near here] 

3.1.1. Service Manager 

The SM provides the platform with a proper interface for the communications. The 

SM contains two main components; the RESTful interface and the Services Composition 

and Decomposition Unit (SCDU). The RESTful interface supplies the SM with the 

Application Program Interface (API) capabilities to provide and consume the RESTful 

services. Meanwhile, the SCDU decomposes the received RESTful requests or the 



 

 

responses for certain requests. Similarly, it composes the responses for the requested 

services or for the requests, which the platform requires. As a result, the SCDU binds the 

platform with the RESTful interface by providing a translation for the incoming/outgoing 

messages. As shown in Figure 2 , the SM transforms the incoming requests or returned 

responses into Java Script Object Notation (JSON) and then passes it to the FM for further 

actions, and vice versa, the SM transforms the objects defined by the FM that are 

transmitted through the RESTful interface.  

3.1.2. Ontology Manager 

Re-configurability and flexibility are considered as the main features of the proposed 

approach. Thus, the MES platform employs the KBS technology. As many KBS based 

on ontologies, the current approach requires the model to be defined. After that, the user 

can populate the model with information relevant for the application case. Within this 

approach, the ontology is managed by a specific component – the OM. The OM provides 

the platform with the proper information via querying and updating the information 

model. To achieve that, the OM enables SPARQL-based services for providing the 

required functionality. 

3.1.3. Function Manager 

Finally, the third main component in the platform is the Function Manager (FM). The 

FM provides the platform with logic processing module. As well, the FM contains the 

functional scripts, which are used to provide MES its functionality. In this context, the 

user defines the functional scripts that fits the manufacturing needs, and then, inject them 

in the FM. Besides, the FM binds the other managers (i.e., SM and OM). With this 

architecture, the FM contains the core of the MES functions platform, which is called 



 

 

Processing Unit (PU). The PU provides the runtime environment for the functional 

scripts.  

3.2.Ontology Model 

The ontology model supplies the platform with the required information, i.e. 

configurations, services and functional scripts accessibility. As presented in the previous 

subsection, the ontology model is managed through the OM. Figure 3 shows the ontology 

model for the platform. It contains the following main classes: OkdMesLayer, 

Configurations, MesFunction, Service, FunctionalScript and Parameter. 

[Figure 3 near here] 

The OkdMesLayer class holds the information about the accessibility of the platform. 

This class includes four datatype properties; id, name, host and port. OkdMesLayer is 

linked to Configurations, Service and MesFunction classes using needsConfig, 

hasService and hasMesFunction object properties respectively. The Configurations class 

allows the OkdMesLayer class to hold configuration parameters regarding the other 

components in the manufacturing system. It contains deviceCatalogueUrl datatype 

property for exploring the manufacturing system services. phlEvents datatype property 

for providing a list of events, which the platform should subscribe. Finally, 

eventListenerUrl datatype property for determining the Unique Resource Locator (URL) 

where the platform will receive notifications of the PHL events. Then, the second link 

connects the layer with the web services. This means that the platform might have some 

service instances, which are not related to the MES functions. 

Thirdly, the MesFunction class includes two datatype properties: id and name. The 

MesFunction class is linked to Service and/or FunctionalScript via hasService and 

hasFunctionalScript object properties, respectively. This means that the MES function 

could have background functions that run without a request from a service. Opposite to 



 

 

that, it can serve certain services without having a background functions. Then, the 

Service class contains eight datatype properties; id, url, method, reqBody, reqQuery, 

reqPram, responseStatus and responseBody. As a RESTful service, the url and the 

method are used for routing and validating the correctness of the request. reqBody, 

reqParam and reqQuery hold the request information. Meanwhile, the resStatus and 

resBody represent the response for the requested service. In this context, the resStatus 

defines the response http status code. It should be noted that the value of the resStatus 

plays a role in the response of the received requests. More illustration is presented in the 

next subsection. The Service class is connected to the FunctionalScript class by 

hasFunctionalScript object property. The FunctionalScript class represents a logical 

and/or arithmetic set of operation, which might be called by a service invocation or as a 

background function. The FunctionalScript class includes three datatype properties; id, 

name and url. The name is used for calling the function while the url presents the 

accessibility for the function script. In this way, the function script can be a cloud 

resource, which is requested once it is needed. Then the FunctionalScript class is linked 

to Parameter class using hasParameter property. The Parameter class consists of name, 

type and value datatype properties. This class is used for two reasons:  

(1) Passing parameters to the functional scripts. 

(2) Storing variables in the platform where functional scripts can share data. 

3.3.Interactions 

The interactions of such an approach can be seen from two different points of views. 

Firstly, how the user will setup and run the platform. Secondly, how the platform will 

provide functionality to the manufacturing system. In this subsection, an illustration is 

provided for demonstrating the two integration scenarios. 



 

 

3.3.1. User Interactions 

Alike of any application, the MES platform requires a setting up before the user can 

run it in the manufacturing system. Therefore, an elucidation of the activities that the user 

should conduct for running the platform is presented in Figure 4. The user starts by 

applying a study of the feasibility of using MES functions platform in the manufacturing 

system. This feasibility study covers the need of the MES function in the manufacturing 

system. As an example, in manual production line, the most feasible function for the user 

could be Labour Management. Once it is feasible, the user is required to populate the 

ontology model with proper instances. In this stage, the user is entitled for defining the 

web services that are required for the platform to serve. Moreover, the user determines 

the functional scripts that the platform requires. Afterwards, the user uploads the instances 

to the platform.  

[Figure 4 near here] 

Thereupon, the user examines the existence of the functional scripts. For instance, 

these functional scripts could be algorithms for optimization or Key Performance 

Indicators (KPI) formulas. Consequently, the user updates the platform. Such update 

might only consist of URLs for these functional scripts in the ontology instances or code 

scripts that need to be uploaded to the platform. Finally, the user runs the platform since 

it is populated with ontology instances and functional scripts. 

3.3.2. Manufacturing System Interactions 

The second integration scenario addresses the runtime flow work of the platform and 

its interactions with the manufacturing system. Once the platform is set on running mode, 

it subscribes to all events in the Configurations class in the ontology model.  

The subscription of PHL events are an option of the user design to handle PHL 

information. An example can be seen in Resource Status and Allocation MES function. 



 

 

The status of PHL resources is propagated through events notification. The sequence of 

the subscription of the PHL events is shown in Figure 5. 

[Figure 5 near here] 

The subscription starts with reading the configurations of the platform. Afterwards, 

the FM requests the SM to perform subscription services for each eventID in the 

configuration of the platform. 

After the subscription process, the production phase starts. Figure 7 presents a 

request-response life cycle in the platform. An application, such as an orchestrator sends 

a request message to the platform. The request message reaches the SM first through the 

interface. Consequently, the SM sends a notification to the FM informing that a new 

request message has been received. Figure 6 presents the notification body of the service 

request. The PU, which is the core of the FM, generates a SPARQL query to validate 

service. 

[Figure 6 near here] 

The validation of the services is combined within the KBS. As highlighted in the 

previous subsection, the user defines all the services, which the platform will serve. 

Therefore, the service validation can be extracted from response of the SPARQL query. 

[Figure 7 near here] 

Figure 8 shows the SPARQL query, which is used for validating the request. As 

shown, the SPARQL query returns the service, functional script, response status and 

response body of the provided service URL and service method. The result of the query 

could return an empty result in case the URL and method are not matching. The empty 

result leads to “not found” response. On the other hand, the non-empty result means that 

the requested service is registered in the platform. Depending on the resResult datatype 

property, the platform takes its action. For instance, if the resStatus datatype equals “0”, 



 

 

then the PU responds to the requested service with the result of the functional script that 

the ontology manager provided. Otherwise, the response is directly provided by the result 

of the resBody of the ontology manager’s results. An example of the implementation is 

illustrated in the next subsection.  

[Figure 8 near here] 

3.4.KPI case study 

In order to demonstrate the usage of the platform, an example of deploying the 

Performance Analysis MES function is illustrated in this subsection. This use case 

demonstrates the actual FASTory7 assembly line located in Tampere University of 

technology in Tampere, Finland. The FASTory line contains 12 workstations equipped 

with IoT devices following the eScop project approach which described in (Ondřej Severa 

and Roman Pišl, 2015). These workstations contain robot resource and conveyor resource 

that are represented by IoT devices as discussed in (Mohammed et al. 2016). In total, 24 

IoT devices publish events that describe the changes in the status as depicted in Figure 9.  

[Figure 9 near here] 

Regarding this scenario, the performance analysis MES function performs the 

following activities: 

(1) It measures continuously the exploitation ratio of a resource in the PHL as 

presented in equation (2). 

(2) It serves a GET method for retrieving the utilization efficiency KPI that is defined 

in ISO 22400-2:2014 standard (International Organization for Standardization 

2014). 
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Following the definition of the KPI definition in the aforementioned standard, 

equation 1 results with the busy time for a resource. Following that, equation 2 results the 

exploitation KPI by calculating the ration between total running time with respect to the 

total busy time.  

[Equation 1 near here] 

[Equation 2 near here] 

Where,  

TIdle→busy→Idle: the period that the resource has been in the busy state. 

Tbusy: the summation of the periods, which the resource has been in busy state. 

Ttotal: the total period since the system is running. 

[Figure 10 near here] 

As appears in Figure 10 , the received event from the PHL follows the eScop 

templates for event. The id and resourceId represent the event ID and the event publisher 

ID respectively. The lastEmitted provides information about the last emitting of the event. 

The format of the time in milliseconds since 00:00:00.00 01/01/1970. The specific 

information of the event is held in the payload. In this manner, the “v” key represents the 

value of the resource stat, the “q” key represents the quality of the value and “t” key 

provides the current time once the event is issued. 

To do so, the MES functions should subscribe to the resource state change event in 

the PHL. In this context, the platform requests from the device catalogue 

(deviceCatalogue datatype for Configurations class in Figure 11) the specific URL of the 

subscription. The platform subscribes in PHL by providing the notification URL for the 

event (eventListenerUrl datatype of Configurations class in Figure 11). 

[Figure 11 near here] 



 

 

With reference to this, the platform performs the functional script, which is shown in 

Figure 12. Each time the platform receives an event with stateChanged id and the status 

is IDLE. The functional script performs the arithmetic equations (1) and (2). The 

OM.setParameter and OM.getParameter are embedded functions for manipulating 

parameters in KBS. It has to be noted that the functional scripts are in JavaScript language 

because the platform has been built using Node.js8.  

[Figure 12 near here] 

Then the platform responds with the KPI value once the GET KPI service is invoked. 

The service uses calculateKPI functional script (see Figure 13). 

[Figure 13 near here] 

4. Discussion 

The employment of the proposed framework allows the dynamic system 

reconfiguration as the functional requirements and corresponding components are being 

bound in the runtime. The dependency injection mechanism outlined in the OKD-MES 

concept was improved and implemented in the presented platform. In combination with 

the ontology based configuration and communication in the system, the platform enables 

“cooperation without coordination”. Furthermore, the community driven evolution of the 

platform functionality is enabled. Considering that the design of the system is based on 

the open and widely accepted web standards, is technology agnostic and is enabling the 

proper isolation of abstraction levels. Some of the technical and social challenges of the 

platform acceptance are addressed and possible developer community can be  broadened. 

The modularity of the system encompasses the small steps migration from the 

                                                

8 https://nodejs.org/en/ 



 

 

conventional MES solutions to OKD-MES and possible further improvement of the 

systems.  

As it can be compared with ready-made solutions, the presented platform depends on 

the loosely coupled concept of web services while some of the listed solutions in Table 2 

depends on the stand-alone installation concept with access to the web for extra features. 

This may decrease the installation cost and time and more important, it eliminate the 

dependency of the available resources. On the opposite, the presented platform lack of 

maturity and requires more development to address the challenges as sellable product. In 

regards of functionality, the presented MES platform allows the user to define the logic 

of the functionality according to the manufacturing systems needs while the ready-made 

solutions provide more rigid functionalities. 

One of the most important disadvantages is the increased demand in computational 

resources to maintain the performance of the system. As any loosely-coupled system, 

current, OKD-MES platform has communication and configuration overhead, comparing 

to the tightly-coupled analogues. Furthermore, the late binding based on the ontology 

increases its complexity, making the process more resource demanding. Another 

challenge is the security of the system. The use of widely accepted web standards and 

internet-based communication leads to an increased amount of vulnerability points in the 

system. Besides the technical security, there is a wider challenge to overcome the “digital 

angst” – overall scepticism towards the web, which is especially strong in the established 

domains such as manufacturing. Finally, to exploit all the benefits of the proposed 

platform there is a need to modify the paradigm in the development of surrounding 

systems. For example, the controllers in the manufacturing lines should expose more 

metadata about themselves, and provide the functionality of the higher level of 

abstraction.  



 

 

The authors claim that the advantages of the proposed approach are addressing 

emerging needs in growing factory information systems, while some of the drawbacks 

and challenges are showing a trend to be resolved by the advance of technology and 

overall digitalization in all domains of human life.  

5. Conclusion 

The article has described an architecture for implementing MES systems. The 

presented architecture is expected to serve the manufacturing systems through MES 

functionalities. The platform showed an easy configurability and flexibility in terms of 

setting up by the user. Moreover, it addressed the genericity of serving different 

manufacturing systems. Since the platform relies on Node.js, the installation is expected 

to be simple and fast. This platform has been tested on a discrete assembly line in Tampere 

University of Technology where the target was to highlight the functionality of the 

platform. 

Future work should address development of relevant business models to support 

OKD-MES principles as migration towards knowledge-driven approaches would require 

rethinking established industrial practices. The change would need the actions on all the 

levels of OKD-MES architecture, starting from the controller devices in charge of 

industrial enjoinment to the higher-level information systems, where the shift from 

databases to knowledge bases should be performed. This would require development of 

new methodologies to include proved methods and powerful and easy-to-use tools. 

However, the authors believe that the development of such tools and methods will be 

growing and supported due to broad availability of developers and experts working with 

the web standards, which are also in the core of the presented architecture. In addition, 

well-established tools are available from the general software engineering discipline. 

Those tools can be easily adopted in the field of industrial automation. Moreover, the 



 

 

platform is planned to be developed and tested in terms of reaching a productive tool 

which allows distribution and exploitation in other research work. 
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Tables 

Table 1. MESA International MES Fonctions briefe description (MESA International 2011) 

Function Description 

Resource allocation and status Manages resources information, providing detailed history and status on real time 

Operations/Detail Scheduling Provides sequencing, recognizing alternative and overlapping/parallel operations 

Dispatching Production Units Manages flow of production units 

Document Control Controls  records/forms to be maintained with the production unit 

Data Collection/Acquisition Obtains the intra-operational production and parametric data from the factory floor 

Labour Management Provides optimisation of the labour exploitation 

Quality Management Provides real time information to assure product quality 

Process Management 

Monitors production and provides or corrects decision support to improve process 

activities 

Maintenance Management Tracks maintenance activities and provides instance solutions 

Product Tracking and Genealogy 

Provides the status information of work activities. Also it may generate historical 

information for the products that have been produced 

Performance Analysis Presents the performance (i.e. KPIs) of the facility for more study and analysis. 

Table 2. Ready MES solution in the market. 

MES System  Key Feature  Other information 

POMSnet by Honeywell 

Process Solutions  

Specification Management, Material Management, Quality 

Management, Inventory Management, Production 

Management, Weigh and Dispense, Equipment Management, 

Process Control Integration and Standard Reports 

Integration with process control, ERP, CAPA 

web-based, built on Microsoft´s .NET 

technology 

(For life science), complies with CFR 21 Part 

11 and ISA manufacturing standards. 

ABB MES Warehouse management, Assess management (preventive 

maintenance) support for industry type (descrete, food, metals, 

mining), support by role (business management, operations, 

management, shopfloor operators, mainteinace supervisor, 

supply manager, IT manager) 

ISA-95 based solution 

integration with ERP 

Rockwell Automation MES  Supplier Management, Production Inventory, Analysis and 

reporting tool (operational content for identification and root 

cause analysis of KPI), Material Management 

 

Siemens SIMATIC IT Modular architecture which provies solutions for some of the 

manufacturing systems functionalities via SIMATIC 

application family (Historian, Interspec, Line Monitoring 

Systems, Preactor Advanced Planning and Scheduling, 

Unicam, Unilab, eBR)  

conforms ISA-95, 

interaction with product specification 

management, ERP, other business systems 

GE Intelligent Platforms Modular, consists e.g. Quality, Efficiency, Production 

and Bach Analysis applications , other Prophecy Suit 

uses SOA approach and OPC UA standard,  



 

 

applications such as Data Management, Maintenance Gateway, 

Scheduler, Workflow, Enterprise, Trouble-shooter and Cause, 

Historian, Pulse, WebSpace/GlobalView, Portal 

 



 

 

Figures’ Captions 

Figure 1. OKD_MES concept by (Iarovyi et al. 2016) 

Figure 2. MES platform architecture 

Figure 3. The ontology model 

Figure 4. Setup activity diagram 

Figure 5. Event subscription sequence 

Figure 6. SM notification 

Figure 7. Runtime workflow 

Figure 8. Validation SPARQL scripts 

Figure 9. FASTory assembly line  

Figure 10. PHL events format as provided by eScop 

Figure 11. Performance analysis case-scenario 

Figure 12. measureBusyTime functional script 

Figure 13. calculateKPI functional script 

  



 

 

Equations 

𝑇𝑏𝑢𝑠𝑦 =  ∑ 𝑇𝐼𝑑𝑙𝑒 →𝐵𝑢𝑠𝑦→𝐼𝑑𝑙𝑒  (1) 

𝐾𝑃𝐼𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑏𝑢𝑠𝑦
× 100% (2) 

 


