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Abstract

The use of solar sails as passive deorbiting devices has been studied and justified as an effective strategy in the recent
literature. There are different possibilities on how to use solar sails to that end, and these can be classified based
on how is the attitude of the spacecraft controlled. The proposed strategies consist either of maximising the solar
radiation pressure acceleration during the whole trajectory or of switching from maximal to minimal effect along the
orbit according to different approaches which requires a different solar sail attitude control.

This paper addresses the possibility of effectively and passively deorbiting spacecraft using an analogue to the
quasi-rhombic-pyramid concept to planar motion with the ultimate goal of suppressing the need of attitude control by
achieving passive attitude stabilisation. Special attention is paid to the transition from solar radiation pressure to drag
dominated regions.
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Nomenclature

P Panel

w, h Width and height of panel [m]

α Aperture angle [deg or rad]

d Centre of mass - centre of pressure offset [m]

ms,mb Mass of sail structure and bus [kg]

sb Bus side length [m]

C Inertia moment along rotation axis [kg m2]

ζ Rotation axis

ϕ Euler angle [deg or rad]

φ Relative orientation [deg or rad]

M Torque along rotation axis [kg m2 s−2]

F Force vector [kg m s−2]

u Unitary vector

n Unitary normal vector

pSR Solar radiation pressure at 1 AU [N/m2]

Aexp Area exposed to sunlight or atmosphere [m2]

∗Corresponding author, narcis.miguel@polimi.it

η Reflectance of the panels

ρ Atmospheric density [kg/m3]

CD Drag coefficient

x, y, z Earth centered inertial frame coordinates

R⊕ Mean radius of the Earth [km]

µ⊕ Mass parameter of the Earth [km3/s2]

J2 Coefficient of the second zonal harmonic

Subscripts

x,y,z Along the direction x, y, z

± Referred to panel P±

SRP Referred to solar radiation pressure

drag Referred to atmospheric drag

S Referred to Earth-Sun vector

rel Referred to the relative velocity vector

GG Referred to gravity gradient
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1. Introduction

The growing population of space debris in the last
decades has increased the interest and need for end-
of-life disposal devices and strategies. Recent litera-
ture has focused on the idea of carrying an on-board
deployable surface that increases the area-to-mass ra-
tio of spacecraft to enhance either the effects of Solar
Radiation Pressure (SRP) or the effects of atmospheric
drag [1, 2, 3, 4]. The enhancements of SRP acceleration
for deorbiting apply for high altitude orbits, whereas at-
mospheric drag is useful for lower altitudes, but in either
case the maximisation of their effect on the orbit for any
purpose requires attitude control.

Concerning the SRP, in [5] different strategies were
compared: on the one hand, the so-called passive ap-
proach [2] that consists of maximising the cross area
exposed to the sunlight direction to increase the eccen-
tricity of the orbit on the long term an hence to reduce
the perigee radius; and on the other hand the so-called
active strategy that consists of maximising the cross area
when travelling towards the Sun and minimising it when
travelling away from it to reduce the semi-major axis
of the orbit [6]. An approach derived from the latter,
called modulating and introduced within the ReDSHIFT
Project [5] consists of exploiting the SRP enhancements
when secular and long-term evolution of the eccentricity
is positive, was also put to the test. The passive strategy
was found to be the most effective technique for short
deorbiting times, while active approaches were of inter-
est for longer deorbiting times.

The main drawback of these approaches is that atti-
tude control is required. In [7] the idea of the usage of
a Quasi-Rhombic Pyramid (QRP) shape for the sail was
used. Such shape is meant to cancel the components of
acceleration that are not along the sunlight direction, in
average. These structures and variations of it have been
studied in the recent literature, with studies that range
from dynamics of these kind of structures to applica-
tions, see, e.g. [8, 9, 10, 11, 12, 13].

The goal of this paper is to study the dynamics and
performance for deorbiting purposes of these kind
of sails in transitions from orbits in SRP dominated
regions to atmospheric drag dominated regions, where
one expects to see auto-stability properties either
around velocity relative to the atmosphere (due to drag)
or around the direction of sunlight (due to SRP). To this
end, a simplification of the original QRP that avoids
out-of-plane motion is considered. In [13] the effects
of SRP and drag were studied separately for these
family of sails, showing that one can find stable attitude
dynamics far from sunlight or velocity vector; namely

there seems to be a non-negligible region of stable
oscillations in both cases. Here the interaction between
the two effects is studied.

The paper is organised as follows. First, in § 2 the
family of sails under consideration are described, to-
gether with the main physical parameters they depend
on. In § 3 the models of the attitude and orbit evolution
are provided, together with a list of remarks on attitude
dynamics, dynamics on the SRP dominated regions and
on autostabilisation of the family of sails considered.
In § 4 the main numerical experiments is justified in
light of the previous remarks and the available litera-
ture, and the main numerical results on autostabilisation
are shown and explained. The contribution finishes in
§ 5 with conclusions and future lines of research that
emerge from this paper.

2. Geometry of the sail structure

The class of spacecraft considered here consist of a
payload attached to an already deployed deorbiting de-
vice. This device is a sail that consists of two equal rect-
angular panels of width and length w, h, respectively, at-
tached to one of each h-long side, see Fig. 1. This is a
simplification of the QRP that avoids out-of-plane mo-
tion, that is considered to happen on the ecliptic plane.
The payload is assumed to be on a principal axis of in-
ertia as depicted in Fig. 2. The rotations can only occur
around an axis that is perpendicular to the normal vec-
tors of both panels, call it ζ, that is in fact a principal
axis of intertia of the body frame Fb.

P+
P−

w

h

ζ Fb

Figure 1: Sketch of the sail structure, 3D view.

Apart from the size, mass and reflectance (physical)
parameters, that characterise the area-to-mass ratio and
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the size of the acceleration perturbation due to either
SRP or drag, the main physical descriptive parameters
of the structures are

- The aperture angle α ∈ (0, π/2) rad, defined as the
angle formed by the each panel with respect to the
axis where the payload is assumed to be on, and

- The center of mass - center of pressure offset d,
measured in meters, defined as the (signed) dis-
tance between the center of mass of the payload
and the sail structure.

These two parameters α and d are depicted in the
sketch of the top view of Fig. 1 in Fig. 2, where the
sail panels appear as the red (grey) segments and the
payload is represented by the black dot.

α

Fb

d

Figure 2: Top view of the spacecraft. The bus is depicted as a black
solid circle. Here d < 0.

If ms,mb denote the mass of the whole sail structure
and bus, respectively, the bus is cubic with side sb, after
putting the center of mass of the whole spacecraft at the
origin of the body frame Fb, the inertia moment along
the ζ axis can be written as

C =
1
6

mbs2
b + D, where (1a)

D =
1
6

msw2 cos2 α +
d2m2

b(mb + 2ms)
(mb + ms)2 . (1b)

3. Model

The model used in this paper is a coupled system of
translational and rotational differential equations. These
were derived in [13], and the reader is referred to this
reference for further details. The orbit dynamics is the
J2 problem - the motion of a massless particle around
an oblate planet keeping only the second degree zonal
harmonic of the expression of the perturbing potential -
perturbed by SRP and atmospheric drag forces, written

in an Earth center inertial frame FI . Denote the vari-
ables x, y, z, and ix, iy, iz the vectors of the basis. As the
problem is planar, the vector iz is parallel to the rota-
tion axis of the spacecraft and perpendicular to the or-
bital plane. This is coupled with the attitude dynamics,
whose equations of motion can be written as only de-
pending on one single Euler angle ϕ ∈ [0, 2π) rad that
describes the orientation of the body frame Fb with re-
spect to FI , as

Cϕ̈ = M, (2)

where M is the sum of the torques under consideration,
and C is the inertia moment along the ζ axis defined in
Eq. 1.

It is important to note that the spacecraft shadows it-
self, fact that has to be taken into account when writ-
ing the expressions for torques and accelerations. Let
λ denote the angle defined by the position of the Sun
with respect to ix; and let δ be the flight path angle, see
Fig. 3. The torques and accelerations due to SRP and
drag depend on the value of ϕ − λ and ϕ − δ, respec-
tively, through the direction in which each force acts
and on the exposed area of the panels. The expressions
in both cases are analogous, but the role played by λ in
SRP is played by δ in drag. To simplify the notation,
and to stress the analogy between the two effects, let us
here use the same symbol φ to denote the relative orien-
tations, either ϕ − λ for SRP or ϕ − δ for drag.

δ

x

y

λ

rS

rsc
vrel

Sun

Earth

Figure 3: Sketch of the main elements that play a role in the dynamics
of the studied family of spacecraft in the Earth centered inertial frame
FI .

Table 1 is a summary of the area Aexp that is exposed
to either the SRP or the drag flux for each possible rela-
tive orientation.

It is straightforward to see that the width of the panel
that is not self-shadowed (see the cases φ ∈ (−π +
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φ =

{
ϕ − λ, or
ϕ − δ

Exposed area Aexp
P+ P−

[−π,−π + α] h · w h · w
(−π + α,−π/2] h · w h · w′(−φ)

(−π/2,−α] h · w 0
[−α, α] h · w h · w
(α, π/2) 0 h · w

[π/2, π − α) h · w′(φ) h · w
[π − α, π) h · w h · w

Table 1: Exposed area as a function of the relative orientations.

α,−π/2] and φ ∈ [π/2, π − α) in Tab. 1) can be writ-
ten as

w′(φ) = 2w
cos φ sinα
sin(α − φ)

.

Remark that the accelerations and torques due to SRP
and atmospheric drag are piecewise smooth, and they
have φ = ±π ∓ α, φ = ±π/2 and φ = ±α as switch-
ing manifolds, where the equations lose differentiability
with respect to φ, but not continuity.

3.1. Force models

The acceleration due to SRP and atmospheric drag
are considered. Following [14], the force due to SRP
exerted to the panel P± whose exposed area is Aexp is

F±SRP =−pSRAexp(n± ·uS) (2η(n± ·uS)n±+(1 − η)uS), (3)

where n± are the normal vectors to the sail panels, uS
is the direction of the Earth-Sun vector, see Fig. 3, η ∈
(0, 1) is the (dimensionless) reflectance1 of the sail and
pSR = 4.56 × 10−6 N/m2 is the solar pressure at 1 AU,
that is considered to be constant.

Concerning atmospheric drag, the force exerted to
panel P± reads

F±drag = −1
2
ρv2

relCDAexp(n± · urel)urel, (4)

where urel is the direction of relative velocity vector, vrel
is its modulus, so vrel = vrelurel, see Fig. 3, ρ is the at-
mospheric density in kg/m3, and CD ∈ (1.5, 2.5) is an
empirically determined dimensionless drag coefficient.
For simulations, the model used to retrieve the of atmo-
spheric density is that proposed in [15].

1In the literature the notation cR = 1 + η is used, and it is referred
to as reflectivity coefficient.

3.2. Orbit dynamics

Building on previous contributions on the usage of
SRP to design end-of-life disposals, see [2, 1, 4, 5],
the J2 problem perturbed by SRP and atmospheric drag
forces is considered. Here the effect of eclipses is not
taken into account. In Cartesian coordinates, the equa-
tions read

ẍ = −µ⊕x
r3 −

3R2
⊕µ⊕J2

2
x
r5 + ax + bx (5a)

ÿ = −µ⊕y
r3 −

3R2
⊕µ⊕J2

2
y
r5 + ay + by, (5b)

where r =
√

x2 + y2, µ⊕ = 3.986 × 1014 m3/s2 is the
mass parameter of the Earth, R⊕ = 6378.1 km is the
mean Earth radius, and a, b refer to the acceleration due
to SRP and drag, respectively. These are the sums of
the accelerations due to each panel in the corresponding
direction factored by the non-shadowed area given in
Tab. 1. Note also that rS = ruS, see Fig. 3.

3.3. Attitude dynamics

The attitude dynamics is governed by the set of 2 dif-
ferential equations given in Eq. 2, where

M = MSRP + Mdrag + MGG,

each of the summands being the torques due to SRP,
drag and Gravity Gradient (GG), respectively. In [13]
the authors justified that the torque due to panel P± of
SRP is of the form

Aexp

mb + ms

pSR

2
M±0 (ϕ − λ, η), (6)

where

M±0 (ψ, η) = −1
2

k1,1(η) sin(2ψ)

±k2,0(η) cos2 ψ ± k0,2(η) sin2 ψ (7)

and

k1,1(η) = sinα[2dmb(2η cos(2α) + η + 1)
+w(mb + ms)(cosα − η cos(3α))], (8a)

k2,0(η) = sin2 α[4dηmb cosα
+w(mb + ms)(1 − η cos(2α))], and (8b)

k0,2(η) = cosα[2dmb(η cos(2α) + 1)
+ηw(mb + ms) sinα sin(2α)]. (8c)

The advantage of this formulation is that the torque
due to panel P± due to atmospheric drag force can be
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written using the functions M±0 , k1,1, k2,0 and k0,2 but
with η = 0; namely it reads

Aexp

mb + ms

ρv2
relCD

4
M±0 (ϕ − δ, 0). (9)

Note that the dependence on the relative orientation
of Aexp is reflected in the expressions given in Tab. 1.

Finally, concerning the torque due to the gravity gra-
dient, since the bus is assumed to be symmetric, it reads

−3µ⊕
2r3

D
C

sin(2(arctan(y/x) − ϕ)), (10)

recall Eq 1.

3.3.1. Some remarks on attitude dynamics
The main purpose of this paper is the exploration of

the possibilities of structures such as those sketched in
Fig. 1 in transitions from SRP dominated regions to drag
dominated regions for their auto-stabilising properties.
In either SRP or drag dominated region, the attitude dy-
namics is expected to be of the form

Cϕ̈ = M? + other effects,

where? is either SRP or drag, and the other two remain-
ing effects (drag or SRP, depending of what ? refers to,
and gravity gradient) are expected to be smaller. This
suggests to study the system

ψ′′ = MSRP, (11)

where (′) = d/ds and s is a time variable (obtained by a
constant scaling of the original time variable t) chosen
so that one gets rid of the prefactor of Eq. 6 and of C;
and ψ = ϕ − λ consists of shifting the sun-pointing
direction to the origin. This reduction is justified and
performed in full detail in [12]. Here SRP is chosen
instead of drag for two reasons: on the one hand, the
pressure close to Earth is assumed to be constant, recall
§ 3.1, so it does not depend on the actual orbit we are on
but only on time, and on the other hand, the expression
for drag is just the particular case of the SRP problem
with η = 0.

For system Eq. 11 the sun-pointing direction E0 : ψ =

0, ψ′ = 0, and its reverse E1 : ψ = −π, ψ′ = 0 are equi-
libria. In [12] it was proven that a necessary condition
for the stability of E0 (and hence the instability of E1
due to the sign change) is that d > dmin, where

dmin =
w(mb + ms)

2mb
K(α, η), where (12)

K(α, η) =
η cos(3α) − cosα
2η cos(2α) + η + 1

.

Note that dmin < 0 [13] and this condition has the phys-
ical interpretation of being the longest distance between
sail structure and payload behind the structure, as de-
picted in Fig. 2, so that the sun-pointing direction is sta-
ble.

The existence of other equilibria depends on the
values of the three parameters α, d and η, and has to be
numerically tackled. From Eq. 11, the set of equilibria
are those points on ψ, ψ′ such that ψ′ = 0 and MSRP
vanishes.

To fix ideas, the values η = 0, 0.8 are used. The lat-
ter corresponds to drag while the former is a typical re-
flectance value. As the parameter η is fixed, the param-
eter space is 2-dimensional depending on α and d.

Assume that d > dmin, that is, the sun-pointing direc-
tion E0 is stable (this case is depicted in the forthcoming
Fig. 5). The parameter space can be divided into regions
according to the number of equilibria the system has. As
MSRP is symmetric, MSRP(−ψ) = −MSRP(ψ) and E0,1 are
always equilibria there is numerical evidence that there
are either 2, 4 or 6 equilibria, as depicted in Fig. 4. A
description of each of these 3 cases follows.

(1) Only E0,1 are equilibria, E0 is stable and E1 is un-
stable. This is true also in the other two cases. See
Fig. 4 top.

(2) The equilibria are E0,1 and two other equilibria at
ψ = ±ψbif(α, d, η) at bifurcation, where MSRP is
tangent to ψ′ = 0. See Fig. 4 middle.

(3) The equilibria are E0,1 and two pairs of stable-
unstable equilibria that bifurcate from the previous
bifurcation points. Fig. 4, bottom.

The bifurcation is of the saddle-center type, that is
of co-dimension one so it can be locally explained by
one single parameter. As η is assumed to be fixed, our
system depends on 2 parameters, one expects to be able
to find a curve of bifurcations in the (α, d) plane that
separates the set of parameters for which there are 2 and
6 equilibria. The bifurcation curve would be the set of
parameters for which there are 4 equilibria.

This is the contents of Fig. 5, where on top (resp. bot-
tom) the bifurcation diagram for η = 0 (resp. η = 0.8)
is displayed. In both panels, the plane is separated in
3 regions: below the red (dashed) line, that represents
d = dmin, recall Eq. 12. Below this line E0 is not a sta-
ble equilibrium and this set is not relevant for this con-
tribution. The region labelled as “case (3)” between the
red (dashed) and blue (solid) curve are the value of the
parameter for which Eq. 11 has six equilibria. Above
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Figure 4: Phase space of Eq. 11 for α = 45◦, η = 0.8. The choices of
the parameter d is done so that: Top, MSRP vanishes twice in [−π, π);
middle: four times; bottom: six times. The vertical dotted lines indi-
cate the switching manifolds.

the blue (solid) line, in the region labelled as “case (1)”,
only E0,1 are equilibria of Eq. 11. The transition “case
(2)” blue (solid) curve is the line of bifurcation points,
and the parameter values on this curve are those for
which Eq. 11 has exactly 4 equilibria. In the bottom
panel of Fig. 5 the values

d1 = 0 m,
d2 = −2.60342454037092 m, and
d3 = −2.98660630839676 m

for α = 45◦ are highlighted. The value d2 is a numeri-
cally approximated bifurcation point. These are the ex-
amples in Fig. 4, where the values of d used is indicated

in the title of each panel.

0

0

30 60 90

-4

-2

case (1)

case (2)

case (3)
dmin

E0 is unstable

d
[m

]

α [deg]

Bifurcation diagram in (α, d)-plane η = 0.0

0

0

30 45 60 90

-5

-10

case (1)

case (2)
case (3)dmin

d1

d2

d3

E0 is unstable

d
[m

]

α [deg]

Bifurcation diagram in (α, d)-plane η = 0.8

Figure 5: Bifurcation diagrams in the (α, d) parameter space. Top:
η = 0.0. Bottom: η = 0.8. The blue (solid) line is the bifurcation
curve, while the red (dashed) line is dmin, see Eq. 12.

These remarks should be taken into account when de-
signing any control strategies that include the change
of aperture angle α. In the examples shown in Fig. 4
even though the bifurcation occur inside the main re-
gion of stability it may happen, as is typical in conser-
vative systems, that as parameters change, the stability
region can separate in more than one connected compo-
nent and hence the overall global dynamics would dras-
tically change, see [16].

Note that this numerical study can also be performed
considering the parameter η. This can be of interest for
control strategies based on electrochromic properties of
the sail panels, see [3].

3.3.2. Some remarks on SRP dominated regions
If the motion starts above 800 km of altitude the at-

mospheric drag effect is negligible and the problem re-
duces to SRP perturbed J2 problem for orbit dynamics
and the attitude dynamics is that of SRP and gravity gra-
dient, that can be interpreted as a perturbation of the lat-
ter, see [13]. The coupled attitude and orbit dynamics
in this regime can be reduced to a fairly simple prob-
lem after first separating the rotational and translational
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dynamics and then using single averaged theory. Sum-
marising, one would proceed as follows

1. The separation of attitude and orbit dynamics was
formally addressed in [12]. The main result is that
if the sail is initially oriented towards sunlight in a
way that both panels face it, namely |ϕ − λ| < α,
recall Tab. 1, for large enough area-to-mass ratio,
the oscillating motion around the Earth-Sun vec-
tor can be averaged out. This procedure leads to
a system that consists only of the orbital equations
of motion, perturbed by a term that can interpreted
as the SRP effect of a flat sail always perpendicu-
lar to the Earth-Sun vector along the motion. The
area of this ’equivalent’ sail depends on the area
of the panels of the original structure (Fig. 1), the
aperture angle α, the reflectance η and the initial
amplitude of the oscillations around the Earth-Sun
vector. An explicit formula was also provided. If
one assumes that the sail is initially pointing ex-
actly in the direction of the Earth-Sun vector ϕ = λ,
i.e., the amplitude of the oscillations with respect
to the Sun is initially 0, the effective area of the sail
is

Aeff = h · w · [(2 + η) sinα − η sin(3α)
]
. (13)

2. After the previous reduction the problem to deal
with is the two-body dynamics of a spacecraft with
high area-to-mass ratio perturbed by J2 effect and
SRP. This can be further simplified via single av-
eraging [17, 18, 19]. In the proposed formula-
tion, the semi-major axis a is constant in average,
and the averaged variation of the eccentricity e and
β = ω − λ + π, where ω is the longitude of the
pericenter of the osculating orbit, can be written in
Hamiltonian form with Hamiltonian function

H = −
√

1 − e2 + W1e cos β − W2

3(1 − e2)3/2 , (14)

where W1 and W2 are constants related to SRP and
J2 effects, respectively, that read

W1 =
3
2

pSR(1 + η)
Aeff

mb + ms

a2

µ⊕
n
n�

(15a)

W2 =
3
2

J2
R⊕
a2

n
n�
, (15b)

where n = 2π
√
µ⊕/a3 and n� are the mean motion

on the orbit and of the apparent motion of the Sun,
respectively.
This formulation was exploited in [1, 2] as the the-
oretical framework of the so-called passive deor-
biting strategy. Recall that, as mentioned in the in-
troduction, these papers dealt with finding the area-
to-mass requirements so that the dynamics lead to

an increase of the eccentricity of the orbit as this,
in turn, causes a decrease the perigee radius. See
also [20] for a description of the phase space of this
problem.

3.3.3. Some remarks on attitude stability
The stability of a solar sail structure as that sketched

in Fig. 1 was studied in [13], where numerical evidence
of the existence of attitude-stable orbits was provided.
In this cited reference the considered the equations of
motion were the orbit ones as in Eq. 5 coupled with atti-
tude taking into account either SRP+GG or drag+GG
effects, studied separately to focus on attitude initial
conditions that remained close the sun-pointing direc-
tion or the relative velocity vector, respectively.

The main results are evidence of the existence of a
set of effective stability (meaning that the stability prop-
erty is conserved for long time spans but there is not yet
any rigorous justification of this fact) close to the cor-
responding directions of interest. On the other hand,
the numerical results in [13] for the drag+GG case jus-
tify that deorbiting can be achieved along an orbit where
the attitude is maintained by itself via autostabilisation
close to the relative velocity vector.

4. Numerical study

The remarks of the previous section give a global per-
spective on the possible motions one could be interested
in, when trying to deorbit a solar sail as such in Fig. 1,
trying to choose initial conditions so that the motion re-
mained stable either close to the sun-pointing direction
or close to the relative velocity vector for as much time
as possible, without any aid of attitude control.

4.1. Choice of initial conditions and physical parame-
ters

The problem addressed depends on many physical
parameters, and the phase space is 6 dimensional -and
so is the set of initial conditions to be chosen- so tack-
ling the problem requires reducing the orbits and space-
craft to be studied to the most relevant for the purpose
of this paper. Here the remarks done in § 3.3.1, 3.3.2
and 3.3.3 are put together to that end.

Let us first deal with the set of attitude and orbit ini-
tial conditions for the simulations. The spacecraft-sun
distance is considered to be constant -recall pSR is as-
sumed to be constant-, hence the most reasonable sce-
nario where to find attitude stable orbits in transitions
from SRP to drag dominated regions would be among
orbits initially on an SRP dominated region, say with
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semi-major axes a ≥ R⊕ + 1000 km initially pointing
close to the Earth-Sun vector. When entering a region
where atmospheric drag plays a relevant role, one ex-
pects that, as it is a dissipative effect, the spacecraft
will naturally deorbit, but as it gets closer to Earth’s
surface, the drag effect becomes stronger and is hence
more likely to destroy the stable attitude character to-
wards sunlight.

Taking this into account, the spacecraft is assumed
to be initially placed at an orbit with semi-major axis
a = R⊕ + 1000 km, where the drag effect is negligi-
ble in front of the SRP effect, pointing exactly towards
sunlight, that is, initially ϕ = λ. Even if the amplitude
of the oscillations increase they will do in regions like
those depicted in § 3.3.1, so the stable character is less
likely to be lost. As exposed in § 3.3.2, the motion in
the very beginning of the evolution behaves as if it was
a sail of area Aeff as given in Eq. 13 always pointing
towards sunlight; the semi-major axis remains close to
constant in average and the two main orbital elements
that characterise most of orbital initial conditions are ω
(through β, the argument of the perigee measured with
respect to λ) and e.

Despite the Hamiltonian H, see Eq. 14, is symmetric
with respect to β, ω is discretised in the whole inter-
val [0◦, 360◦) as the joint effect of drag, SRP and GG is
likely to destroy any symmetry, although some reminis-
cence of it might still be observed in simulations.

Concerning the choice of the range of e, to have a
global point of view of the joint effect of SRP and drag
with different initial magnitudes of the drag effect, one
should choose values as follows: if the motion starts at
an orbit with a = R⊕ + 1000 km, the range of eccen-
tricities to be dealt with should be those that [0, ecrit],
where

R⊕ + 120 = (1 − ecrit)(R⊕ + 1000), that is,
emax ≈ 0.119,

that is, orbits initially with a = R⊕ + 1000 km, from
circular to those whose perigee radius rp is R⊕ + 120
km, above of what is considered here to be deorbited.
The quantity ecrit is referred to as the critical value of
the eccentricity in the literature, see e.g. [1, 2].

Concerning the choice of shape parameters, the value
d = 0 m has been set, as this parameter was shown not
to affect the deorbiting time in the drag+GG problem
in [13]. On the other hand the aperture angle has been
chosen to be fixed α = 45◦. In the last cited reference
the authors showed evidence that for a fixed panel size,
the larger α the smaller the deorbiting time, provided
one started at the same altitude with the same relative

initial oscillation amplitude. But still, for different aper-
ture angles the deorbiting times are comparable so no
qualitative difference is expected to be seen if other val-
ues of α are chosen. Furthermore, these choices are jus-
tified as the orbit and attitude coupled system can al-
ways be scaled in such a way that the attitude dynam-
ics has the same representation [12]. It is important to
note that the relevance of d is that it governs the size
of the gravity gradient summand Eq. 10 through D, that
is proportional to d2, see Eq. 1b; hence it controls the
relative size between the SRP and drag with GG terms.
The closer d is to zero, the smaller MGG is and hence
the perturbation appearing in the attitude dynamics is
smaller.

From the point of view of the orbit dynamics, the size
of the SRP and drag accelerations is proportional to the
area-to-mass ratio, call it σ. For the same value of a,
different values of σ give rise to different phase space
configurations of Eq. 14. To exemplify the dependence
of the deorbit time and on the attitude stable orbits on
σ three different values of σ of the panels P± have been
considered for simulations: σ1,2,3 = 1, 2, 5 m2/kg. The
averaged dynamics of sails as in Fig. 1 is that of a sun-
pointing flat panel with effective area given by Eq. 13
so at the beginning of the motion the considered sails
have an effective area-to-mass ratio that shall be denoted
as σeff . For the three chosen values, they are, approxi-
mately,

σ1 = 1 m2/kg → σ1,eff = 1.41421356 m2/kg, (16a)
σ2 = 2 m2/kg → σ2,eff = 2.82842712 m2/kg, (16b)
σ3 = 5 m2/kg → σ3,eff = 7.07106781 m2/kg. (16c)

In Fig. 6 the phase space of H, Eq. 14, for the three
values of σeff considered is shown. The displayed part
of the phase space is β ∈ [0, 360) and e ∈ [0, 0.12],
that is, restricted to the zone of interest of the forthcom-
ing computations. The panel in Fig. 6 show the aver-
aged evolution of β and e as a function of time in the
very beginning of the simulations. Note that only or-
bits starting with e close to ecrit go beyond ecrit so if the
spacecraft deorbit atmospheric drag would be the cause
for it, that is, deorbiting will be due to a transition to a
drag-dominated region.

In summary, the numerical exploration of the prob-
lem has been reduced to study deorbiting times and atti-
tude stability along the corresponding orbits starting at
the perigee of orbits whose shape and orientation Keple-
rian elements are a0 = R⊕ + 1000 km, e ∈ [0, 0.119] and
ω ∈ [0◦, 360◦). The study the behaviour in these ranges
has been performed by discretizing among 16 ·16 = 256
initial conditions in e, ω for each of the 3 values of the
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Figure 6: Phase space of H, Eq. 14 for the three values of σeff in
Eq. 16. Purple (solid) lines are contours H = constant, and the black
crosses are the initial conditions used in simulations.

area-to-mass ratio, namely

a0 = R⊕ + 1000 km, (17a)
e0 = 0.0119(0.0067)0.119 (16 values), and (17b)
ω0 = 0◦(22.44◦)359◦ (16 values). (17c)

This discretization is enough for the purposes of this pa-
per as it allows to captures the most relevant qualitative
features of the attitude dynamical properties of the sails
under consideration. The initial conditions (e and ω)
used are crosses in Fig. 6. The attitude has been set ini-
tially to ϕ0 = λ0 = 90◦, ϕ̇0 = 0 rad/s, that is, exactly
towards the sun-pointing direction. The study has been
performed for 3 values of σ1,2,3 of P±, 1, 2 and 5 m2/kg,
respectively.

4.2. Results

Each of the 16× 16 = 256 initial conditions in Eq. 17
for each of the three area-to-mass ratios have been in-
tegrated from t = 0 s until they reached r = 120 km.
The time span required to reach this state is referred to
as the deorbit time, let us refer to it as tdeor. The goal
of this subsection is to describe which is the behaviour
from the point of view of attitude of a spacecraft as in
Fig. 1 in the interval [0, tdeor].

For convenience, the results are separed into two dif-
ferent parts. First, as spacecraft are initially considered
to be pointing towards sunlight, ϕ = λ, so the contents
of § 4.2.1 is to study how long do spacecraft maintain
a stable attitude towards the Sun, and what portion of
the total deorbiting time is spent in this attitude stable
state. The second part of the results, those in § 4.2.2,
are focused of what happens after the helio-stable state
is lost, until the deorbiting is achieved.

4.2.1. Time spent in a helio-stable state
Along the integration, the amplitude of the oscil-

lations with respect to sunlight, measured simply as
|ϕ − λ| have been monitored. All initial conditions were
chosen as ϕ = λ, that is, this amplitude was initially
zero. In the course of the integration this amplitude
changed due to the increasing size of the gravity gradi-
ent atmospheric drag torque and drag acceleration. The
detection of tumbling attitude dynamics with respect
to sunlight, meaning that the rotation is not oscillatory
around the sun-pointing direction but librational with
respect to it is done by setting a threshold in the
maximum amplitude: if a state |ϕ − λ| > 0.9 × π rad
was reached, the spacecraft was considered to have
entered a tumbling mode with respect to the Sun. The
second observable of interest here is the time span
required to enter this tumbling mode, that is referred to
as helio-stable time, and is denoted as th−s. Note that, in
particular, th−s ≤ tdeor.

The summary of all numerical results can be seen in
Fig. 7 where the deorbit times (left) and helio-stable
times (right) are displayed for all considered initial con-
ditions. The top, middle and bottom panels correspond
to the area-to-mass ratios σ1, σ2 and σ3, respectively.
In each of the plots, data is grouped according to the
initial value of e0: each color (different point style) cor-
responds to one value of e0.

Concerning the deorbit times tdeor, shown in the left
panels of Fig. 7, as expected, that the larger e0 is, the
faster the deorbiting is. Recall that in the absence
of the drag effect only the initial conditions whose e0
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Figure 7: Deorbit times tdeor (left column) and helio-stable times
th−s(right column) as a function of the initial ω0. Points in the same
line started in the same e0. Top to bottom: results for each of the three
area-to-mass ratio values considered σ1, σ2 and σ3, respectively.

were close to ecrit would have been expected to deorbit.
Moreover, roughly, even though there is no theory that
supports this numerical evidence, the deorbit times for
σ2 are half the deorbit times for σ1 and those for σ3
are one fifth of the deorbit times for σ1, which is the
same arithmetic relation between the area-to-mass ra-
tios, even though the spacecraft oscillate around the sun-
pointing direction, that makes the effective exposed are
different, according to the oscillation amplitude [12].
Also some reminiscence of the periodicity with respect
to ω0 is visible for smaller values of e0. It is worth
noting that the deorbit times for the maximum value of
e0 = 0.119 considered are of the order of magnitude of

hours for σ1,2 and minutes for σ3.
Concerning the helio-stable times th−s, shown in the

right panels of Fig. 7, the same color code (point style)
has been used for the same initial e0 as in the left plot
to allow for comparison. For smaller (uppermost) val-
ues of e0 there seems to be some resemblance but in
all cases the inequality th−s < tdeor is satisfied. But for
larger values of e0 the shown scale is not adequate for
the visualisation of the differences.

To be able to visualise the differences between tdeor
and th−s a relative measure is a more suitable option: for
each value of e0, the fraction of helio-stable time

th−s/tdeor

has been computed, for all the considered 16 values of
ω0. This defines a curve that has been fitted to a line
f (ω0) = c, where c is a constant, using a least squares
procedure2. It is worth noting that for some values of
e0 there is a large variation of th−s for different ω0. This
fit gives measure that allows for comparison between
different values of e0. Each value of c can be interpreted
as the averaged percentage of time spent by orbits in a
helio-stable state. The results for the three values of σ
considered are displayed in Fig. 8.
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Figure 8: Average time on the orbit spent in a helio-stable state, as
a function of the initial eccentricity of the orbit, e0. In purple (solid
line), blue (dashed line) and green (dotted line) the results for σ1, σ2
and σ3 are displayed, respectively.

In Fig. 8 it can be seen that for smaller eccentrici-
ties the tumbling state with respect to sunlight starts at
the very end of the trajectory, and hence most of the
time (above 97% of it for the smallest e0 for all three σ)
is spent in stable oscillation close to the sun-pointing
direction. This can be related to the fact that auto-
stabilisation of the sail via drag force can be reached
for altitudes below 800 km, see [13]. In case the initial

2The routine fit of gnuplot Version 5.2 has been used to this
end
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value of the perigee radius rp < R⊕ + 800 km one ex-
pects a faster decay as the magnitude of the drag effect
is larger.

For larger values of e0 the results show that most of
the time is spent tumbling (or librating with respect to
the Sun). The tumbling time decreases back below 10%
for eccentricities closer to ecrit, where also the deorbit-
ing time is substantially smaller.

4.2.2. Attitude dynamics after the helio-stable state
After leaving a stable oscillation around the sun-

pointing direction the motion seems to be librational
with respect to sunlight yet the auto-stabilizing shape
of the sail structure can lead to drag-stable motion, that
is, that the sail starts to oscillate close to the relative ve-
locity vector.

This stability is mostly likely to be reached close the
end of the trajectory, right before the spacecraft reaches
= R⊕ + 120 km, as the atmospheric density is larger and
hence the strength of the drag torques and accelerations
are enhanced. In fact, this is actually detected in the
orbit data. In order to have a quantitative idea on how
much time the spacecraft spends in a drag-stable state,
one can proceed as above when detecting the amount of
time spent in helio-stable oscillations, but studying the
orbit data backwards and monitoring the amplitude with
respect to the relative velocity vector, that is, |ϕ − δ|.

Analogously as above, the term drag-stable time is
used to refer to the instant of time in which the space-
craft enters a drag-stable oscillatory state, and is de-
noted as td−s. The way to detect td−s is to read the or-
bit data from the deorbiting time backwards: td−s is the
instant of time where |ϕ − δ| > 0.9π rad is first reached.

As in § 4.2.1, the numerical results are displayed as a
percentage of time spent on a drag-stable state, by aver-
aging

td−s/tdeor

over all values of ω0, for each value of e0. The results of
the time spent on a drag-stable state are shown in Fig. 9,
top. The bottom panel in this same figure is the aver-
age time spent neither in a helio-stable nor a drag-stable
state, that is, librating with respect to both sunlight and
the relative velocity vector. This time span is referred to
as tumbling time and is denoted as ttumb := th−s − td−s.

The shown results in Fig. 9 indicate that the drag-
stable state is only reached at the very end of the mo-
tion. The time spent in this state for the three values
of σ1,2,3 is below 1% for the two smallest values of e0.
Again, for the largest values of e0 considered, the de-
orbit time is extremely small compared to the tdeor for
orbits initially closer to circular, this being the reason
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Figure 9: Average time spent in: top, drag-stable oscillations; and bot-
tom, in a tumbling state with respect to both sunlight and the velocity
vector, as a function of the initial eccentricity of the orbit, e0. In pur-
ple (solid line), blue (dashed line) and green (dotted line) the results
for σ1, σ2 and σ3 are displayed, respectively.

of the decrease of all observables, as for such short in-
tegration time one cannot decide whether the motion is
close to one direction or the other. For most of the e0,
the drag-stable time ranges 5%-10% of the flight time,
but the rest of the motion is tumbling around the two
directions of interest.

5. Discussion and future work

An analogue of the quasi-rhombic-pyramid sail [7]
adapted to planar motion has been put to the test in the
context of deorbiting. The attitude equations of rotation
can be made explicit and dependent on physical param-
eters such as the aperture angle and the center of mass
- center of pressure offset. This allows to study stabil-
ity properties of the structures under consideration sep-
arately in SRP dominated regions and in atmospheric
drag dominated regions, and to provide explicit criteria
for the stability of the sun-pointing direction and rela-
tive velocity vector that depend solely on the physical
parameters of the spacecraft [13].

Close to the stable orientations, the oscillatory mo-
tion can be related to previously studied models [12]
used in contributions dealing with SRP acceleration for
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perfectly controlled spacecraft, that reduce the phase
space to a Hamiltonian one degree of freedom sys-
tem [17, 19, 1, 2, 3]. These models allow to justify that
one can find phase space regions where deorbiting is not
due to SRP but to atmospheric drag effects, so these are
transition regions where both effects play a leading role.

A discretisation of a subset of the phase space, that
is in turn defined using the results of previous studies
on attitude and orbit coupling [13], that only takes into
account the two variables of the one degree of freedom
system (instead of all 4 phase variables) is justified as
enough to explain the main features of deorbiting times
and auto-stabilisation either towards sunlight or the rel-
ative velocity vector. These are the initial conditions
for the motion and rotation of spacecraft with different
area-to-mass ratio, with minimal gravity gradient effect,
to study deorbiting times essentially as a function of
the initial eccentricity and the initial argument of the
perigee of the osculating orbit.

The novel results derived from the presented numeri-
cal study concern auto-stabilisation of the structures un-
der consideration. All initial orbits considered reached
the minimum r = R⊕ + 120 km, the faster ones being
those with larger eccentricity. The maximal value of the
eccentricity considered has been chosen as the critical
value for passively deorbiting a spacecraft [1, 2]. All
studied orbits can be characterised as follows: the de-
orbit time, that is, the time to reach r = R⊕ + 120 km,
tdeor can be separated in three different intervals accord-
ing to the rotational dynamics around sunlight direction
and the relative velocity vector, namely, there are two
instants of time th−s and td−s such that

0 ≤ th−s ≤ td−s ≤ tdeor,

where, if the motion starts close enough to the sun-
pointing attitude, the oscillatory character is maintained
for 0 < t < th−s (helio-stable time), then it tumbles (li-
brates) with respect to both sunlight and velocity vector
in th−s < t < td−s (drag-stable time), and finally it auto-
stabilises with respect to the velocity vector due to at-
mospheric drag until the end of the considered motion,
td−s < t < tdeor. This shows the possibilities of the kind
of structures under consideration for passive deorbiting
purposes.

The main future line of research that emerge from this
contribution is addressing the 3D structure as proposed
in the original reference [7], already initiated in the re-
cent papers [10, 11]: the justification and measurement
of non negligible regions of stability around the sun-
light and velocity directions, the dynamics of oscillatory
states and the effects of coupling SRP and drag and the
possibilities for passive deorbiting.
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