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Abstract 
The present work aims to analyse the application of a 
metaheuristic optimization approach to the design process 
of external shading devices and to assess the obtainable 
energy and comfort performances; in detail, a full search 
optimization and a nature-inspired metaheuristic search 
have been compared to a traditional design approach. 
Subsequently, the analysis has been extended to the 
optimization of glazing properties in order to estimate the 
advantage in terms of simulation time for such process 
when the number of variables increases. Further 
considerations on the possibility to improve the 
optimization by acting on the Particle Swarm 
Optimization (PSO) parameters are also included in the 
study, providing a possible mutation of the traditional 
swarm movement. Developed methods have been applied 
to a real case-study office building. 
Introduction 
The building sector is highly affecting the world`s energy 
use, covering in Europe almost 40% of the total energy 
consumption and having a huge impact on CO2 emissions 
(EU Hub, 2016). In such framework, it is pivotal, during 
a building design or renovation phase, to focus on the new 
requirements and regulations related to Nearly Zero 
Energy Buildings (NZEB) standard, according to the 
Energy Performance of Building Directive (EPBD). The 
use of shading devices is pivotal in commercial buildings 
to reach high energy saving and is often imposed by 
standards (Decreto del Presidente della Repubblica, 
2009). This, it’s important to optimize them in order to 
reduce summer overheating while maximising solar gains 
during winter and decreasing glare problems during the 
whole year (Aste, 2012). The potential yearly energy 
saving due to external shadings varies according to the 
local climate, ranging from a minimum of 1% in cold 
climates up to over 20% in hotter ones (Bellia, 2013).  
The importance of reducing solar gains in hot climates 
brought to the development of many rules of thumb and 
conventional practices in the design of shading devices, 
such as the orientation of the building main side towards 
North/South axis (Morrissey, 2011), the use of vertical 
fins or louvres on the East/West façades and so on. 
Conventional rules, however, might bring to non-optimal 
or even bad results when applied without consciousness 
of the specific application context in which they are 
adopted. Besides, when simulating the behaviour of a 
certain solution, it is fundamental to examine all the 
different parameters that influence the final performance; 

shading a building does not only mean reducing direct 
solar radiation entering the room, but also reduce the 
useful contribute of daylighting, which can be a big 
disadvantage for visual comfort of occupants as well as 
for the costs related to the need of artificial lighting 
(Grynning, 2014). In fact, the optimization of shading 
devices needs to consider several factors including 
climate, building geometry, construction typology and 
even users’ needs. Such process also requires assessing 
heating, cooling and lighting energy demands and also 
computing eventual visual discomfort (Yener, 1998), 
making it a complex study. 
In such respect, the present research proposes a 
metaheuristic optimization methodology for fixed 
shading devices, with the aim of speeding up the design 
process. The method has been tested on the sizing of 
vertical fins applied to a real case-study building.  

Methodology  
Three different methods have been compared for the 
optimization of shading devices (and then extended to 
glazing properties) as follows. 

1) Traditional approach: this process follows a linear 
procedure, the steps of which are usually driven by 
the designer’s experience and traditional rules of 
thumb (Reinhart, 2011) for daylight predictions. 
This is a fast method but often the identified 
solution is not the real optimal one. 

2) Full search approach: this process considers and 
simulates all the possible design alternatives, 
guaranteeing the optimality of the final solution, 
but requires a significantly high computation load. 

3) Metaheuristic algorithm (Yang, 2010): this 
approach typically leads to results which are much 
more accurate than the traditional approach with a 
sensibly lower computation load compared to the 
full search. 

The reliability of metaheuristic algorithms, characterized 
by a particle swarm optimization (PSO), has already been 
proved in many research fields (Chantrelle, 2011); the 
present work aims to show how it can be used in the 
optimization of passive solar strategies (i.e. fixed shading 
devices and glazing proprieties), with the goal of reaching 
very good results in terms of energy saving and visual 
comfort, ensuring an healthy and productive environment 
for workers (Vischel, 2011) with competitive simulation 
times.  
In the present study, the parameters that need to be 
optimized are the geometrical features of the shading 



device, i.e. the depth d and orientation angle β (relative to 
the window pane) of the vertical fins, as shown in Figure 
1. 
 

 
Figure 1: Vertical fins’ geometric properties 

The following sub-sections outline the main features, pros 
and cons of the three adopted approaches. 

Traditional approach 
This method is based on a linear path, focusing on a single 
parameter, finding its best configuration and then passing 
to the next one. The experience of the designer is 
fundamental in finding an optimized final result, which 
might not always be the best solution due to the linearity 
of the process and the use of universal design rules 
(Mohsini, 2006). In this specific case the first parameter 
that was optimized is the depth of the selected shading 
device and, once fixed, the tilt angle of the latter has been 
considered, with the aim of decreasing energy 
consumption and ensuring that cDA (continuous daylight 
autonomy) and G (glare) parameters are within 
comfortable limits. Glare constraint is set up to be met 
only if less than 10% of yearly working hours are above 
the pre-set discomfort glare index (DGI); it is computed 
by EnergyPlus simulation tool through a complex formula 
which includes geometric parameters such as solid angle 
and position index for the determination of the luminance 
values perceived by the users. In order to evaluate 
discomfort of users due to a too high level of illuminance, 
in fact, a glare set point of 28 DGI has been set (Carlucci, 
2015), as it could be considered the maximum bearable 
value for users (Aste, 2018).  Daylight constraint, instead, 
is only satisfied when the cDA reaches a minimum value 
of 65% during yearly working hours (Chan, 2013). Only 
solutions meeting these criteria are considered among 
possible design alternatives. 
However, the final combination of depth and orientation 
angle might not ensure the best results in terms of energy 
saving and comfort, due to design choices. For instance, 
if the angle would have been fixed first, a different 
solution would have been reached; this means that one of 
the two options would have been worse than the other, or 
in other terms, could have been considered as a “local 
optimum”. Consequently, this method can reach 
approximately-good solutions only in case of simple 
problems, characterized by a low number of variables and 
typically leads to a final choice that could be far from the 
truly best design option. 

Full search  
The full search approach is characterized by a 
simultaneous study of the design parameters, analysing all 
their possible combinations within a pre-selected range.  
The accuracy of the solution is usually guaranteed but, if 
seeking for high accuracy in a complex problem, a very 
high simulation time might be required, which represents 
the drawback of this method (Yang, 2010). The absence 
of a middleware software which includes the possibility 
of modifying properties of the model without the need of 
doing it manually, such as Building Control Virtual Test 
Bed – BCVTB (Wetter, 2011), which is instead widely 
used for the real-time control of energy management and 
control systems, brought us to code a script in Matlab; it 
is able to modify the properties of the shading devices 
covering all of the hundreds of possible combinations and 
then run an equal number of simulations of EnergyPlus, 
while plotting results on a final Pareto diagram, which 
summarizes the whole search (Figure 2). Avoiding the use 
of a third-party tool and thus directly connecting Matlab 
and EnergyPlus allows to manage any kind of variable 
and to set constraints that can be adapted to any situation.  
 

 
Figure 2: Full search approach’s workflow 

While ‘Z’ represents the objective function to be 
minimized (yearly electric consumption for heating, 
cooling and lighting), functions G (glare) and cDA 
(continuous daylight autonomy) are responsible of the 
exclusion of those results who do not satisfy imposed 
constraints. 

Particle swarm optimization 
This approach is similar to the previous one in the sense 
that the whole search space is studied, but with the 
difference that the PSO will only evaluate the outcomes 
of a certain number of possible solutions, reaching a 
nearly-optimal result without the need of performing an 
excessive number of simulations; thus, it’s especially 
useful when dealing with contradictory parameters 
(Znouda, 2007). 
The accuracy of the result depends on the PSO parameters 
and the population’s number (Trelea, 2003), which will 
be analysed in detail later on. The value of the inertia 



function and learning parameters within the PSO have 
been chosen according to previous studies which 
demonstrated convergent trajectories (Van Den Bergh, 
2005). The work-flow for this method is similar to that of 
the full search approach, with the only difference that a 
part of code has been added in order to have a feedback 
from EnergyPlus to Matlab on the results of each particle 
(after each iteration), in such a way that the next 
movement of that particle will depend on obtained results. 
An end-criterion has also been added to the code to 
evaluate whether stopping the optimization or going on 
with the following iteration (Figure 3). Functions Z, G and 
cDA are treated in a similar way as described in the full 
search approach. In this method, however, functions G 
and cDA are responsible of assigning, through a penalty 
method, higher values to the objective function of out of 
constraint particles to avoid that they could consider the 
current position as a personal or global best, which might 
lead to wrong conclusions (Banks, 2008). Those functions 
assign a penalty value whenever the relative constraint is 
not satisfied, as set in the traditional approach. This ends 
up in the exclusion of those solutions from the list of 
possible optimal results. 

 
Figure 3: Particle swarm optimization’s workflow 

Model set-up 
In order to compare the three different methods in the 
design of external shading devices, a real office room has 
been considered, by creating a simplified model of a 
single thermal zone of an existing building. 

Climatic context 
The selected case-study office building is located in 
Tokyo, Japan (Northern hemisphere). The city, lying in 
the humid subtropical climate zone, presents 
moderate/cold winters and hot, very humid summers; the 
hottest month is August while January is the coldest one. 
Cooling degree days (CDD), heating degree days (HDD) 
and yearly irradiation values are shown in Table 1. 

Table 1: Tokyo - Climatic data  

HDD CDD Yearly solar radiation [kWh/m2] 
2968 135 1302  

Reference room  
The reference room considered (Figure 4) is a part of the 
Institute of Industrial Science (IIS) at The University of 
Tokyo, with a floor area of 30 m2 and internal height of 
2.7 m; it was chosen for the need of a retrofit intervention 
to improve comfort condition and obtain energy saving.  
A simplified model of the room has been created with 
SketchUp and OpenStudio, where all the non-exposed 
façades, which are in the real building adjacent to other 
office spaces, were considered adiabatic.  

 
Figure 4: Reference room – Baseline geometric features 

The West facing external wall is characterized by an 
internal plaster, hollow bricks, insulation material and an 
external plaster with a 0.3 value of solar absorptance, for 
an overall U value of 0.293 W/m2K. The latter wall 
presents a window-to-wall ratio (WWR) of 55% and the 
windows are composed by a standard double glazing 
filled with air, with a frame percentage of 10%; the U 
value of 1.5 W/m2K is representative of the overall 
window system. Values of solar transmittance (g) and 
visible transmittance (τvis) are shown in Table 2.  

Table 2: Proprieties of building components  
 U 

[W/m2K] 
Solar 

transmittance, 
g 

Visible 
transmittance, 

τvis 
External wall 0.293 N/A N/A 

Window 1.5 0.72 0.75 

Load profiles 
The profiles related to internal gains, ventilation and 
heating/cooling modes are the ones corresponding to 
normal office hours, from 9:00 am until 6:00 pm 
weekdays, and closed during weekends and holidays. The 
presence of 4 people is considered in the reference room, 
which represents the actual average situation. Values of 
internal gains (Table 3) are those suggested from CIBSE 
regulations, considering an office space outside the city 
center (CIBSE, 2015). An infiltration of 0.2 ac/h and a 
10% of the equipment nominal project load have been 
considered with a continuous profile during the whole 
year, except for long holidays in which the equipment 
load goes down to a fraction of 2% of the nominal value. 
Indoor comfort set points have been set both in terms of 
temperature and visual perception (Reinhart, 2013). 
Thermal set points are reported in Table 4, considering the 
operative temperature rather than the air temperature. A 
minimum illuminance of 500 lux on the workplane (at 



sensors location, Figures 5 and 6) has been considered, 
assuming a dimming profile (Figure 7) for artificial 
lighting that activates lamps whenever the illuminance is 
below the defined threshold, with a luminous efficacy of 
120 lm/W. According to CIBSE values and considering 4 
workers in the office space, a minimum ventilation rate of 
2.7 ac/h was set to satisfy indoor air quality requirements 
(CIBSE, 2016). 

Table 3: Internal gains 
 People Lighting Equipment 

Sensible gains [W/m2] 12 10 15 

Table 4: Indoor set points 
Set point Value 

Cooling [°C, operative temp] 26 
Heating [°C, operative temp] 22 

Ventilation for IAQ [ac/h] 2.7 
Minimum illuminance on workplane [lux] 500 

Maximum allowable discomfort glare index [DGI] 28 

 
Figure 5: Illuminance sensors position – plan 

 
Figure 6: Illuminance sensors position – section 

 
Figure 7: Artificial lighting dimming profile. 

Results    
Obtained results are expressed in terms of yearly overall 
electric consumptions for heating, cooling and artificial 
lighting. In order to sum up the values of lighting and 
cooling/heating needs, a Seasonal Performance Factor 
(SPF) of 2.5 for the HVAC system has been assumed; the 
HVAC system is composed by an electric air-source heat 
pump coupled with fan-coil units (Miara, 2001). The 
considered SPF value, which is based on real 
performances of common heat pumps and represents the 
ratio between the annual thermal energy supplied to the 
room and the electricity needed to run the entire plant 
(Furuno, 2016), is representative both of the coefficient of 
performance of the heat pump and the efficiencies of the 
subsystems (distribution, control, emission) and auxiliary 
systems (circulation pumps, fans etc.). This value is 
considered as an average value through the year. Thus, it 
has been possible to convert the thermal energy needs for 
heating and cooling in terms of electricity needs. Results 
in terms of glare and continuous daylight availability are 
instead only used as constraints for the optimization 
process. 

Shading device selection 
For the climate and orientation of the selected case-study, 
the most performing shading type might be movable 
external venetian blinds or fixed vertical fins (Lee, 2017); 
in the present study we decided to analyse the feasibility 
of the metaheuristic optimization method on the vertical 
fins (Figure 8), which bring good advantages to the 
baseline model with lower installation and maintenance 
costs compared to movable shadings (Aste, 2013).  
 
 
 
 
 
 

Figure 8: Reference room with vertical fins 

The depth and orientation angle of the vertical fins, during 
the pre-optimization phase, has been set to 20 cm and 45°, 
to find a good compromise between minimizing summer 
solar load and maximizing winter gains (Givoni, 1998). 
In addition, this tilt angle represents the average value 
among the decision range, which varies between 0° 



(parallel to the window pane) and 90° (perpendicular to 
the window pane). The decision range of the fins’ depth, 
instead, fluctuates between 10 cm and 35 cm. Each 
window has 8 vertical fins which are arranged at equal 
distance of 22.5 cm.  
According to the performed simulations, the solution with 
vertical fins is able to reduce the overall electric 
consumption of 8.8 kWh/m2 per year (Figure 9) and 
decrease the number of hours of visual discomfort below 
the 10% of the total number of yearly working hours 
(Figure 10), which is considered as a threshold. The 
obtained results can be considered the optimal solution 
according to a traditional design approach. 

 
Figure 9: Models comparison - Yearly electric 

consumption 

 
Figure 10: Shading types comparison: glare (yearly) 

Optimization results 
The optimization of geometrical properties of the vertical 
fins (depth, tilt angle) has been studied through a full 
search and a particle swarm optimization processes in 
order to evaluate the accuracy and simulation time of both 
methods (Table 5), also compared to the above-mentioned 
traditional approach. Optimal geometrical properties 
found with each method are reported in Table 6. 

Table 5: Optimizations comparison 
 Total electric cons. 

[kWh/m2] 
Total sim. time 

[min] 
Baseline 41.20 N/A 

Trad. approach 32.35 N/A 
Full search 31.40 72 

PSO 31.51 36 

Table 6: Optimization: final variables’ values 
 Shading depth  

[cm] 
Shading tilt angle 

[deg] 
Baseline N/A N/A 

Trad. approach 20 45 
Full search 30 46 

PSO 27 48 

Results of yearly electric consumptions (Figure 11) and 
visual discomfort (Figure 12) show that the PSO reaches 
almost identical solutions of the full search, in a lower 
simulation time.   

 
Figure 11: Comparison of electric consumption 

 
Figure 12: Comparison of glare time (yearly)  

Validation of the PSO 
The previous section demonstrated the reliability of PSO 
algorithm in the optimization of fixed shading devices. 
This approach can be fundamental whenever the 
complexity of the problem is too high to perform a full 
search approach. For this reason, the research has been 
extended to the glazing properties (visible and solar 
transmittances), which are optimized in this section 
simultaneously to the shading geometry in order to 
understand how different parameters can influence each 
other, inevitably leading any traditional approach to sub-
optimal results. Imposed boundaries for the visible 
transmittance are 0.5 and 0.85, while the solar 
transmittance is set between 0.4 and 0.75, according to 
average values of commercial products. A maximum gap 
of 0.3 between the two transmittances has been imposed 
according to commercial solutions’ limits. The results 
demonstrate that a full search, in a problem slightly more 
complex than the previous one, would already lead to high 
time-consuming processes, giving more power to the 
algorithmic approach. A full search simulation time of 
270 h, in fact, has been estimated knowing the total 
number of possible combinations, but it has not been 
tested due to its huge amount of required time. This 
estimation has been computed with a proportion based on 
the simulation time required for the full search in the 
previous section. The PSO is instead able to reach a final 
value of 28.9 kWh/m2 of yearly total electric consumption 
with a simulation time equal to 4 h; the computation time 
of a PSO is in fact not proportional to the number of 
variables, but strictly dependant on the particular problem 
and parameters, and involves as well random components. 
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Also, it is interesting to notice how the final shape of the 
shading devices (Table 7) is different from the one 
obtained in the previous paragraph, meaning that the 
change of glazing properties brought to a different 
optimal shading geometry, which would not be possibly 
taken into account with a traditional approach where each 
parameter is fixed before analysing the following one.  

Table 7: Optimization: final variables’ values 
 Shading 

depth [cm] 
Shading tilt 
angle [deg] g τvis 

Baseline / / 0.72 0.75 
PSO 22.25 50 0.55 0.85 

Further development of the PSO 
In addition to the traditional PSO, two further variations 
of the latter have been considered and compared in order 
to understand how this approach could be improved 
according to the particular case study. Several studies, in 
fact, showed how the modification of some parameters 
within the PSO might be really beneficial for particular 
situations (Tripathi, 2007). Firstly, a Mutated PSO (m-
PSO) has been adopted, which benefits have already been 
proved in a different field (Shintaro, 2015). This is based 
on the addition of a mutation method to the traditional 
PSO, guaranteeing a certain percentage of uniformly 
distributed positions of individuals at each iteration, as by 
Eq. (1-2), where μ denotes a uniformly distributed number 
that ranges between the upper and lower boundaries of 
each decision variable, as previously defined; Xa,b,c,d 
denotes instead each element of individual’s vector. A 
constant mutation rate (mrate) of 5% has been set, which 
implies a 5% of probability, at each iteration, that a 
particle’s parameters assume random values, within the 
boundary ranges.  

- Xa,b,c,d,e = μ if rand < mrate                        (1) 

- Xa,b,c,d,e =  Xa,b,c,d,e  if rand > mrate            (2) 

Table 8 shows results reached with this mutation, which 
however leads to a different drawback, in this particular 
case: due to the fact that the end criterion has been 
imposed on the convergence of the particles, the mutation 
rate added by the m-PSO at each iteration causes the 
impossibility for the particles to converge all together and 
thus the impossibility to end the simulation according to 
the previously defined end criterion. This obliged us to 
change the end criterion by assigning a maximum number 
of iterations to the analysis, which might create doubts 
about the correct number of maximum iterations or bring 
to unwanted additional simulation time. For this reason, a 
third version of the PSO, a damped mutated PSO (damp-
m-PSO) has been developed, which simply adds to the 
mutation rate of the m-PSO a damping factor (ψ = 0.89) 
which decreases the mutation rate at each iteration. In this 
way it’s possible to obtain a high randomness in the 
beginning of the search, which decreases at each iteration 
until making the mutation rate near to a zero value, 
allowing the particles to converge similarly to the 
traditional PSO. Furthermore, this method allowed to 
increase the mutation rate of the m-PSO from 5% to 8%, 
decreasing even more the risk for the particles to be stuck 

in local optima in the beginning of the search. This 
improvement, however, might not be ideal in other studies 
where, for example, the risk of local optima is present 
even in the last iterations, thus a constant mutation rate of 
the m-PSO might be fundamental. 

Table 8: Performance comparison of different PSOs  
 Total electric cons. 

[kWh/m2] 
Total sim. time 

[h] 
PSO 28.9 4 

m-PSO 28.21 4* 
damp-m-PSO 28.21 4 

     *maximum number of iterations imposed (15) 
Population number and starting distribution 
The previously analysed particle swarm optimizations 
have been conducted with a starting population of 100 
particles; this number has been chosen after many trials 
which demonstrated that a lower number would lead to 
non-optimal results while a higher number would only 
increase the simulation time without bringing any 
advantage to the final result, as shown in Figure 13. 
Different studies will need different population numbers 
in order to find the optimal solution; however, experience 
can play a good role in understanding which is the proper 
population number, according to the number of variables 
of the problem and the width of the variables’ range. Trial 
and error-based approach can be considered the safest 
way to avoid mistakes related to wrong assumptions. The 
results show how a number of particles below 100, in this 
particular case, would lead to solutions which are quite far 
from the optimal one, although obviously leading to good 
time-savings (Figure 14). Sometimes, when the designer 
doesn’t require a very high accuracy in the final result 
(which might be the case of some passive strategies where 
the final solution will however be approximated due to 
limits in materials’ production), the time-saving related to 
lower population number might be very interesting. 

 
Figure 13: Population comparison: electric consumption  
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Figure 14: Population comparison: simulation time 

In order to find a way to make more realistic the 
possibility of lowering the population number when 
seeking for time saving while trying to decrease as less as 
possible the accuracy of the results, we studied a new way 
of distributing the first generation of particles. The 
traditional particle swarm optimization is characterized 
by a random first generation of particles, which leads to 
bad results with low population numbers due to the fact 
that wide areas in the search space are not covered at all. 
The same analysis on population number previously 
performed has now been done modifying the starting 
random population with a Latin hypercube sampling 
(LHS) distribution, i.e. a near-random distribution which 
represents a multidimensional generalization of the Latin 
square concept (Helton, 2003), with a number of 
dimensions equal to the number of variables of the 
problem. This solution does not bring to any advantage 
when the number of particles is high enough to find the 
optimal result (thus bringing to the same result previously 
found) but gives good advantages when the population 
number is lower than the minimum needed (Figure 15).  
The results reached with population numbers of 50 and 75 
particles are in fact much closer to the real optimal 
solution rather than the ones obtained with the same 
number of particles but with a random generation. The 
computation time (Figure 16) is exactly the same of the 
previous method, thus showing how this different starting 
distribution does not present any time-related drawback. 

 
Figure 15: Population comparison (LHS): electric 

consumption 

 
Figure 16: Population comparison (LHS): electric 

consumption 
Conclusions 
This paper focused on the analysis of the feasibility of a 
metaheuristic optimization approach in the design of 
external shading devices, assessing the energy and 

comfort performances in the application on an office 
building. 
The metaheuristic approach was found reliable also for 
the design of passive strategies aimed at the reduction of 
heating, cooling and daylighting consumption and the 
improvement of indoor environmental conditions, 
especially in terms of simulation-time savings when 
compared to traditional approaches. It was shown how an 
in-depth study of each parameter of the particle swarm 
optimization could bring to higher accuracy in the final 
solution. Eventually, the use of a Latin hypercube 
sampling distribution can help in reducing the simulation 
time when high accuracy in the final solution is not 
needed. The other novelty introduced, that is the 
integration of Matlab and EnergyPlus without the use of 
any middleware tool, allows this method to be used in any 
kind of passive strategy optimization, considering that all 
the geometries, materials and building properties are 
present in the idf file used by EnergyPlus for energy 
simulations. Lastly, any constraint function can be 
considered in the optimization process, giving to the 
designer complete freedom of choice on optimization 
parameters and criteria, which is fundamental in building 
design field, where standard hypotheses/parameters might 
lead to wrong conclusions or huge simulation efforts. 
Nomenclature 
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Green building 
Particle swarm optimization 
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