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Abstract

The Green Vehicle Routing Problem (G-VRP) aims to efficiently route a fleet of Alternative Fuel Vehicles,

based at a common depot, in order to serve a set of customers, minimizing the total travel distance. Because

of the limited driving range of these vehicles, intermediate stops at the Alternative Fuel Stations must also

be considered. For the G-VRP, we propose two Mixed Integer Linear Programming formulations allowing

multiple visits to the stations without introducing dummy copies of them. In the first model, only one

visit to a station between two customers or between a customer and the depot is allowed. While, in the

second model, two consecutive visits to stations are also permitted. In addition, the two formulations are

strengthened through both dominance criteria to a-priori identify the stations that are more efficient to

use in each route and valid inequalities, specifically tailored for the G-VRP. Computational results, carried

out on benchmark instances, show that our formulations strongly outperform the exact solution approaches

presented in the literature. Finally, in order to better investigate the issue of the consecutive refueling stops,

a new set of instances is properly generated and significant transport insights are also provided.
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1. Introduction

The efficient optimization of the transport activities plays a key role for guaranteeing eco-sustainable
solutions. Indeed, the transport sector significantly contributes to generate harmful greenhouse gases (e.g.,
carbon dioxide CO2, methane and nitrous oxide). According to a recent study, for example, only in 2010,
the transport sector produced greenhouse emissions for 7.0 gigatonnes CO2 equivalent (Edenhofer et al.,
2014). Moreover, all the harmful pollutants emitted have significant effects on the air quality, health and
climate (Kontovas and Psaraftis, 2016). In particular, the road transportation represents one of the biggest
producer of greenhouse gases and specifically, the road freight transportation contributes for about the 50%
(Chapman, 2007). Consequently, many public and private transport agencies start using the Alternative
Fuel Vehicles (AFVs) that can guarantee not only a reduction of the harmful emissions but also the respect
of recent rules imposed by the European Commission (for more details on the EVs’ characteristics, readers
are referred to Chapter 6 of (Davis et al., 2015)).

However, the AFVs have a limited driving range and therefore, some stops at the Alternative Fuel
Stations (AFSs) may be needed during a trip. On the other hand, the AFSs are currently not widespread
across the road network and therefore, such stops should be also a priori planned in order to avoid drivers
ending up being stuck along their routes. This happens when an AFV has not enough fuel to reach even
the closest AFS.

It is also worth noting that, during a trip, the stops at the AFSs contributes to increase the total distance
traveled by an AFV due to the detours for reaching the AFSs. The problem of planning the routes of a fleet
of AFVs to serve a set of customers has been introduced in the literature by the seminal work (Erdoğan and
Miller-Hooks, 2012) under the name of Green Vehicle Routing Problem (G-VRP). Every AFV leaves fully
refueled a common depot and must return to it at the end of its route without exceeding a maximum allowed
duration. In order to consider the limited driving range of the AFVs, during each route, stops at AFSs are
also planned where the tank is assumed to be always fully replenished. The G-VRP aims to minimize the
total travel distance, by assuming a fixed refueling time at the AFSs that does not depend on the remaining
fuel in the AFVs’ tank. Moreover, the fuel consumption of an AFV is assumed linearly proportional to the
traveled distance.

In the literature, the G-VRP is represented on a complete and directed graph in which the set of nodes
includes the customers, the AFSs and the depot. In order to allow visiting AFSs more than once, dummy
copies of them are introduced to model each route as an elementary cycle and to avoid that routes may
share AFSs nodes. The presence of these dummy nodes increases the number of binary variables in the
Mixed Integer Linear Programming (MILP) formulation of the problem making its solution harder. This
approach is used in most of the papers dealing with the G-VRP.

A first attempt to get rid of dummy nodes is made in (Koç and Karaoglan, 2016) where a three-index
formulation of the G-VRP is introduced, based on binary variables yijk to discriminate if AFS k is used to go
from customer i to customer j. However, this formulation does not correctly model the G-VRP. Indeed, the
optimal solution of the G-VRP may require an AFV to visit two or more AFSs consecutively. An example
of this kind is shown in Figure 1, with two customers, represented by nodes 1 and 2, respectively, two AFSs,
s1 and s2, and the depot, node 0. The numbers besides the edges indicate the distances in miles between
their endpoints. Assuming a tank capacity equal to 60 gallons and a fuel consumption rate of 0.2 gallons
per mile as in the instances of (Erdoğan and Miller-Hooks, 2012) (i.e., a fully refueled AFV can travel 300
miles), this instance also satisfies their hypothesis that each customer is reachable by an AFV leaving the
depot and returning to it with at most one visit to the AFS. For this instance, the optimal solution of the
G-VRP consists in the single route 0, 1, s1, s2, 2, 0 with a total traveled distance of 512 miles. If consecutive
visits to AFSs are not allowed, the optimal solution would worsen since it would be made up of the two
routes 0, 1, 0 and 0, 2, 0 with a total traveled distance of 600 miles.

It is worth noting that this kind of solution can be detected through the original formulation of (Erdoğan
and Miller-Hooks, 2012) (since the graph considered is complete) but not by that proposed in (Koç and
Karaoglan, 2016). Moreover, the possibility of visiting two or more AFSs consecutively has been also
considered in the heuristic solution approaches proposed by (Felipe et al., 2014; Montoya et al., 2016).
Indeed, there are several real situations where this may happen: for instance, when a product (e.g., truffle
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in Alba, near Turin, in Italy, fine wines, etc.) can be produced only in a specific place and must be delivered
by AFVs to customers that are all concentrated in another specific place (e.g., the luxury restaurants of the
Côte d’Azur, in France) which is so far from the former that more than one refueling along the travel is
required.

Place Figure 1 about here

Our paper explicitly focuses on the G-VRP with multiple and consecutive visits to AFSs, without
introducing dummy copies of them. More specifically, we propose a first MILP formulation of the G-
VRP in which only one visit to AFS is allowed between two customers or between a customer and the depot
or vice versa. Moreover, we introduce a second MILP formulation to model the possibility of having two
consecutive visits to AFSs. Such a model is proven to be general since, under mild conditions, at most
two consecutive visits are shown to be necessary in an optimal solution. Moreover, to further decrease the
number of binary variables of the model, we design a method for a priori identifying an efficient set of AFSs,
i.e., a set of AFSs that may be actually used in an optimal solution, between either each pair of customers
or a customer and the depot (or vice versa). We strengthen the formulation by means of valid inequalities.
We also discuss sufficient conditions to ensure that no more than two stops at the AFSs between two
customers are required in an optimal solution. We test our model on the benchmark instances of (Erdoğan
and Miller-Hooks, 2012) showing that it outperforms all other known exact approaches for the G-VRP, even
the Branch and Cut method proposed in (Koç and Karaoglan, 2016). We introduce a new set of instances
where consecutive refueling stops at AFSs are actually required in the optimal solutions. Numerical results,
carried out on this new set, show that our model outperforms all other solution approaches. Finally, we
analyze the optimal solutions in terms of some significant transport indicators (e.g., the percentage value of
the detour for refueling respect to the distance traveled for serving the customers) to deduce some insights
on the use of AFVs.

The rest of this paper is organized as follows. Section 2 reviews the main contributions on the G-VRP,
proposed in the literature. Section 3 yields the statement of the problem together with its assumptions.
Sections 4 and 5 describe the new MILP formulations of the G-VRP and the algorithms to compute the
efficient set of AFSs for the cases of one visit and of two consecutive visits to them, respectively. Section 6
introduces some valid inequalities to strengthen both the models. Section 7 shows the numerical results on
the benchmark instances and yields some comparisons with the best known results in the literature. Finally,
Section 8 draws some conclusions and remarks some future research directions worthy of investigation.

2. Literature review

The problem of efficiently routing a fleet of vehicles represents a class of optimization problems widely
investigated in the literature and known as Vehicle Routing Problem (VRP) (see (Toth and Vigo, 2014) for a
recent survey on the topic). In the VRPs, the fleet has to serve a set of customers, geographically distributed
and it is usually based at a common depot which every vehicle has to leave from and which has to return to.
The route traveled by a vehicle handles a subset of customers and respects some constraints, among which
the limited cargo capacity (Capacitated VRP - CVRP) and the Time Window within which each customer
has to be served (CVRPTW). An assumption, common to a great variety of VRPs, is that the vehicle fuel
autonomy is sufficient to reach the customers in every route, i.e., each vehicle is characterized by a unlimited
driving range.

As already remarked in Section 1, with the aim of reducing the harmful emissions, the variant of VRP
with both AFVs and AFSs, i.e., the G-VRP, is introduced in (Erdoğan and Miller-Hooks, 2012), where a
MILP formulation is proposed together with a set of benchmark instances (small/medium size up to 20
customers and large size up to 500 customers). The increasing interest in such a problem is proven by a
significant number of works in which it has been addressed, as shown in the recent survey (Bektaş et al.,
2016). The problem of reducing the harmful emissions is tackled in (Eglese and Bektas, 2014), considering
several factors among which the vehicle speed optimization and/or the use of AFVs. Indeed, the G-VRP
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finds significant real world applications in several fields, e.g., the Reverse Logistics and the Green Logistics
(Sbihi and Eglese, 2007).

Recently, several solution methodologies have been proposed for the G-VRP. For example, in (Felipe
et al., 2014), different heuristic approaches have been designed for the VRP with a fleet of electric vehicles.
Together with the route planning, both the amount of the energy recharged and the recharging technology
used at each station are decision variables.

In (Koç and Karaoglan, 2016), a Branch and Cut approach has been combined with the Simulated
Annealing (SA) framework showing that more than half of small/medium-sized benchmark instances of
(Erdoğan and Miller-Hooks, 2012) can be optimally solved in reasonable time. However, as remarked in
Section 1, this formulation could provide sub-optimal solutions for some instances, since it neglects the
possibility of two consecutive refuelings.

A SA based algorithm, together with a mathematical model, is also proposed in (Ćirović et al., 2014)
where the fleet is distinguished into environmentally friendly and unfriendly vehicles. Both the approaches
are tested on a network simulating the traffic conditions in Belgrade.

Other metaheuristics to solve the G-VRP are also proposed in the following papers. A two-step ap-
proach has been developed in (Montoya et al., 2016), where a set of routes is firstly found through a
randomized route-first cluster-second heuristic combined with an optimal AFSs insertion procedure and,
then, the solution is assembled through a set partitioning model. An ant-based algorithm combined with a
fuel consumption model has been built in (Jabbarpour et al., 2015). A tabu search algorithm taking into
account costs due to the fuel, the emissions and the vehicle usage, has been designed in (Zhang et al., 2015).
Recently, in (Madankumar and Rajendran, 2018), a G-VRP arising in a supply chain for semiconductors
has been addressed modeling also specific constraints on the compatibility among the products, the vehicle
capacity, the request priorities and the start/completion time, with the aim of minimizing both the total
routing cost and the refueling cost.

The G-VRP has been also extended to a bi-objective variant, minimizing both the total travel distance
and the CO2 emissions. For example, in (Jemai et al., 2012), an NSGA-II evolutionary algorithm is proposed
for this variant while, in (Tiwari and Chang, 2015), a block recombination approach, assuming the truck
load of a vehicle as key factor for reducing the harmful emissions, is presented.

The time-dependent version of the G-VRP has been addressed in ((Qian and Eglese, 2016), (Xiao and
Konak, 2016) and (Sharafi and Bashiri, 2016)). In particular, (Qian and Eglese, 2016) considers a G-VRP
where the speed along an arc is treated as a decision variable. A column generation based tabu search
algorithm is developed and tested on real traffic data taken from the London road network. While, (Xiao
and Konak, 2016) assumes a heterogeneous fleet and that the fuel consumption depends on several factors,
among which, the payload weights and the travel speeds varying according to the traffic congestion. The
problem is solved through an algorithm that hybridizes the mathematical programming with an iterative
neighborhood search. A new version of the G-VRP in which the driver’s dissatisfaction to perform a tour is
modeled through a tour-driver penalty has been introduced in (Sharafi and Bashiri, 2016) and solved with
a genetic algorithm.

Finally, the Hybrid VRP, i.e., a particular version of the G-VRP in which vehicles may switch at anytime
between alternative and traditional fuel propulsion, has been presented in (Mancini, 2017). For this purpose,
the unitary distance cost is much higher for the traditional fuel mode. However, in certain cases, it results
more convenient to cover a short distance with traditional fuel than to make long detours to reach the nearest
refueling station. This situation frequently occurs in cases in which refueling stations are not widespread
across the territory. The author proposes an effective matheuristic based on large neighborhoods implicit
exploration.

3. Statement of the problem and assumptions

The G-VRP is defined on a directed complete graph G = (N,A), where the node set N contains both
the set of customers I and the depot 0 while the arc set A is given by A = {(i, j) : i ∈ N, j ∈ N, i 6= j}.
For each customer i ∈ I, the parameter pi indicates the service time. The set of available AFSs is denoted
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by F and, ∀s ∈ F , the parameter ps indicates the refueling time. For each pair (i, j) with i ∈ N ∪ F ,
j ∈ N ∪F, i 6= j, the travel time, tij , and the travel distance, dij , to go from i to j, are given. For each AFV
of the fleet, the maximum refueling capacity is Q and the fuel consumption rate is r. The vehicle speed v
is assumed to be constant and a priori known.

The G-VRP aims to find a set of at most m AFV routes, with minimum total distance, such that: 1)
every route starts and ends from/to the depot; 2) every customer i is visited, for a time equal to pi, by one
and only one AFV; 3) each AFV can stop at every AFS s for a full refueling spending a time ps; 4) the
maximum drive range Q/r is never exceeded, after a refuel; 5) the time duration of each route is at most
equal to a given quantity Tmax.

Place Table 1 about here

In Table 1, we summarize all the input parameters of the G-VRP.
In (Erdoğan and Miller-Hooks, 2012), the authors assume that each customer is reachable by an AFV

leaving the depot and returning to it with at most one visit to the AFS. Under this hypothesis, an optimal
solution may require two consecutive visits to the AFSs, as shown in the example of Fig.1. Moreover,
although not directly stated in (Erdoğan and Miller-Hooks, 2012), we verified that their instances satisfy
also the property that from every AFS, it is always possible to reach any other AFS. Under this second
hypothesis, no more than two consecutive visits to the AFSs can be required in an optimal solution. Indeed,
if by contradiction, the optimal solution should visit a sequence of AFSs, s1, s2, . . . , sk, we could replace
such a sequence with the pairs of AFSs s1, sk obtaining certainly a feasible solution (since sk is reachable
directly from s1) with a better or equal objective function value (given by a lower or equal travel distance).

In the next two sections, we introduce the mathematical programming formulations for the cases where at
most one and at most two consecutive visits to the AFSs can be possible in the optimal solution, respectively.

4. Mathematical Programming Formulation with one visit to AFS

In this section, we describe the Mixed Integer Linear Programming (MILP) formulation for the case
where no more than one visit to the AFS is necessary between two customers (as implicitly assumed in (Koç
and Karaoglan, 2016)).

The proposed MILP model is based on the computation of the sets Lij ,∀(i, j) ∈ A, of all the feasible
AFSs that may be convenient to visit, going from i to j. In Algorithm 1, the steps for computing these sets
are described.

Algorithm 1 Computation of the sets Lij

Input: sets A,F , parameters Q, r, dij and tij ∀(i, j) ∈ A
Output: sets Lij ;

1: for (i, j) ∈ A do
2: Lij := F ;
3: s∗ := arg mins∈F :dis≤Q

r ,dsj≤Q
r
{dis + dsj};

4: for s ∈ F do
5: if (dis ≥ dis∗ and dsj ≥ ds∗j) or dis >

Q
r or dsj >

Q
r then

6: Lij := Lij \ {s};
7: else
8: t̂ijs := tis + tsj − tij ;
9: d̂ijs := dis + dsj − dij ;

10: end if
11: end for
12: end for

More specifically, the best AFS to visit between nodes i and j is the station s∗ belonging to the minimum
detour, among those that can be reached (according to the feasibility conditions on the remaining fuel), as
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determined at step 3. If a feasible AFS s is such that dis < dis∗ or dsj < ds∗j , then it can be advantageous
to use it. In fact, if dis < dis∗ , it can allow refueling an AFV that has not enough fuel to reach s∗. While,
in the second case, the AFV can arrive to customer j with a higher fuel level than from s∗, guaranteeing it
more driving range (either to reach the depot or to serve more customers). In any other case, AFS s can
be removed from Lij (steps 5 and 6). Finally, at steps 8 and 9, the detour time t̂ijs of an AFV to visit the

AFS s ∈ Lij going from i to j and its detour distance d̂ijs are computed, respectively.
We model the G-VRP through the following binary variables: routing variables xij ∀(i, j) ∈ A, equal to

1 if node j is visited just after node i (directly or through an AFS), 0 otherwise; zijs ∀(i, j) ∈ A,∀s ∈ Lij

equal to 1 if AFS s is employed to go from i to j, 0 otherwise. Moreover, we use the following continuous
non negative variables ∀i ∈ N : the residual fuel level yi of AFV at i and the time τi on which i is reached.

The MILP model is detailed in the following:

min
∑

(i,j)∈A

dijxij +
∑

(i,j)∈A

∑
s∈Lij

d̂ijszijs (1)

s.t. ∑
s∈Lij

zijs ≤ xij ∀ (i, j) ∈ A (2)

∑
j∈N : j 6=i

xij = 1 ∀ i ∈ I (3)

∑
i∈N : i 6=j

xji =
∑

i∈N :i 6=j

xij ∀ j ∈ N (4)

∑
j∈N : j 6=0

x0j ≤ m (5)

∑
j∈N : j 6=0

xj0 ≤ m (6)

τj ≥ τi + (tij + pi)xij +
∑
s∈Lij

(t̂ijs + ps)zijs − Tmax(1− xij)∀i ∈ N, j ∈ I, i 6= j (7)

τj ≤ Tmax − (tj0 + pj)−
∑

s∈Lj0

(t̂j0s + ps)zj0s ∀j ∈ I (8)

yj ≤
∑
s∈Lij

(Q− r · dsj)zijs +Q(1−
∑
s∈Lij

zijs) ∀j ∈ I, i ∈ I, i 6= j (9)

yj ≤ yi − r · dijxij + 2Q(1− xij +
∑
s∈Lij

zijs) ∀j ∈ I, i ∈ N, i 6= j (10)

yi ≥ r · di0(xi0 −
∑
s∈Li0

zi0s) ∀i ∈ I (11)

yi ≥
∑
s∈Lij

(r · diszijs) ∀i ∈ N, ∀j ∈ N, i 6= j (12)

∑
s∈Li0

r · ds0zi0s ≤ Q ∀i ∈ I (13)

y0 = Q (14)
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xij ∈ {0, 1} ∀i ∈ N, j ∈ N (15)

yi ≥ 0 ∀i ∈ N (16)

τi ≥ 0 ∀i ∈ N (17)

zijs ∈ {0, 1} ∀i ∈ I, j ∈ I, s ∈ Lij (18)

Objective function (1) minimizes the total travel distance. Between each pair of customers, only one AFS
may be visited (2) and each customer is visited exactly once (3). Route continuity is assured by (4). The
number of AFVs is limited by (5)-(6). Arrival time at each node is ruled by (7) that also exclude sub-tours.
Maximum route duration is enforced by (8). Fuel level, at each node, is ruled by (9)-(10). An AFV, after
visiting its last node, must have enough fuel to return to the depot (11). An AFV, refueled after visiting its
last customer, must have enough fuel to reach the depot thanks to (12)-(13). Constraints (14) impose that
AFVs leave fully refueled the depot. Finally, the variables nature is specified in (15)-(18).

We note that the routing variables xij of this model are slightly different from those used in the formu-
lation of (Koç and Karaoglan, 2016). Indeed, in the latter, xij is equal to 1 only if the customer j is visited
directly after customer i without refueling at any AFS, while in ours, they are 1 also if the refuel occurs.
Moreover, their refueling variables are defined considering the possibility of refueling at any AFS s between
two customers i and j. While, in ours, they are defined only in the efficient non-dominated set Lij of AFSs
that may be actually used in an optimal solution. This makes our formulation more efficient, in practice.

In Section 7, we give an experimental evidence of this showing that our formulation is able to solve faster
than (Koç and Karaoglan, 2016) the benchmark instances of the G-VRP.

5. Mathematical Programming Formulation with two consecutive visits to AFS

In this section, we extend the formulation presented in Section 4 to the case where two consecutive visits
to the AFSs can occur in an optimal solution. Variables zijs are substituted by variables zijs1s2 equal to 1 if
the pairs of AFSs s1, s2 are consecutively visited between the customers (or the depot) i and j, 0 otherwise.

Detours t̂ijs1s2 and d̂ijs1s2 are introduced, defined by t̂ijs1s2 = tis1 + ts1s2 + ts2j − tij and d̂ijs1s2 =
dis1 + ds1s2 + ds2j − dij , respectively.

The sets Lij consists in all the pairs of feasible AFSs that may be convenient to visit, going from i to j.
At the beginning, set Lij is fixed as Lij := {(s1, s2) : s1, s2 ∈ F, dis1 ≤ Q/r and ds2j ≤ Q/r}. Note that Lij

also contains pairs of kind (s, s) ∀s ∈ F to model the use of a single AFS s.
Concerning the dominance criteria to remove stations from Lij , we introduce two types of rules: those

where a pair of AFSs is dominated by using a single AFS and those where it is dominated by using another
pair of AFSs.

For the first type, a pair (s1, s2) ∈ Lij can be removed from Lij if ds1j < ds2j or if dis2 < dis1 . Indeed,
in the former case, it is convenient to visit only the AFS s1 while, in the latter case, only s2. Concerning
the second type of dominance rule, a pair (s3, s4) ∈ Lij can be removed from Lij if a pair (s1, s2) ∈ Lij such

that dis1 < dis3 , ds2j < ds4j and d̂ijs3s4 > d̂ijs1s2 exists. Indeed, the pair (s3, s4) would be not convenient
neither to minimize the total travel distance since its detour is longer than that of (s1, s2) nor to serve an
AFV coming from i with a lower driving range (since dis1 < dis3) nor to arrive to j with a higher driving
range (since ds2j < ds4j).

The pseudocode of the algorithm used to compute the new sets Lij , according to these dominance rules,
is reported in Algorithm 2.

The new formulation, where two consecutive visits to the AFS are allowed, is the following:

min
∑

(i,j)∈A

dijxij +
∑

(i,j)∈A

∑
(s1,s2)∈Lij

d̂ijs1s2zijs1s2 (19)

s.t.
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Algorithm 2 Computation of the sets Lij with double AFSs

Input: sets A,F , parameters Q, r, dij and tij ∀(i, j) ∈ A
Output: sets Lij ;

1: for (i, j) ∈ A do
2: Lij := {(s1, s2) : s1, s2 ∈ F, dis1 ≤

Q
r , ds2j ≤

Q
r , ds1j ≥ ds2j and dis2 ≥ dis1};

3: for (s1, s2) ∈ Lij do
4: t̂ijs1s2 := tis1 + ts1s2 + ts2j − tij ;
5: d̂ijs1s2 := dis1 + ds1s2 + ds2j − dij ;
6: end for
7: for (s1, s2), (s3, s4) ∈ Lij do

8: if dis1 ≤ dis3 , ds2j ≤ ds4j and d̂ijs3s4 > d̂ijs1s2 then
9: Lij := Lij \ {(s3, s4)};

10: end if
11: end for
12: end for

∑
(s1,s2)∈Lij

zijs1s2 ≤ xij ∀ (i, j) ∈ A (20)

∑
j∈N : j 6=i

xij = 1 ∀ i ∈ I (21)

∑
i∈N : i 6=j

xji =
∑

i∈N :i 6=j

xij ∀ j ∈ N (22)

∑
j∈N : j 6=0

x0j ≤ m (23)

∑
j∈N : j 6=0

xj0 ≤ m (24)

τj ≥ τi + (tij + pi)xij +
∑

(s1,s2)∈Lij

(t̂ijs1s2 + ps1 + ps2)zijs1s2 − Tmax(1− xij) ∀i ∈ N, j ∈ I, i 6= j (25)

τj ≤ Tmax − (tj0 + pj)−
∑

(s1,s2)∈Lj0

(t̂j0s1s2 + ps1 + ps2)zj0s1s2 ∀j ∈ I (26)

yj ≤
∑

(s1,s2)∈Lij

(Q− r · ds2j)zijs1s2 +Q(1−
∑

(s1,s2)∈Lij

zijs1s2) ∀j ∈ I, i ∈ I, i 6= j (27)

yj ≤ yi − r · dijxij + 2Q(1− xij +
∑

(s1,s2)∈Lij

zijs1s2) ∀j ∈ I, i ∈ N, i 6= j (28)

yi ≥ r · di0(xi0 −
∑

(s1,s2)∈Lij

zi0s1s2) ∀i ∈ I (29)

yi ≥
∑

(s1,s2)∈Lij

(r · dis1zijs1s2) ∀(i, j) ∈ A (30)

∑
(s1,s2)∈Lij

r · ds20zi0s1s2 ≤ Q ∀i ∈ I (31)
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y0 = Q (32)

xij ∈ {0, 1} ∀(i, j) ∈ A (33)

yi ≥ 0 ∀i ∈ N (34)

τi ≥ 0 ∀i ∈ N (35)

zijs1s2 ∈ {0, 1} ∀i ∈ I, j ∈ I, (s1, s2) ∈ Lij (36)

Constraints (h) of the new formulation have the same meaning of constraints (h− 18) of the formulation
of Section 4, for h = 20, . . . , 36.

6. Valid inequalities

In this section, we introduce some valid inequalities to strengthen the formulation of the G-VRP presented
in Section 5. These inequalities can be used also in the formulation with one visit to the AFSs, presented in
Section 4, since the latter can be reduced to the former considering only the pairs of stations (s1, s2) ∈ Lij

with s1 = s2.
The first kind of valid inequalities is given by (37). It enforces to refuel between a pair of visited

customers, i and j, if they are farther than the maximum distance that can be traveled by a completely
refueled AFV. ∑

(s1,s2)∈Lij

zijs1s2 ≥ xij ∀ (i, j) ∈ A : dij > Q/r (37)

Valid inequalities (38) prevent from refueling after the last customer visited if there is enough fuel to
reach the depot. Indeed, when the latter condition is satisfied, the right hand side of (38) becomes strictly
less than 1, being ε a positive, small enough constant and yi − rdi0 > 0. Thus, zi0s1s2 must be 0.∑

(s1,s2)∈Li0

zi0s1s2 ≤ 1− ε · (yi − rdi0) ∀i ∈ V (38)

Being yi − rdi0 ≤ Q, we set ε equals to 1/Q to guarantee that the right hand side of (38) is nonnegative.
Let us indicate by D = maxi∈N∪F,j∈N∪F :i 6=j dij . Valid inequalities (39) prevent from serving a triplet

of customers i, j and k without intermediate refueling if the sum of their distances (i.e., dij + djk) plus the
distance to reach either the nearest station or the depot exceeds the maximum distance that can be covered
by a completely refueled vehicle. Indeed, in the latter case, the right hand side of (39) becomes strictly less
than 2, (since the first two summations are 0 and the term (dij + djk + mins∈F∪{0} dks− yi/r)/3D becomes
a positive number smaller than 1. Thus, xij or xjk must be 0).

xij + xjk ≤ 2 +
∑

(s1,s2)∈Lij

zijs1s2 +
∑

(s1,s2)∈Ljk

zjks1s2−

dij + djk + mins∈F∪{0} dks − yi/r
3D

∀(i, j) ∈ A,∀(j, k) ∈ A (39)

In similar way, valid inequalities (40) prevent from serving a triplet of customers i, j and k without
intermediate refueling if the sum of their distances plus the distance to either reach the nearest station or
the depot exceeds the maximum distance that can be covered within the duty time of the AFV, given by
Tmax.
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xij + xjk ≤ 2 +
∑

(s1,s2)∈Lij

zijs1s2 +
∑

(s1,s2)∈Ljk

zjks1s2−

dij + djk + mins∈F∪{0} dks − (Tmax − τi) · v
3D

∀(i, j) ∈ A,∀(j, k) ∈ A (40)

7. Instances description and numerical results

In this section, we present computational results carried out on instances taken from the literature and
we introduce a new set of real-like instances, in which consecutive refuelings actually occur in the optimal
solutions.

7.1. Instances from the literature

In this subsection, we compare the performances of the formulation for the G-VRP introduced in Section
4, hereafter named BMP, with that proposed by (Erdoğan and Miller-Hooks, 2012) denoted by EMH and
the Branch and Cut proposed by (Koç and Karaoglan, 2016) indicated by B&C. Computational results are
carried out on the following four sets of instances introduced in (Erdoğan and Miller-Hooks, 2012):

• S1 (Uniform customer distribution): 10 randomly generated instances of 20 uniformly distributed
customers with three different AFS locations.

• S2 (Clustered customer distribution): 10 randomly generated instances of 20 clustered customers
with three different AFS locations.

• S3 (Impact of the spatial AFS configuration): 10 instances, half selected from S1 (i.e., 20c3sU2,
U4, U6, U8, U10) and half from S2 (i.e., 20c3sC2, C4, C6, C8, C10), with 6 AFS randomly generated
locations.

• S4 (Impact of station density): 10 instances, half of which created from one instance of S1, i.e.,
20c3sU2 and half from one instance of S2, i.e., 20c3sC2. While, the number of AFSs is gradually
increased from 2 to 10 by 2.

Each instance is randomly generated assuming customers, depot and AFSs distributed within a grid of
330 by 300 miles. The depot location is fixed and close to the center of the grid, in all the instance sets. In
all the instances, the depot is also an AFS. In the first two sets, S1 and S2, three further AFSs, fixed, are
between the depot and the grid boundaries in westerly, northerly and southeasterly directions.

A fuel tank capacity Q equal to 60 gallons and a fuel consumption rate r of 0.2 gallons per mile are
considered. The average vehicle speed is assumed equal to 40 miles per hour and the total route duration
Tmax is limited to 11 hours. Service times pi, at customers i ∈ N , are assumed to be equal to 30 minutes
while refueling time ps at each AFS s is fixed to 15 minutes. Even if it has not been clearly stated in
(Erdoğan and Miller-Hooks, 2012), the authors consider also the initial refueling time at the depot. For
each node of the network (i.e., customer, depot and AFS), the geographical coordinates are given while, the
distance between each pair of nodes is computed by means of the Haversine formula considering an Earth
radius of 4, 182.449 miles, as pointed out in (Schneider et al., 2013). Concerning the maximum number of
vehicles used (m), since in (Erdoğan and Miller-Hooks, 2012) it is not declared, we fix it equal to the number
of vehicles used in the best known solution reported in the literature. Therefore, in set S1, m ranges from
4 to 6, in S2 from 3 to 9, in S3 from 4 to 7 and in S4, from 4 to 6.

Both BMP and EMH models have been solved with CPLEX 12.5 on an Intel Core i7-2630QM CPU at
2.00 GHz with 8 GB RAM, while B&C has been solved by (Koç and Karaoglan, 2016) on an Intel Xeon
3.16 GHz equipped with 8 GB RAM (i.e., on a slightly powerful computer), also using CPLEX 12.5 as LP
solver. The CPU time limit has been set equal to 3,600 seconds for all the solution methods.
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Place Table 2 about here

Place Table 3 about here

Place Table 4 about here

Place Table 5 about here

Numerical comparisons are reported in Tables 2-5, one for each instance set. The tables are organized
as follows. The first three columns report the name of the instance, the number of involved customers and
the number of AFSs, respectively. The successive three columns report the best feasible solutions found
by the three approaches EMH, B&C, and BMP, respectively. The values are emphasized in boldface when
the optimality has been certified. The successive three columns report the gap between the best feasible
solution and the best lower bound, while computational times, expressed in seconds, are shown in the last
three columns. Moreover, in the tables, no sol means that no feasible solution is found in the time limit
while N/A indicates that the GAP is not available for that instance.

On the instance set S1, the BMP formulation gets 7 optimal solutions against the 5 found by B&C,
with a lower average computational time (1, 772 seconds against 2, 373) and an average relative MIP gap
of 3.2% against 3.5% of B&C. EMH is not able to solve to optimality any instance within the time limit,
obtaining an average relative MIP gap of about 27%. Moreover, on one instance, it is not able even to find
a feasible solution. On S2, both BMP and B&C solve to optimality 8 instances. However, BMP requires a
slightly lower average computational time (about 1, 060 seconds against 1, 293). EMH is not able to solve
to optimality any instance within the time limit, and obtains an average relative MIP gap of about 34%.
Moreover, on two instances, it is not able even to find a feasible solution. On S3, BMP detects the optimal
solution in 9 instances, while B&C in only 8 instances. BMP obtains both a lower average computational
time (about 1, 040 seconds against 1, 204) and a lower average relative MIP gap (0.68% against 1.38%) with
respect to B&C. EMH does not find any feasible solution on 5 instances and does not solve any instance to
optimality, obtaining an average relative MIP gap of 36%. Finally, on S4, B&C obtains only one optimal
solution while BMP solves to optimality 6 instances within a significantly lower average computational time
(about 2, 164 seconds against 3, 453) and with a lower average relative MIP gap (3.66% against 5.38%).
EMH finds a feasible solution only on 5 instances, with an average relative MIP gap of 30%, and is not able
to solve to optimality any instance. Globally, BMP strongly outperforms B&C and EMH in terms of both
efficiency and effectiveness.

In order to prove the impact of the dominance rules (to generate the sets Lij , as described in Section
4) on the efficiency, we compare the computational times required to solve the BMP with the dominance
rules with those required without them. On S1, we obtain an average CPU time reduction of 13%, on S2 of
11%, on S3 of 14% and on S4 of 16%. Moreover, without the dominance rules, we solve to optimality three
instances less (one in S1, one in S2 and one in S4). This is justified by the fact that applying the dominance
rules the cardinality of sets Lij significantly decreases compared to the cardinality of all the available AFSs,
i.e., |F |. Indeed, on S1, the average cardinality of Lij is 2.19 against |F | = 4, on S2, it is 2.07 against
|F | = 4, on S3, it is 3.34 against |F | = 7, and finally, on S4, it is 3.52 against an average |F | = 7. Therefore,
on average, for all the instances, |Lij | is about half of |F |.

Moreover, on the same set of instances, we also run the model introduced in Section 5, where two
consecutive visits to the AFSs are allowed. In order to always obtain the optimal solution, we increase
the CPU time limit of CPLEX to 10,800 seconds, being this second model more time consuming since it
requires bigger sets Lij . Indeed, the computational time increases of 11.8% on average. Concerning the
optimal solutions, we remark that they always coincide with those obtained by the BMP model. Therefore,
we can certify that for the benchmark instances of the G-VRP introduced by (Erdoğan and Miller-Hooks,
2012), consecutive visits to AFSs are not necessary in the optimal solutions found.

As a further analysis, we run the EMH model, on the set S1, with larger CPU time limits, i.e., 12 and
24 hours, respectively. Results are reported in Table 6, where the values in bold indicate cases in which,
thanks to the increased time limit, an improvement on the objective function has been obtained. What has
been pointed out by this analysis is that the EMH model is not able to solve to optimality any instance,
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except one, and that the average percentage GAP decreases only slightly, passing from 26.97% in 1 hour to
20.61% in 24 hours.

Place Table 6 about here

7.2. Analysis of the solutions found

For all the instance sets considered in the computational experiments, we have reported some useful
information about the optimal solution (or the best solution found, when its optimality cannot be certified).
This analysis, detailed in the Tables 7-10, allows us deducing some hints on the usage of AFVs. For each
instance, the distance covered to serve the customers (SERVICE), that to reach the AFSs (DETOUR) and
the percentage value of DETOUR respect to the total travel distance are reported. Furthermore, for each
AFS, the number of times it is visited together with the number of vehicles that use them are indicated.
The term N/A, used in Table 10, indicates that the corresponding station is not available for that instance.

Place Table 7 about here

Place Table 8 about here

Place Table 9 about here

Place Table 10 about here

The percentage of distance covered to reach an AFS is low in all sets, meaning that the AFSs are well
distributed. The average percentage of vehicles that refuel along their route is greater than 40%, meaning
that the instances are suitable for the G-VRP model. Indeed, if the percentage of vehicles that requires to
be refueled would be very low, there will be no need to explicitly plan the visits to the AFSs. In fact, the
problem can be addressed as a standard VRP and the few cases in which a vehicle needs refueling could be
a posteriori detected and the infeasibility may be repaired trying to insert a visit to an AFS.

From a further analysis, only in 35% of the cases, the AFS visited is that at minimum detour. This
happens when the AFV has not enough fuel to reach the minimum detour station. Therefore, it needs to
visit a nearer AFS with a longer detour to reach the next customer. In a real world application, the problem
could be solved intensifying the density of AFSs in these zones.

Although the model proposed in (Erdoğan and Miller-Hooks, 2012) allows consecutive visits to AFSs, in
the benchmark instances here introduced, they never occur in any optimal solution. For this reason, in the
next section, we introduce a new set of instances in order to deeply investigate this issue.

7.3. Real-like instances

In this section, we introduce a new set of instances, named Cloud, in which two consecutive refuelings
are necessary in the optimal solutions. This set is composed by 10 instances with 15 customers and 8 AFSs,
sharing the same layout specified as follows. The depot is located at the center of a square with edge equal
to 160 miles. At the same distance from the depot, 80 miles, in each main direction (North, South, East and
West), four ‘clouds’, containing between 2 and 6 customers, are located. The number of customers per cloud
varies instance by instance but the total number of customers remains unvaried. In the nearby of each cloud,
two AFSs are located toward the two nearest clouds. An example of a cloud instance is reported in Figure 2.
This may represent the case in which a depot is located in Milan and the goods has to be delivered to other
large cities such as Turin, Bologna, Venice and Bern, and no AFS is available along the highway but all AFSs
are located in the nearby of the cities. In this set, AFSs locations are fixed, as well as the total number of
customers. While customers’ locations vary instance by instance. The number of available vehicles is fixed
to 3. Fuel tank capacity, Q, is equal to 30 gallons that, combined with a fuel consumption rate, r, of 0.2,
implies a maximum autonomy of the vehicles, Dmax, equal to 150 miles. Maximum route duration, Tmax,
is fixed to 11 hours and no time for the initial refueling at the depot is considered. Service times pi, at
customers i ∈ N , are assumed to be equal to 5 minutes, while all other parameters are unchanged respect
to the values considered in the instance sets S1-S4.
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Place Figure 2 about here

Analyzing Figure 2, it can be easily noted that, although feasible solutions without two consecutive refueling
stops may exist, optimal solutions will always contain consecutive refueling stops. Indeed, given the instance
layout, it is always more convenient to serve two clouds with a single AFV. In fact, if two AFVs were used,
each of them would serve one cloud and their total traveled distance would be 4D, being D the distance
between the depot and a cloud (the clouds are equidistant from the depot). While, a single AFV can serve
the two clouds with the following route: going from the depot to the first cloud, from it to the second one,
after refueling with zero detour at the two AFSs located on the line connecting the two clouds, and then
returning to the depot. In this way, the total traveled distance is 2D +

√
2D < 4D. Instead, if consecutive

refueling stops are not allowed, an AFV must refuel at the station close to the first cloud, then serve one or
more customers in the second cloud and then refuel again. The second refueling generates a non-zero detour
making the solution sub-optimal.

Place Table 11 about here

Table 11 reports a comparison of the results obtained by the model presented in Section 5, indicated
by BMP2, with those of EMH and of KK, giving to all methods a CPU time limit of 43,200 seconds. As
one can evince from this table, BMP2 is able to find the optimal solution for all instances, with an average
computational time of 825.44 seconds. EMH always reaches the CPU time limit without finding the optimal
solution, with an average gap of 62.04%. The optimal solutions obtained by KK are always sub-optimal for
these instances, because this model does not allow consecutive visits to AFSs. In this way, the average total
distance provided by KK is 591.83 against 582.94 of that found by BMP2.

Place Table 12 about here

In order to show the impact of the valid inequalities presented in Section 6 and of the dominance rules to
reduce the cardinality of the sets Lij proposed in Section 5, we compare the results obtained on the Cloud
instances by the model without both Valid Inequalities and Dominance Rules, (NO VI- NO DR), with those
obtained adding only Dominance Rules (DR), and those obtained adding both of them (VI+DR). As proved
by the results reported in Table 12, both VI and DR have a significant impact on the CPU times reduction.
In fact, without VI and DR, the average CPU time is equal to 825.44, while, it decreases to 500.79 with the
addition of DR and it further decreases to 349.19 adding also VI. We can notice that, applying DR, we can
save, on average, about 40% of the computational time. This saving is much greater than that obtained on
the EMH instances (14% on average). This is due to the fact that, giving the particular layout of the Cloud
instances, DR allow strongly reducing the size of the sets Lij because of the high number of dominated
AFSs. While, the effect of DR on the reduction of the Lij size is lower in the EMH instances.

8. Conclusions and future works

In this paper, we proposed two Mixed Integer Linear Programming (MILP) formulations for the Green
Vehicle Routing Problem (G-VRP) such that multiple visits to Alternative Fuel Stations (AFSs) are allowed
without introducing dummy nodes to model them. In the first formulation, only one visit to an AFS is
allowed between either two customers or a customer and the depot. While, in the second formulation, two
consecutive visits to AFSs are permitted. The latter formulation is enough general since we proved that,
under mild hypothesis, at most two consecutive visits to AFSs are necessary in an optimal solution. Getting
rid of dummy nodes, we obtained a strong reduction of the number of binary variables used in the two
MILP models compared to the previous mathematical formulations of the literature. A further reduction
was obtained introducing some dominance criteria to a-priori identify an efficient set of AFSs. Moreover,
the MILP models were strengthened by means of some valid inequalities specifically tailored for the G-VRP.

Computational results, carried out on 40 benchmark instances taken from the literature, showed that
both the proposed MILPs models strongly outperform the already existing exact solution approaches and
even a Branch and Cut method. Since we noted that, on the benchmark instances, consecutive refueling
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stops never occurred, we built a new set of instances where this actually happens in the optimal solutions.
Also on this set, our second formulation strongly outperforms all known exact methods always detecting
the optimal solution. Moreover, we showed how much the valid inequalities and the dominance criteria
contribute to reduce the computational time.

Finally, we reported a detailed analysis of the optimal solutions providing, for each instance, some
transport indicators, i.e., the average percentage value of the distance to reach the AFSs respect to the total
travel distance and for each AFS, the number of times it is visited and by how many vehicles.

Future developments in this field may concern the extension of the proposed MILP formulations to
similar optimization problems, e.g., the Electric Vehicle Routing Problem with Time Windows.
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Erdoğan, S., Miller-Hooks, E., 2012. A green vehicle routing problem. Transportation Research Part E: Logistics and Trans-

portation Review 48 (1), 100–114.
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List of Figure captions:

• Figure 1: An instance of the G-VRP where two consecutive visit to the AFSs are necessary in the
optimal solution.

• Figure 2: Cloud instances layout.
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Input Parameter Meaning

I Set of customers
0 Depot
N Set of customers plus the depot
F Set of available AFSs
m Number of AFVs
v Vehicle speed
Q Maximum refueling capacity of each AFV
r Fuel consumption rate of each AFV
pi Service time of each customer i
ps Refueling time of each AFS s
dij Travel distance for going from node i to node j
tij Travel time for going from node i to node j

Tmax Maximum route duration
t̂ijs Detour time for going from node i to node j passing from AFS s

d̂ijs Detour distance for going from node i to node j passing from AFS s

Table 1:
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INSTANCE |I| |F | UB GAP CPU (s)

EMH B&C BMP EMH B&C BMP EMH B&C BMP

20c3sU1 20 4 1,797.51 1,797.51 1,797.51 29.07 0.00 0.00 3,600 172.3 330.3
20c3sU2 20 4 1,574.82 1,574.82 1,574.82 26.66 4.70 0.00 3,600 3,600 1,083.64
20c3sU3 20 4 1,704.46 1,704.46 1,704.46 29.21 0.00 0.00 3,600 1,789 843.78
20c3sU4 20 4 no sol 1,482.00 1,482.00 N/A 9.50 0.00 3,600 3,600 1,842
20c3sU5 20 4 1,689.35 1,689.35 1,689.35 20.19 0.00 10.13 3,600 2,165.5 3,600
20c3sU6 20 4 1,618.64 1,618.64 1,618.64 21.9 2.70 0.00 3,600 3,600 1,747.53
20c3sU7 20 4 1,713.80 1,713.66 1,713.66 36.32 9.80 6.34 3,600 3,600 3,600
20c3sU8 20 4 1,709.43 1,706.51 1,706.51 32.61 0.00 0.00 3,600 1,601.3 1,020.26
20c3sU9 20 4 1,708.84 1,708.84 1,708.84 35.99 8.30 15.69 3,600 3,600 3,600

20c3sU10 20 4 1,181.31 1,181.31 1,181.31 10.75 0.00 0.00 3,600 2.3 55.2

AVG 20 4 1633.13 1,617.71 1,617.71 26.97 3.50 3.22 3,600 2,373.04 1,772.27

Table 2:
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INSTANCE |I| |F | UB GAP CPU (s)

EMH B&C BMP EMH B&C BMP EMH B&C BMP

20c3sC1 20 4 1,179.17 1,173.58 1,173.58 43.62 7.60 0.00 3,600 3,600 2,223.82
20c3sC2 19 4 no sol 1,539.95 1,539.95 N/A 0.00 0.00 3,600 1,164.5 612.97
20c3sC3 12 4 880.21 880.21 880.21 9.87 0.00 0.00 3,600 25.4 8.45
20c3sC4 18 4 1,109.73 1,059.35 1,059.35 38.62 11.00 12.60 3,600 3,600 3,600
20c3sC5 19 4 2,156.02 2,156.01 2,156.01 64.16 0.00 35.83 3,600 2,246.4 3,600
20c3sC6 17 4 2,758.14 2,758.14 2,758.14 46.64 0.00 0.00 3,600 61.6 17.28
20c3sC7 6 4 1,393.99 1,393.99 1,393.99 10.70 0.00 0.00 3,600 0.1 0.4
20c3sC8 18 4 no sol 3,139.70 3,139.70 N/A 0.00 0.00 3,600 53.7 14.96
20c3sC9 19 4 1,813.93 1,799.95 1,799.95 33.19 0.00 0.00 3,600 113.9 90.59

20c3sC10 15 4 2,583.42 2,583.42 2,583.42 23.01 0.00 0.00 3,600 2,067.5 427.5

AVG 19 4 1734.33 1848.43 1848.43 33.73 1.86 4.84 3,600 1,293.31 1,059.60

Table 3:
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INSTANCE |I| |F | UB GAP CPU (s)

EMH B&C BMP EMH B&C BMP EMH B&C BMP

S1 2i6s 20 7 no sol 1,578.15 1,578.15 N/A 0.00 0.00 3,600 1,626.6 1,775.39
S1 4i6s 20 7 no sol 1,397.27 1,397.27 N/A 4.30 0.00 3,600 3,600 782.26
S1 6i6s 20 7 no sol 1,560.48 1,560.48 N/A 0.00 0.00 3,600 523.50 1,107.05
S1 8i6s 20 7 no sol 1,692.34 1,692.34 N/A 0.00 0.00 3,600 817.80 1,745.88

S1 10i6s 20 7 1,173.48 1,173.48 1,173.48 22.69 0.00 0.00 3,600 1.90 98.03
S2 2i6s 20 7 1,645.8 1,633.09 1,633.09 35.34 0.00 0.00 3,600 66.00 524.8
S2 4i6s 19 7 1,505.06 1,505.06 1,505.06 34.72 9.50 6.82 3,600 3,600 3,600
S2 6i6s 20 7 no sol 2,431.34 2,431.34 N/A 0.00 0.00 3,600 1,801.00 13.63
S2 8i6s 16 7 2,176.4 2,158.34 2,158.34 38.79 0.00 0.00 3,600 3.20 5.68

S2 10i6s 16 7 1,621.42 1,585.43 1,585.43 47.85 0.00 0.00 3,600 1.30 749.36

AVG 20 7 1624.43 1671.50 1671.50 35.88 1.38 0.68 3,600 1,204.13 1,040.21

Table 4:
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INSTANCE |I| |F | UB GAP CPU (s)

EMH B&C BMP EMH B&C BMP EMH B&C BMP

S1 4i2s 20 3 1,582.22 1,582.22 1,582.22 18.17 6.20 0.00 3,600 3,600 2,340.2
S1 4i4s 20 5 1,460.10 1,460.10 1,460.10 31.32 3.80 0.00 3,600 3,600 621.18
S1 4i6s 20 7 no sol 1,397.28 1,397.28 N/A 4.30 0.00 3,600 3,600 770.94
S1 4i8s 20 9 no sol 1,397.28 1,397.28 N/A 0.00 0.00 3,600 2,133.6 815.75

S1 4i10s 20 11 no sol 1,396.02 1,396.02 N/A 5.00 0.00 3,600 3,600 570.28
S2 4i2s 18 3 1,059.36 1,059.36 1,059.36 28.72 8.20 12.58 3,600 3,600 3,600
S2 4i4s 19 5 1,496.56 1,446.10 1,446.10 38.38 6.20 7.61 3,600 3,600 3,600
S2 4i6s 20 7 1,505.06 1,434.14 1,505.06 34.81 6.80 6.62 3,600 3,600 3,600
S2 4i8s 20 9 no sol 1,434.14 1,434.14 N/A 6.60 9.78 3,600 3,600 3,600

S2 4i10s 20 11 no sol 1,434.14 1,434.14 N/A 6.70 0.00 3,600 3,600 2,121.01

AVG 20 7 1420.66 1404.08 1411.17 30.28 5.38 3.66 3,600 3,453.36 2,163.94

Table 5:

22



INSTANCE EMH CPU limit 1h EMH CPU limit 12h EMH CPU limit 24h

UB GAP CPU (s) UB GAP CPU (s) UB GAP CPU (s)

20c3sU1 1,797.51 29.07 3,600 1,797.51 24.00 43,200 1797.51 20.77 86,400
20c3sU2 1,574.82 26.66 3,600 1,574.82 24.04 43,200 1574.82 23.15 86,400
20c3sU3 1,704.46 29.21 3,600 1,704.46 23.29 43,200 1704.46 22.26 86,400
20c3sU4 no sol N/A 3,600 1,482.00 31.80 43,200 1,482.00 28.93 86,400
20c3sU5 1,689.35 20.19 3,600 1,689.35 22.34 43,200 1689.35 17.00 86,400
20c3sU6 1,618.64 21.9 3,600 1,618.64 20.69 43,200 1618.64 18.51 86,400
20c3sU7 1,713.80 36.32 3,600 1,713.67 29.77 43,200 1713.67 26.72 86,400
20c3sU8 1,709.43 32.61 3,600 1,706.51 24.21 43,200 1706.51 20.65 86,400
20c3sU9 1,708.84 35.99 3,600 1,708.84 30.67 43,200 1708.84 28.06 86,400

20c3sU10 1,181.31 10.75 3,600 1,181.31 0.00 26,813 1,181.31 0.00 29,140

AVG 1,633.13 26.97 3,600 1,617.71 23.08 41,561 1,617.71 20.61 80,674

Table 6:
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INSTANCE SERVICE DETOUR % DETOUR s0 s1 s2 s3 #AFVs

20c3sU1 1,691.96 105.55 5.87 0 1 2 0 4
20c3sU2 1,573.85 0.97 0.06 0 0 0 1 6
20c3sU3 1,657.70 46.76 2.74 0 0 1 0 6
20c3sU4 1,449.78 32.22 2.17 0 1 1 0 5
20c3sU5 1,667.18 22.17 1.31 0 1 1 0 6
20c3sU6 1,618.61 0.03 0.00 0 1 0 0 6
20c3sU7 1,709.12 4.54 0.27 0 1 0 0 6
20c3sU8 1,678.06 28.45 1.67 0 1 1 1 6
20c3sU9 1,681.69 27.15 1.59 0 0 1 0 6
20c3sU10 1,172.70 8.61 0.73 0 0 0 1 6

AVG 27.65 1.64% 6

Table 7:
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INSTANCE SERVICE DETOUR % DETOUR s0 s1 s2 s3 #AFVs

20c3sC1 1,167.69 5.89 0.50 0 0 1 1 4
20c3sC2 1,420.60 119.35 7.75 0 1 0 1 5
20c3sC3 879.90 0.31 0.04 0 0 0 1 3
20c3sC4 1,059.31 0.04 0.00 0 0 1 0 4
20c3sC5 2,156.01 139.50 6.47 0 0 1 3 7
20c3sC6 2,555.33 202.81 8.98 0 2 2 2 8
20c3sC7 1,332.00 61.99 4.45 0 2 0 2 4
20c3sC8 2,896.37 243.33 7.75 0 1 3 3 9
20c3sC9 1,666.91 133.04 7.39 0 0 1 0 6
20c3sC10 2,422.04 161.38 6.25 0 1 0 2 6

AVG 106.76 4.76 6

Table 8:
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INSTANCE SERVICE DETOUR % DETOUR s0 s1 s2 s3 s4 s5 s6 #AFVs

S1 2i6s 1,573.85 4.30 0.27 0 0 0 0 0 0 1 4
S1 4i6s 1,528.01 32.47 2.17 0 0 1 0 0 0 0 4
S1 6i6s 1,394.09 3.19 0.23 0 1 0 0 0 0 1 5
S1 8i6s 1,674.41 17.93 1.06 0 0 1 1 1 0 0 6
S1 10i6s 1,172.70 0.78 0.07 0 0 1 0 0 0 0 4
S2 2i6s 1,628.09 5.00 0.31 0 0 0 0 3 0 0 6
S2 4i6s 1,462.23 42.83 2.85 0 0 0 0 0 1 0 6
S2 6i6s 2,391.34 40.00 1.65 0 1 0 1 2 1 2 7
S2 8i6s 2,104.25 54.09 2.51 0 1 0 0 0 0 3 7
S2 10i6s 1,576.03 9.40 0.59 0 1 0 0 0 0 3 5

AVG 21.00 1.16 6

Table 9:
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Instance UB GAP (%) CPU(s)

EMH KK BMP2 EMH KK BMP2 EMH KK BMP2

Cloud-15-8-1 583.83 583.83 574.44 67.39 0.00 0.00 43,200 335.50 1,030.51
Cloud-15-8-2 574.28 574.28 569.41 65.76 0.00 0.00 43,200 315.60 727.09
Cloud-15-8-3 577.36 576.63 569.55 64.45 0.00 0.00 43,200 3,573.93 2,121.73
Cloud-15-8-4 610.32 610.32 603.33 60.34 0.00 0.00 43,200 207.15 343.83
Cloud-15-8-5 584.84 584.84 571.9 65.62 0.00 0.00 43,200 482.59 688.63
Cloud-15-8-6 604.07 603.67 594.02 59.64 0.00 0.00 43,200 248.47 263.18
Cloud-15-8-7 578.79 579.51 570.46 58.38 0.00 0.00 43,200 307.59 577.26
Cloud-15-8-8 600.25 601.6 589.64 60.98 0.00 0.00 43,200 525.53 1,387.85
Cloud-15-8-9 574.49 579.95 571.26 59.72 0.00 0.00 43,200 512.27 746.13
Cloud-15-8-10 620.78 623.63 615.4 58.11 0.00 0.00 43,200 325.28 368.21

AVG 590.90 591.83 582.94 62.04 0.00 0.00 43,200 683.39 825.44

Table 11:
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INSTANCE CPU (s)

NO VI NO DR DR VI+DR

Cloud-15-8-1 1030.51 509.96 424.08
Cloud-15-8-2 727.09 562.87 263.55
Cloud-15-8-3 2121.73 1,607.67 676.54
Cloud-15-8-4 343.83 289.11 304.92
Cloud-15-8-5 688.63 231.68 319.29
Cloud-15-8-6 263.18 147.72 190.12
Cloud-15-8-7 577.26 556.80 208.05
Cloud-15-8-8 1387.85 512.37 646.4
Cloud-15-8-9 746.13 327.66 301.38

Cloud-15-8-10 368.21 262.08 157.61

AVG 825.44 500.79 349.19

Table 12:
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