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a b s t r a c t 

Characterization of dissolved chemical migration in porous media requires knowledge of the fluid velocity field and parameters governing solute dispersion within the 

diverse geomaterials constituting the internal architecture of the system. Several studies have been focused on the assessment of the impact on solute concentrations 

of an incomplete knowledge of the fluid velocity field, typically a result of the effects of uncertain hydraulic properties of the hosting media (e.g., permeability). 

Limited attention has been devoted to analyze propagation of the uncertainty associated with spatial distributions of local dispersivity values to solute concentration 

fields. Here, we address this issue by focusing on a random composite medium, where the location of the boundary between two distinct geomaterials is uncertain as 

well as their associated dispersivity values. We derive and solve the equations satisfied by the (ensemble) mean and variance of solute concentration and investigate 

the relative impact on these moments of the two sources of uncertainty considered. Our results suggest that, in the investigated set-up, the temporal and spatial 

evolution of ensemble moments of the solute concentration depends on ( i ) the overall dispersive length scales encompassed by the solute during its migration and 

( ii ) the actual sequence of the materials traversed by the solute. 

1

 

a  

a  

d  

r  

b  

(  

2  

a  

t  

2  

Z
 

o  

a  

h  

e  

c  

i  

t  

C  

F  

V  

f  

r  

i  

t  

t  

v  

a  

m  

c  

o

(  

u  

o  

c  

s  

e  

2  

G  

2
 

d  

t  

X  

e  

c  

K  

d
 

m  

t  

i  

h

R

A

0

. Introduction 

Heterogeneity of natural subsurface systems, as well as data scarcity
nd measurement errors, have promoted the adoption of stochastic
pproaches to investigate flow and transport features in porous me-
ia under multiple sources of uncertainty. In this context, a wide
ange of stochastic approaches is available including, e.g., techniques
ased on numerical Monte Carlo simulations, Stochastic Finite Element
 Ghanem and Spanos, 1991 ), Moment Equations ( Guadagnini et al.,
003; Morales et al., 2006a,b; Neuman, 1993; Winter et al., 2002
nd references therein], Probability Density Function ( Boso and Tar-
akovsky, 2016; de Barros and Fiori, 2014; Dentz and Tartakovsky,
010 and reference therein), and/or Probabilistic Collocation ( Li and
hang, 2007 ) methods. 

When considering random heterogeneity in the spatial distribution
f parameters governing flow and transport in porous media, much
ttention has been devoted to the analysis of the importance of log-
ydraulic conductivity heterogeneity, dispersion being usually consid-
red as (deterministically) uniform at a given scale of interest. In this
ontext, it is important to distinguish between dispersion and spread-
ng processes, and their links with the scale of interest at which solute
ransport is modeled (see e.g., Kitanidis, 2017 and references therein).
onsistent with the approach employed in several previous studies (e.g.,
ernàndez-Garcia et al., 2009; Godoy et al., 2018; Moslehi et al., 2016;
ishal and Leung, 2018; Xu and Meakin, 2013 ), our work rests on the

ollowing concepts: “Dispersion is often used as synonym for spreading or

ate of spreading, as in the spreading of a large plume. This is not the mean-

ng of this term as used in this work. Instead, by dispersion we mean the
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ransport mechanism that describes fluxes not captured by the velocity and

he concentration that are resolved at some finite scale. In simple terms, the

elocity and concentrations we use in our conceptual or mathematical models

re smooth versions of the actual velocity and concentration that are much

ore variable; the omitted fluctuations collectively have an effect that we

all dispersion. Clearly, the dispersion mechanism cannot be discussed with-

ut having a fixed idea of the scale of resolution we are concerned with. ”

quoted from Kitanidis, 2017 ). It is then natural to expect that there is
ncertainty in the intensity of the dispersion process at the selected scale
f representation of the solute transport phenomena. Indeed, theoreti-
al developments and experimental evidences associated with diverse
cales of investigation show that dispersivity values should be consid-
red as a spatially variable (random) process, ( Chaudhuri and Sekhar,
005; Coelho et al., 1997; de Barros and Rubin, 2011; Gist et al., 1990;
odoy et al., 2018; Kuo et al., 1999; Woods et al., 2003; Xu and Meakin,
013 ). 

At the laboratory scale, dispersivity is typically referred as local
ispersivity. The latter is mainly related to the particle size distribu-
ion of a porous material e.g., Coelho et al. (1997) , Gist et al. (1990) ,
u and Meakin (2013) . A detailed review of experimental findings
ncompassing analyses of more than 700 solute breakthrough curves
ollected under steady-state flow conditions has been performed by
uo et al. (1999) and highlights the strong correlation between local
ispersivity values and soil texture and its spatial variability. 

At larger (field-regional) scales, dispersivity is typically denoted as
acrodispersivity and is mainly related to spatial variability of geoma-

erials and the associated hydraulic conductivity distributions. Here,
t is important to properly assess the scale of interest. When consid-
ring plume-scale macrodispersivity (e.g., Gelhar and Axness, 1983;
019 
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𝛼  
ech et al., 2015 , and references therein) the scale of interest evolves
ith the size of the plume and the investigated process is the rate of

preading of the solute cloud. Note that the plume-scale macrodisper-
ivity is basically a deterministic quantity under ergodic conditions (see
.g., de Barros and Rubin, 2011 and references therein). Otherwise, con-
idering a finite (and fixed) scale of resolution requires relying on up-
caled or block-scale macrodispersivity, whose role is that of render-
ng the unresolved variability associated with lower resolution scales
see e.g., de Barros and Rubin, 2011 ). Chaudhuri et al. ( Chaudhuri and
ekhar, 2005 ) analyzed the effects on the plume-scale macrodispersion
f random spatial heterogeneity of local dispersivity and hydraulic con-
uctivity through a first-order approximation technique. The work of
e Barros and Rubin (2011) highlighted the need to treat the block-scale
ispersion coefficient as a random space function, in order to accommo-
ate for the uncertainty in the solute dispersion process rendered at a
iven scale under non-ergodic conditions. The work of de Barros and
entz (2016) extended the analysis by distinguishing between effective
nd ensemble block-scale dispersion coefficients and evaluating the as-
ociated uncertainty. Similarly, Woods et al. (2003) rely on a volume-
veraging approach and indicate that the ensuing dispersion coefficient
s subject to diverse degrees of uncertainty as a function multiple fac-
ors, including, e.g., the size of the averaging-volume (that could be in-
erpreted as the finite scale of interest for the resolution of solute trans-
ort) and the statistical properties of the hydraulic conductivity field.
ecently, Godoy et al. (2018) applied a geostatistical approach to eval-
ate macro-dispersion coefficients and to reproduce transport features
n a tropical soil formation considering heterogeneous distribution of
local scale) hydraulic conductivities and dispersivities. 

Despite these evidences, the impact of spatial heterogeneity of dis-
ersivity on main features of transport within porous domains composed
y multiple geomaterials which can be randomly distributed across the
ystem is still largely unexplored. We tackle this issue by formulating
nd solving equations satisfied by the first two (ensemble) moments of
oncentration of a nonreactive dissolved chemical migrating in a porous
omain composed by diverse geomaterials, each associated with a ran-
om local dispersivity, and separated by an internal boundary whose
ocation is uncertain. 

The impact of uncertainty in the spatial distribution of geomaterials
onstituting the internal architecture of an aquifer system and eventu-
lly associated with a random spatial variability of hydraulic conductiv-
ty has been previously analyzed in the context of fully saturated ground-
ater flow by relying on equations satisfied by the first and second sta-

istical moments of hydraulic head and Darcy’ fluxes (e.g., Guadagnini
t al., 2003; Tartakovsky and Guadagnini, 2004; Winter et al., 2002;
inter and Tartakovsky, 2000 and references therein). These works

how that conceptualizing the domain as a random composite has the
enefit of replacing a porous system characterized by a large spatial vari-
bility of hydraulic conductivities, as reflected by their variance, with a
elatively tractable setting where one considers the flow and transport
omain as composed by a set of disjoint geomaterials. These are sepa-
ated by an eventually random boundary and each geomaterial of the
omposite can be associated with a hydraulic conductivity distribution
f low to moderate variance. The latter requirement is key to ensure
onvergence of perturbation-based approaches which are typically at
he heart of Moment Equations (MEs) methods of the kind we assess in
his study. 

We note that the ME approach has been limited to the analysis
f solute transport (as described through a classical Advection Disper-
ion Equation at a given scale) in porous formations filled with a sin-
le geomaterial where a spatially heterogeneous fluid flow field takes
lace, as driven by the spatial heterogeneity of hydraulic conductivity
.g., Berkowitz et al. (2006) , Cushman and Ginn (1993) , Morales et al.
2006a,b ), Rubin (2003) and references therein. 

As an exemplary showcase, we solve our MEs by focusing on a do-
ain formed by a one-dimensional domain filled by two adjacent geo-

ogical units, i.e., a coarse (C) and a fine (F) medium separated by an
49 
nterface perpendicular to the mean flow direction. We focus on this
elatively simple configuration ( i ) in order to facilitate understanding
f the impact of diverse sources of uncertainty on the leading statistical
oments of solute concentrations and ( ii ) in the light of the possibility of

mploying a one-dimensional conceptualization of the system (typically
onsidered as filled with a unique geomaterial) for the interpretation
f laboratory and field scale experiments (see, e.g., Fiori et al., 2017;
ramling et al., 2002; Levy and Berkowitz, 2003; Porta et al., 2015 ).

ndeed, the setup we analyze has been studied by several authors (e.g.,
erkowitz et al., 2009; Kuo et al., 1999; Leij and van Genuchten, 1995;
ternberg, 2004 and references therein) using different settings of fine
nd coarse materials. 

In this framework, and to the best of our knowledge,
erkowitz et al. (2009) provides the only experimental results docu-
enting asymmetry in solute breakthrough curves (BTCs) associated
ith ( i ) a coarse to fine arrangement (hereafter denoted as C–F), where
 coarse material precedes a fine material along the direction of flow;
nd ( ii ) a fine to coarse arrangement (hereafter termed F–C). While
hese experimental results are not consistent with the traditional Fickian
ehavior of solute transport in columns, the reasons underpinning the
ocumented discrepancy are still under discussion (see, e.g., the studies
f Appuhamillage et al., 2010; Alvarez-Ramirez et al., 2014; Cortis and
oia, 2009; Zhang et al., 2010 ). 

Our study aims at investigating the effect of the lack of knowledge
n ( i ) values of local dispersivities and ( ii ) location of the boundary in-
erface on our ability to quantify the space- time evolution of statistical
oments of solute concentrations. For this purpose, we rely on the clas-

ical Advection Dispersion Equation (ADE). In this context, the local dis-
ersivity value of each geomaterial embeds the impact of the unresolved
i.e., below the accessible finite scale of resolution of transport phenom-
na, coinciding here with the length of each distinct geomaterial) veloc-
ty and concentration fluctuations onto the ensuing concentration at the
esolved scale, which is here assumed to be described through the ADE
odel. Taking into account heterogeneity in the dispersion process (here
apped onto dispersivity coefficients) at accessible scales of resolution

ould then affect the spreading behavior of the whole solute plume trav-
ling through the system, this picture being conceptually akin to the case
n which heterogeneity of hydraulic conductivity is recognized to exert
n influence at a given scale of resolution (see e.g., Le Borgne et al.,
010; Morales et al., 2006a,b ). Lack of data and measurement errors
hat are typically affecting flow and transport in porous media are then
ackled within a stochastic approach (as rendered through MEs in this
tudy) to treat diverse sources of uncertainty. 

The rest of the manuscript is organized as follows. The set-up of the
roblem is described in Section 2 . We then derive MEs satisfied by solute
oncentrations evolving in the presence of uncertain geomaterial disper-
ivities. The resulting (statistical) moments of concentrations are either
onditional to our knowledge of the location of the geomaterial interface
r fully take into account randomness in its location. One of the most
ttractive aspects of the ME-based formulation, as opposed to fully nu-
erical Monte Carlo simulations, is that it enables us to clearly elucidate

he functional dependencies between the statistics of system parameters
nd of the concentration field, as described in Section 3 where our key
esults and main findings are illustrated and discussed. Conclusions are
rawn in Section 4 . 

. Methodology 

.1. Problem set up and transport model 

We consider a one-dimensional domain of length L ∗ composed by
wo geomaterials separated by a sharp interface located at x ∗ = 𝛽∗ . The
ongitudinal local dispersivity, 𝛼∗ 

𝐿 
, of the system is represented as 

∗ 
𝐿 
( 𝑥 ∗ ) = 𝛼∗ 

𝐿 1 
𝐻 

(
𝛽∗ − 𝑥 ∗ 

)
+ 𝛼∗ 

𝐿 2 
𝐻 

(
𝑥 ∗ − 𝛽∗ ) (1)
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here H is the Heaviside function, 𝛼∗ 
𝐿 1 

and 𝛼∗ 
𝐿 2 

respectively being the

ocal dispersivities of the two geomaterials. We take solute transport to
e governed by the classical Advection Dispersion Equation (ADE), i.e.,

𝜕 𝐶 

∗ ( 𝑥 ∗ , 𝑡 ∗ ) 
𝜕 𝑡 ∗ 

+ 𝑢 ∗ 
𝜕 𝐶 

∗ ( 𝑥 ∗ , 𝑡 ∗ ) 
𝜕 𝑥 ∗ 

− 𝑢 ∗ 
𝜕 

𝜕 𝑥 ∗ 

( 

𝛼∗ 
𝐿 
( 𝑥 ∗ ) 𝜕 𝐶 

∗ ( 𝑥 ∗ , 𝑡 ∗ ) 
𝜕 𝑥 ∗ 

) 

= 0 (2)

here C 

∗ ( x ∗ , t ∗ ) is solute concentration and u ∗ is fluid velocity. Note
hat (1) - (2) rest on the Scheidegger dispersion model, other models be-
ng compatible with the approach we pursue. We also note that our
nalysis can be extended to cases where the ADE is employed to de-
cribe an upscaled (from a continuum to an increased continuum scale)
olute concentration field, by, e.g., introducing block-scale dispersion
oefficients, where local dispersivities within each geomaterial are also
eterogeneous. Resident water is displaced by the instantaneous injec-
ion at the domain inlet (i.e., at x ∗ = 0) of a small volume V 

∗ of solution
ith concentration 𝐶 

∗ 
0 . Eq. (2) is then subject to the initial and boundary

onditions 

 

∗ (𝑥 ∗ , 𝑡 ∗ ) = 𝐶 

∗ 
0 

𝑉 ∗ 𝛿∗ ( 𝑥 ∗ ) 
𝜙

𝑓𝑜𝑟 0 ≤ 𝑥 ∗ ≤ 𝐿 

∗ , 𝑡 ∗ = 0 (3)

Here, 𝜙 is medium porosity assumed to be constant and determinis-
ically known, resulting in a constant and deterministic fluid velocity. 

We set the following boundary conditions 

lim 

 

∗ →0 + 
− 𝛼∗ 

𝐿 1 

𝜕 𝐶 

∗ ( 𝑥 ∗ , 𝑡 ∗ ) 
𝜕 𝑥 ∗ 

= 0 ∀𝑡 ∗ > 0 (4a)

𝜕 𝐶 

∗ ( 𝑥 ∗ , 𝑡 ∗ ) 
𝜕 𝑥 ∗ 

= 0 𝑓𝑜𝑟 𝑥 ∗ = 𝐿 

∗ , ∀𝑡 ∗ > 0 (4b)

Here, (4a) states that the dispersive component of transport could
e neglected in comparison with the advective component at the inlet
oundary. Note that, according to (4a) no solute mass leaves the domain
rom the inlet due to dispersive mechanisms. 

Introducing the following dimensionless quantities 

𝑥 = 

𝑥 ∗ 

𝐿 

∗ ; 𝑡 = 

𝑡 ∗ 

𝐿 

∗ ∕ 𝑢 ∗ 
; 𝐶 𝑥 = 

𝐶 

∗ 

𝐶 

∗ 
0 
; 𝛿 = 

𝑉 ∗ 𝛿∗ 

𝜙
; 𝛽 = 

𝛽∗ 

𝐿 

∗ ; 

𝐿 = 

𝛼∗ 
𝐿 

𝐿 

∗ ; 𝛼𝐿 𝑖 
= 

𝛼∗ 
𝐿 𝑖 

𝐿 

∗ ; with 𝑖 = 1 , 2 (5)

Eqs. (1) –(4) can be rewritten in dimensionless form as 

𝐿 ( 𝑥 ) = 𝛼𝐿 1 
𝐻 ( 𝛽 − 𝑥 ) + 𝛼𝐿 2 

𝐻 ( 𝑥 − 𝛽) (6)

𝜕 𝐶 𝑥 

𝜕𝑡 
+ 

𝜕 𝐶 𝑥 

𝜕𝑥 
− 

𝜕 

𝜕𝑥 

( 

𝛼𝐿 ( 𝑥 ) 
𝜕 𝐶 𝑥 

𝜕𝑥 

) 

= 0 (7)

 𝑥 = 𝛿( 𝑥 ) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 
𝛼𝐿 1 

𝜕 𝐶 𝑥 

𝜕𝑥 
= 0 , 

𝜕 𝐶 𝑥 

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (8)

Here we denote C x = C ( x, t ) and dimensional time in (5) has been
escaled with respect to the characteristic advective time, L ∗ / u ∗ , the
atter being a constant deterministic quantity in this study. 

Our analysis considers the two local dispersivities 𝛼𝐿 1 
and 𝛼𝐿 2 

as
ell as the location 𝛽 of the interface between the two media as un-

orrelated random variables, each characterized by a given probability
ensity function, hereafter denoted as 𝑝 ( 𝛼𝐿 1 

) , 𝑝 ( 𝛼𝐿 2 
) , p ( 𝛽) for 𝛼𝐿 1 

, 𝛼𝐿 2 
nd 𝛽, respectively. On these bases, we illustrate the equations satisfied
y the leading (statistical) moments of C x in the following sub-section. 

.2. Moment equations for solute concentration 

The ensemble mean, ⟨𝜓⟩, of a given quantity of interest 𝜓 associated
ith the system described in Section 2.1 can be evaluated as 
50 
𝜓 ⟩= ∫Γ𝛽

⟨𝜓 ⟩|𝛽𝑝 ( 𝛽) 𝑑𝛽 with ⟨𝜓 ⟩|𝛽 = ∫Γ𝛼𝐿 2 
∫Γ𝛼𝐿 1 

𝜓 |𝛽𝑝 ( 𝛼𝐿 1 
) 𝑝 ( 𝛼𝐿 2 

) 𝑑 𝛼𝐿 1 
𝑑 𝛼𝐿 

(9) 

Here, ⟨𝜓⟩| 𝛽 denotes the expected value of 𝜓 conditional to a given
osition of the geomaterial interface, i.e., the expected value of 𝜓 when
he location of the interface 𝛽 is known and only the two geomaterial
ocal dispersivities are affected by uncertainty. 

In Section 2.2.1 , we derive the equations satisfied by the mean
nd variance of C x when 𝛼𝐿 1 

and 𝛼𝐿 2 
are uncertain while 𝛽 is given,

ection 2.2.2 being devoted to the assessment of moments of C x when
ll quantities 𝛼𝐿 1 

, 𝛼𝐿 2 
and 𝛽 are uncertain. 

.2.1. Moment equations for solute concentration with known location of 

eomaterial interface 

We make use of the following decomposition 

𝐿 𝑖 
= 

⟨ 
𝛼𝐿 𝑖 

⟩ 
+ 𝛼′

𝐿 𝑖 
with 

⟨ 
𝛼𝐿 𝑖 

⟩ 
= ∫Γ𝛼𝐿 𝑖 

𝛼𝐿 𝑖 
𝑝 ( 𝛼𝐿 𝑖 

) 𝑑 𝛼𝐿 𝑖 
(10)

here 𝛼′
𝐿 𝑖 

( i = 1, 2) is the fluctuation of 𝛼𝐿 𝑖 
with respect to its mean,

𝛼𝐿 𝑖 
⟩. Considering (7) - (8) , the second of (9) and making use of (10) ,

he mean solute concentration, ⟨C x ⟩| 𝛽 , at space-time location ( x, t ) for a
iven interface position, 𝛽, satisfies the following equation: 

𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑡 

+ 

𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

− 

𝜕 

𝜕𝑥 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐻 ( 𝛽 − 𝑥 ) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
⟨ 
𝛼𝐿 1 

⟩ 𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

+ 

𝜕 
⟨ 
𝛼′

𝐿 1 
𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑥 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 𝐻 ( 𝑥 − 𝛽) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
⟨ 
𝛼𝐿 2 

⟩ 𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

+ 

𝜕 
⟨ 
𝛼′

𝐿 2 
𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑥 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 0 (11) 

ubject to the initial and boundary conditions: ⟨𝐶 𝑥 ⟩||𝛽 = 𝛿( 𝑥 ) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 

⟨ 
𝛼𝐿 1 

⟩ 𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

= 0 , 
𝜕 ⟨𝐶 𝑥 ⟩||𝛽

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (12) 

We evaluate (11) and (12) recursively, by expanding all (statistical)
oments appearing therein as 

⟨𝜓 ⟩|𝛽 = 

∞∑
𝑛 =0 

⟨𝜓 ⟩|[ 𝑛 ] 
𝛽

(13)

Here, ⟨𝜓⟩|[ 𝑛 ] 
𝛽

∝ ⟨( 𝛼′
𝐿 1 
) 𝑚 ⟩⟨( 𝛼′

𝐿 2 
) 𝑗 ⟩ with m + j = n . Expansion (13) rests

n the idea that each material is associated with mild values of local
ispersivity variance, which is consistent with the composite medium
cheme we are employing. In the following, we limit our recursive
pproximation to second order, i.e., n = 2, and approximate ⟨𝜓⟩|𝛽 ≈
𝜓⟩|[0] 

𝛽
+ ⟨𝜓⟩|[2] 

𝛽
(note that ⟨𝜓⟩|[1] 

𝛽
vanishes). 

The zero- and second- order approximations of the conditional mean
oncentration, ⟨𝐶 𝑥 ⟩|[ 𝑘 ] 𝛽

, are given by 

𝜕 ⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽

𝜕𝑡 
+ 

𝜕 ⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽

𝜕𝑥 
− 𝜕 

𝜕𝑥 

⎡ ⎢ ⎢ ⎣ 
(
𝐻 ( 𝛽 − 𝑥 ) 

⟨
𝛼𝐿 1 

⟩
+ 𝐻 ( 𝑥 − 𝛽) 

⟨
𝛼𝐿 2 

⟩) 𝜕 ⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽

𝜕𝑥 

⎤ ⎥ ⎥ ⎦ = 
= − 𝜕 

𝜕𝑥 

⎛ ⎜ ⎜ ⎜ ⎝ 𝐻 ( 𝛽 − 𝑥 ) 
𝜕 
⟨
𝛼′

𝐿 1 
𝐶 𝑥 

⟩|||[ 𝑘 ] 𝛽

𝜕𝑥 
+ 𝐻 ( 𝑥 − 𝛽) 

𝜕 
⟨
𝛼′

𝐿 2 
𝐶 𝑥 

⟩|||[ 𝑘 ] 𝛽

𝜕𝑥 

⎞ ⎟ ⎟ ⎟ ⎠ 𝑘 = 0 , 2 (14) 

ubject to the initial and boundary conditions 

⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽
= 𝛿( 𝑥 ) 

[
1 − 

𝑘 

2 

]
𝑓 𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 

⟨
𝛼𝐿 1 

⟩ 𝜕 ⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽

𝜕𝑥 
= 0 , 

𝜕 ⟨𝐶 𝑥 ⟩||[ 𝑘 ] 𝛽

𝜕𝑥 
= 0 𝑓 𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (15) 
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a  

o  
An expression for the second order (i.e., k = 2) cross-covariance
𝛼′

𝐿 𝑖 
𝐶 𝑥 ⟩|[2] 𝛽

(with i = 1, 2) is derived in Appendix A , the corresponding
ero-order component being equal to zero. We note that, according to
14) , both ⟨𝐶 𝑥 ⟩|[0] 𝛽

and ⟨𝐶 𝑥 ⟩|[2] 𝛽
satisfy a classical ADE whereas the source

erm ( i ) is null for k = 0 and ( ii ) is a function of 𝜎2 
𝛼𝐿 𝑖 

(through (A.3)) for

 = 2. In other words, ⟨𝐶 𝑥 ⟩|[2] 𝛽
accounts for the influence of our lack of

nowledge about local dispersivity values on the expected value of the
oncentration field, given the location of materials’ interface. Note that
he term 𝜕 ⟨𝛼′

𝐿 𝑖 
𝐶 𝑥 ⟩|[2] 𝛽

∕ 𝜕𝑥 in (14) is analogous to the dispersive flux ap-
earing in Morales et al. (2006a,b ), and Neuman (1993) , where the MEs
re formulated considering a solute transport problem characterized by
 homogeneous deterministic local dispersion coefficient while there
s a lack of knowledge in the hydraulic conductivity field. Given that
𝐶 𝑥 ⟩|[0]+[2] 𝛽

is intended as our best prediction of the actual (unknown)

 x , the term 𝜕 ⟨𝛼′
𝐿 𝑖 

𝐶 𝑥 ⟩|[2] 𝛽
∕ 𝜕𝑥 reflects a loss of information rather than a

hysical dispersive process (which in our set-up is controlled by the ac-
ual values of 𝛼𝐿 𝑖 

). Clearly, ⟨𝐶 𝑥 ⟩|[2] 𝛽
vanishes if the dispersive properties

f the two materials are deterministically known, i.e., if 𝜎2 
𝛼𝐿 𝑖 

= 0 , and

 x coincides with ⟨𝐶 𝑥 ⟩|[0] 𝛽
. 

The second-order approximation of the cross-covariance ⟨C ′ 𝜉C ′ x ⟩| 𝛽
see Appendix B ) is given by 

𝜕 
⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽

𝜕𝑡 
+ 

𝜕 
⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽

𝜕𝑥 
− 

𝜕 

𝜕𝑥 

⎡ ⎢ ⎢ ⎢ ⎣ 
(
𝐻 ( 𝛽 − 𝑥 ) 

⟨ 
𝛼𝐿 1 

⟩ 
+ 𝐻 ( 𝑥 − 𝛽) 

⟨ 
𝛼

= 

𝜕 

𝜕𝑥 

⎡ ⎢ ⎢ ⎣ 
( 

𝐻 ( 𝛽 − 𝑥 ) 
⟨ 
𝛼′

𝐿 1 
𝐶 

′
𝜉

⟩ ||||[ 2 ] 𝛽

+ 𝐻 ( 𝑥 − 𝛽) 
⟨ 
𝛼′

𝐿 2 
𝐶 

′
𝜉

⟩ ||||[ 2 ] 𝛽

) 𝜕 ⟨𝐶 𝑥 ⟩||[𝛽
𝜕𝑥 

subject to the initial and boundary conditions ⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽
= 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 

⟨ 
𝛼𝐿 1 

⟩ 𝜕 ⟨𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽

𝜕𝑥 
+ 

⟨ 
𝛼′

𝐿 1 
𝐶 

′
𝜉

⟩ ||||[ 2 ] 𝛽

𝜕 ⟨𝐶 𝑥 ⟩||[ 0 ] 𝛽

𝜕𝑥 
= 0 , 

𝜕 
⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (17) 

here ( 𝜉, 𝜏) indicate space and time coordinates. The conditional con-
entration variance at space-time location ( x, t ) can then be obtained
hrough (16) - (17) as 

2 
𝐶 𝑥 |𝛽 = lim 

𝜉→𝑥 
𝜏→𝑡 

⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽
(18) 

Note that a source term which is a function of 𝜎2 
𝛼𝐿 𝑖 

(through A.3 )

ppears on the right hand side of (16) . This term vanishes in the presence
f deterministically known material dispersivities, thus yielding 𝜎2 

𝐶 𝑥 |𝛽 =
 , given the homogenous boundary conditions in (17) . 

.2.2. Moment equations for solute concentration with uncertain 

ispersivities and geomaterial interface location 

Removing conditioning on 𝛽 from the (ensemble) moments consid-
red in Section 2.2.1 yields global (or unconditional) moments of quan-
ities of interest. Such (ensemble) moments imbue the contribution of
ncertainties in the location of the interface as well as in the local dis-
ersivity values. 

Following (9) , the (unconditional) mean concentration, ⟨C x ⟩, can be
valuated as 

𝐶 𝑥 ⟩ = ∫Γ𝛽

⟨𝐶 𝑥 ⟩||𝛽𝑝 ( 𝛽) 𝑑𝛽 (19) 

Evaluating concentration variance 𝜎2 
𝐶 𝑥 

at a given space-time location

ntails writing concentration fluctuations as 

 

′
𝑥 = 𝐶 

′
𝑥 
||𝛽 + 𝐶 𝑥 

|||𝛽 (20)
51 
𝜕 
⟨
𝐶 

′
𝜉𝐶 

′
𝑥 

⟩|||[ 2 ] 𝛽

𝜕𝑥 

⎤ ⎥ ⎥ ⎥ ⎦ 
(16) 

here we decompose the concentration fluctuation according to the
ontribution of two terms: ( a ) C ′ x | 𝛽 = C x | 𝛽 − ⟨C x ⟩| 𝛽 , representing the

oncentration fluctuation for a given interface position, and ( b ) 𝐶 𝑥 |𝛽 =
𝐶 𝑥 ⟩|𝛽 − ⟨𝐶 𝑥 ⟩, representing the difference between the conditional and
he unconditional mean concentration. One can then write the following
quation for 𝜎2 

𝐶 𝑥 

2 
𝐶 𝑥 

= ∭Γ𝛽 , Γ𝛼𝐿 1 
, Γ𝛼𝐿 2 

(
𝐶 

′
𝑥 
||𝛽 + �̄� 𝑥 

||𝛽)2 𝑝 ( 𝛽) 𝑝 (𝛼𝐿 1 

)
𝑝 
(
𝛼𝐿 2 

)
𝑑 𝛽 𝑑 𝛼𝐿 1 

𝑑 𝛼𝐿 2 

= ∫Γ𝛽

𝜎2 
𝐶 𝑥 |𝛽 𝑝 ( 𝛽) 𝑑𝛽 + ∫Γ𝛽

�̄� 𝑥 
||2 𝛽𝑝 ( 𝛽) 𝑑𝛽 = 

⟨ 

𝜎2 
𝐶 𝑥 |𝛽

⟩ 

+ 

⟨ 
�̄� 𝑥 
||2 𝛽⟩ (21) 

Eq. (21) clearly highlights that the uncertainty (as quantified by the
ariance) of the solute concentration is due to the sum of two terms. The
rst one, ⟨𝜎2 

𝐶 𝑥 |𝛽 ⟩, is the mean value (evaluated in the space of variability

f 𝛽) of the variance of the concentration associated with the uncertainty

f the local dispersivities. The second term, ⟨𝐶 𝑥 |𝛽2 ⟩, represents the con-

ribution to 𝜎2 
𝐶 𝑥 

due to the variability of the mean concentration arising

rom conditioning on 𝛽. Clearly, 𝜎2 
𝐶 𝑥 |𝛽 and ⟨𝐶 𝑥 |𝛽2 ⟩ vanish if one deter-

inistically knows the local dispersivity values or the position of the
nterface between the two porous domains, respectively. 

.3. Numerical implementation 

Solution of (14) –(21) requires accurate numerical methods to limit
umerical dispersion and properly describe the behavior of the target
tatistical moments. Following Cockburn and Shu (1998) and Di Pietro
nd Ern (2012) , we apply the discontinuous Galerkin finite element
ethod to the hyperbolic (advective) part of (14) and (16) . Details about

he adopted numerical method are illustrated in Appendix C . 
We evaluate the unconditional concentration mean, i.e., ⟨C x ⟩, by

olving (16) –(17) for N 𝛽 locations of the interface, randomly sampled
rom p ( 𝛽). We then approximate (19) as 

𝐶 𝑥 ⟩ ≈ 1 
𝑁 𝛽

𝑁 𝛽∑
𝑖 =1 

( ⟨𝐶 𝑥 ⟩||[ 0 ] 𝛽𝑖 
+ ⟨𝐶 𝑥 ⟩||[ 2 ] 𝛽𝑖 

)
(22) 

here ⟨𝐶 𝑥 ⟩|[0] 𝛽𝑖 
and ⟨𝐶 𝑥 ⟩|[2] 𝛽𝑖 

are the zero- and second-order components

f the expected value of concentration conditional to 𝛽 = 𝛽 i . 
The (unconditional) concentration variance is evaluated approximat-

ng (21) as 

2 
𝐶 𝑥 

= 

1 
𝑁 𝛽

𝑁 𝛽∑
𝑖 =1 

{ 

𝜎2 
𝐶 𝑥 |𝛽𝑖 + 

[( ⟨𝐶 𝑥 ⟩||[ 0 ] 𝛽𝑖 
+ ⟨𝐶 𝑥 ⟩||[ 2 ] 𝛽𝑖 

)
− 

(⟨𝐶 𝑥 ⟩[ 0 ] + ⟨𝐶 𝑥 ⟩[ 2 ] )]2 } 

(23) 

here 𝜎2 
𝐶 𝑥 |𝛽𝑖 is the numerical solution of (17) and (18) conditional to a

iven 𝛽 i . 

. Computational showcases: results and discussion 

We explore the implications of conceptualizing the porous domain as
 random composite (in the sense illustrated in Section 2 ) where each ge-
material is characterized by random local dispersivities by way of two
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m  
rrangements of the sub-domains forming the system: ( i ) a coarse to fine
rrangement (hereafter denoted as C–F), where a coarse geomaterial
recedes a fine one along the direction of flow; and ( ii ) a fine to coarse
rrangement (hereafter termed F–C). We set ⟨𝛼𝐿 1 

⟩ = 𝛼
𝐿 𝐶 

= 2 . 5 × 10 −2 

nd ⟨𝛼𝐿 2 
⟩ = 𝛼

𝐿 𝐹 
= 2 . 5 × 10 −3 in the C–F setting, the F–C scenario be-

ng associated with the opposite sequence of values. In both scenarios
𝛽⟩= 0.5, 𝛼𝐿 1 

, 𝛼𝐿 2 
, and 𝛽 being modeled as independent and identi-

ally distributed random variables characterized by uniform densities.
his choice is consistent with a setting where no prior information on

𝐿 𝑖 
and 𝛽 is available, alternative choices about the distribution of 𝛼𝐿 𝑖 

nd 𝛽 being fully compatible with the developed approach. For the
ake of our analyses, we consider a coefficient of variation equal to
0% for all distributions. This choice enables us ( a ) to analyze com-
osite media where the (random) location of the material interface is
lways included in the studied domain, and ( b ) to explore the behav-
or of a well demarcated system where local dispersivities of the fine
nd coarse media are associated with differing orders of magnitude and
heir probability density functions are characterized by non-overlapping
upports. 

The conditional moment equations are solved according to the ap-
roach illustrated in Appendix C with N E = 1000 elements (correspond-
ng to Δx = 10 − 3 ) and a time step of Δt = 5 − 3 for a total of N T = 2000
ime steps (all symbols are defined in Appendix C ). These parameters
rovide a sufficient degree of numerical accuracy for our solution (de-
ails not shown). We find that considering N 𝛽 ≈ 170 is sufficient to
rovide stable results for the moments investigated. In the following,
e illustrate our key findings by focusing on three selected observation

imes, i.e., t 1 = 1/4, t 2 = 1/2; t 3 = 3/4. Our ME-based outcomes are
lso compared against a suite of numerical Monte Carlo (MC) results.
he latter have been evaluated with the same numerical technique and
pace-time discretization employed to compute the conditional MEs and
y relying on a collection of 1000 MC replicates for each given location
f the material interface. Note that, even as the computational costs of
 standard Monte Carlo approach are easily affordable for the exempli-
ed case, the MEs approach allows for an improved understanding of
he way material dispersivities and interface location uncertainty affect
he leading statistical moments of the solute concentration, as discussed
n Section 2 . 

.1. Numerical results for unknown dispersivities and known interface 

ocation 

Fig. 1 depicts the dependence on x of (a–c) the conditional expected
alue of solute concentration, i.e., ⟨C x ⟩| 𝛽 = 0.5 , (d–f) the corresponding
onditional concentration variance, i.e., 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 , and (g–i) the associ-

ted coefficient of variation, i.e., 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 = 𝜎
𝐶 𝑥 |𝛽=0 . 5 ∕ ⟨𝐶 𝑥 ⟩|𝛽=0 . 5 , at the

hree selected observation times in the (C-F) setting for 𝛽 = 0.5. ME-
red curves) and MC- (blue curves) based results are depicted. Fig. 1 a–c
lso depicts three randomly selected spatial profiles of C x | 𝛽 = 0.5 . Corre-
ponding results for the (F–C) setting are illustrated in Fig. 2 . In gen-
ral, ME- and MC- based results display a good agreement for all cases
nd quantities analyzed, the highest ME-based peak value of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 
lightly underestimating its MC-based counterpart (see Figs. 1 d–f and
 d–f). 

Our results show that for a given observation time the average be-
avior of the solute is characterized by a higher spatial spreading of
he plume in the (C–F) than in the (F–C) scenario. To explore this pat-
ern, we consider a new dimensionless time, ̃𝑡 , obtained by rescaling the
dimensional) observation time t ∗ with respect to a characteristic mean
ispersive time, i.e., ̃𝑡 = 𝑡 ∗ 𝑢 ∗ ⟨𝛼∗ 

𝐿 𝑖 
⟩∕ 𝐿 

∗2 . It then follows that such a dimen-

ionless time corresponds to ̃𝑡 𝐶 = 𝑡𝛼
𝐿 𝐶 

or ̃𝑡 𝐹 = 𝑡𝛼
𝐿 𝐹 

, for the coarse or the

ne geomaterial, respectively. Note that ̃𝑡 𝐹 ∕ ̃𝑡 𝐶 = 𝛼
𝐿 𝐹 

∕ 𝛼
𝐿 𝐶 

= 0 . 1 in our

est case, i.e., the local dispersive mechanism in the fine geomaterial
cts slower than in the coarse one. This latter observation implies that
52 
he solute migrating across the fine geomaterial should travel (on aver-
ge) ten times the corresponding distance traversed within the coarse
eomaterial to attain the same level of spreading, i.e., to experience the
ame total amount of local dispersive length scales. According to this
onceptual picture, we note that the plume spreading at advective time
 1 (corresponding to an observation time where the influence of the pres-
nce of the second material on the average solute concentration can be
eglected) is at a more advanced stage for the (C–F) than for the (F–C)
rrangement, thus explaining why ⟨C x ⟩| 𝛽 = 0.5 in Fig. 1 a appears to be
ore spread across space than in Fig. 2 a. When the solute experiences

he effects of two geomaterials (e.g., at advective times t 2 and t 3 ), the
lume spreading behavior is controlled by the amount of characteristic
ocal dispersive lengths ( 𝛼

𝐿 𝐶 
and 𝛼

𝐿 𝐹 
for the coarse and fine materials,

espectively) traveled by the solute in both geomaterials. 
The shape of the mean concentration profiles (and that of the ran-

omly chosen C x ) shows a distinctive pattern in the proximity of the
nterface, where the spatial derivate of ⟨C x ⟩| 𝛽 = 0.5 is lower in the coarse
han in the fine material (see Figs. 1 a–c and 2 a–c). This behavior is a
onsequence of the continuity of solute flux across the interface, accord-
ng to which low concentration gradients are associated with high values
f local dispersivity and vice-versa. The interface also affects the loca-
ion of the peaks of ⟨C x ⟩| 𝛽 = 0.5 . For example, at time t 2 , the peak of the
oncentration profile in a homogeneous domain would occur at x = 0.5,
hile in our settings it always resides in the portion of the domain oc-

upied by the fine geomaterial (see Figs. 1 b and 2 b). Note that the anal-
ses illustrated so far highlight that the plume-scale spreading behavior
as manifested in each C x realization and in the resulting ⟨C x ⟩| 𝛽 = 0.5 ) is
on-Fickian due to heterogeneity in the local dispersivities and to the
resence of the materials’ interface. 

The conditional concentration variance, 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 , displays three

eaks and two local minima. This finding is consistent with the physi-
al nature of the process analyzed. In each realization the solute is dis-
ersed from the center of mass of the advancing plume (the position
f which is dictated by the deterministic velocity u ∗ ) towards the tails
ith a strength governed by the uncertain material dispersivities. Con-

idering the three random realizations depicted in Figs. 1 a–c and 2 a–c,
ne can see that solute concentrations profiles corresponding to peak
alues of C x | 𝛽 = 0.5 lower than ⟨C x ⟩| 𝛽 = 0.5 exhibit tails heavier than those
f ⟨C x ⟩| 𝛽 = 0.5 , the opposite being observed when the peak of C x | 𝛽 = 0.5 

s larger than the one displayed by ⟨C x ⟩| 𝛽 = 0.5 . This mechanism causes
he occurrence of the two observed local minima (and three peaks). We
urther note that the highest peak of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 is located in the proximity

f the peak of ⟨C x ⟩| 𝛽 = 0.5 . 
Comparison of Figs. 2 d–f and 1 d–f shows that 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 attains larger

alues in the (F–C) than in the (C–F) scenario. This result could appear
s counterintuitive, at least for t 1 (i.e., when solely the first geomaterial
ispersivity dictates the spreading behavior of the plume), because the
ocal dispersivity variance of the coarse geomaterial is larger than that
f the fine unit and one might expect larger values of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 in the

C–F) than in the (F–C) setting. This apparent inconsistency is recon-
iled by recalling that the local dispersive mechanism acts faster in the
oarse than in the fine geomaterial. Therefore, concentration profiles (at
 given time) in the coarse geomaterial tend to display more enhanced
preading and dilution than in the fine medium. Thus, differences among
he C x | 𝛽 = 0.5 profiles (as quantified by the variance 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 ) across the

ollection of MC realizations at a given time are significantly larger in
he fine than in the coarse system. This observation is further supported
y noticing that the drop of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 observed comparing t 2 and t 3 is

maller than that taking place between t 1 and t 2 in (C–F), i.e., it ap-
ears that the spreading mechanism tends to diminish its strength due
o the presence of the fine geomaterial. The opposite holds for the (F–C)
rrangement. 

The (conditional) variance 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 is initially zero, due to the deter-

inistic conditions imposed. The injected pulse then migrates according



A. Dell’Oca, M. Riva and P. Ackerer et al. Advances in Water Resources 128 (2019) 48–58 

Fig. 1. For assigned material interface, i.e., 𝛽 = 0.5 (vertical grey dotted line) and (C–F) material arrangement: (a–c) average concentration, i.e., ⟨C x ⟩| 𝛽 =0.5 ; (d–f) 

concentration variance, i.e., 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 ; and (g–i) coefficient of variation of concentration, i.e., 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 = 𝜎𝐶 𝑥 |𝛽=0 . 5 ∕ ⟨𝐶 𝑥 ⟩|𝛽=0 . 5 at three selected (dimensionless) times 

t 1 , t 2 , and t 3 versus spatial location x . ME- (red curves) and MC- (blue curves) based results are depicted. Fig. 1 a–c also depicts three randomly chosen profiles of 

C x | 𝛽 =0.5 (grey curves). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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o a deterministic advective velocity and spreads according to an un-
ertain dispersivity value, the latter governing the strength of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 .
s time progresses, the effect of local dispersion leads to have more
pread in the solute plumes, i.e., the peak value of ⟨C x ⟩| 𝛽 = 0.5 drops and
C x ⟩| 𝛽 = 0.5 encompasses increased portions of the domain. Since there
s a constant solute mass in each realization, the differences between
he concentration profiles across the collection of MC realizations tend
o decrease as time increases. This is also related to the observation
hat the maximum value of 𝜎2 

𝐶 𝑥 |𝛽=0 . 5 tends to decrease and the values of

2 
𝐶 𝑥 |𝛽=0 . 5 to spread over space with time. 

The insets in Fig. 2 c and f respectively juxtapose ⟨C x ⟩| 𝛽 = 0.5 and
2 
𝐶 𝑥 |𝛽=0 . 5 evaluated through our MEs for the (C–F) (solid curve) and the

F–C) (dashed curve) arrangements. The (C–F) and (F–C) solutions coin-
ide at a spatial location twice the value of 𝛽 (i.e., at the outlet x = 1 for
= 0.5). This follows from the observation that at this location the solute
as experienced (on average) the same total amount of dispersive length
cales (in terms of 𝛼

𝐿 𝐶 
and 𝛼

𝐿 𝐹 
) in both geomaterial arrangements. The

ame observation holds for any fixed value of 𝛽. 
The analysis of the coefficient of variation 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 reveals that

s far as the solute plume spreads solely within one geomaterial, e.g.,
t time t 1 ( Figs. 1 g and 2 g), the relative discrepancy between profiles
f C x | 𝛽 = 0.5 across the collection of realizations and their (ensemble)
ean shows some similarities in both (C–F) and (F–C) settings. Some
etails of this aspect are elucidated by the inset of Fig. 2 g that juxtaposes
 𝑉 𝐶 𝑥 |𝛽=0 . 5 evaluated through our MEs for the (C–F) (dashed curve) and

he (F–C) (solid curve) arrangements at time t 1 . Here, one can note that
he maximum value of 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 attains the same value and occurs at
 a

53 
he same spatial location (i.e., at the advective dimensionless distance
 = t 1 ) for both settings. Our results also show that 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 versus

̃ = 𝑥 − 𝑡 at t = t 1 for (F–C) coincides with its counterpart evaluated at
 1 /10 for (C–F). 

At later times, e.g., t 3 , when the solute has traveled through both
eomaterials, 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 decreases for both geomaterial arrangements
see Figs. 1 i, and 2 i). The latter result is consistent with the observation
hat the joint action of diverse combinations of local dispersivity values
haracterizing the two units can lead to the same value of concentration
t a given space-time location (see also our previous comments about
he system behavior at x = 1). In other words, our results reveal that the
elative discrepancy between the C x | 𝛽 = 0.5 spatial profiles that one can
bserve across a collection of Monte Carlo realizations tends to decrease
s a consequence of the heterogeneity of the porous media dispersive
roperties as quantified at a given spatial scale. 

.2. Numerical results for unknown dispersivities and unknown interface 

ocation 

We now analyze the leading ensemble moments of concentration by
onsidering the joint effects of uncertainty of local dispersivities and
eomaterials’ interface. Fig. 3 a–c depict the mean concentration, ⟨C x ⟩,
ersus x in the (C–F) setting at the three selected observation times.
esults obtained through MEs (red curves) and MC (blue curves) are
isplayed. For comparison purposes, Fig. 3 a–c include depictions of the
onditional mean concentrations ⟨𝐶 𝑥 ⟩|𝛽= 𝛽min 

(black curves), ⟨C ⟩| 𝛽 = 0.5 

green curves) and ⟨𝐶 𝑥 ⟩|𝛽= 𝛽max 
(purple curves) obtained by setting the

nterface at the locations corresponding to the minimum ( 𝛽min ), mean,
nd maximum ( 𝛽max ) value characterizing the distribution of 𝛽. Fig. 3 d–
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Fig. 2. For assigned material interface, i.e., 𝛽 = 0.5 (vertical grey dotted line) and (F–C) material arrangement: (a–c) average concentration, i.e., ⟨C x ⟩| 𝛽 =0.5 ; (d–f) 

concentration variance, i.e., 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 ; and (g–i) coefficient of variation of concentration, i.e., 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 = 𝜎𝐶 𝑥 |𝛽=0 . 5 ∕ ⟨𝐶 𝑥 ⟩|𝛽=0 . 5 at three selected (dimensionless) times 

t 1 , t 2 , and t 3 versus spatial location x . ME- (red curves) and MC- (blue curves) based results are depicted. Fig. 1 a–c also depicts three randomly chosen profiles of 

C x | 𝛽 =0.5 (grey curves). Insets in Figs. 2 c, f juxtapose ME-based ⟨C x ⟩| 𝛽 =0.5 and 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 versus x at time t 3 for the (F–C) (continuous curves) and (C–F) (dashed curves) 

arrangements, respectively. The inset in Fig. 2 g juxtaposes the ME-based 𝐶 𝑉 𝐶 𝑥 |𝛽=0 . 5 (plotted against coordinate ̃𝑥 = ( x − t )) at time t 1 for the (F–C) (continuous curves) 

and (C–F) (dashed curves) arrangements, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 3. Joint effects of uncertain geomaterial interface and dispersivities for the (C–F) arrangement: (a–c) average concentration, i.e., ⟨C x ⟩ ME-based (red curves) 

and MC-based (blue curves), and conditional average concentrations ⟨𝐶 𝑥 ⟩|𝛽= 𝛽min 
(black curve), ⟨C ⟩| 𝛽 =0.5 (green curves) and ⟨𝐶 𝑥 ⟩|𝛽= 𝛽max 

(purple curves) all ME-based; 

(d–f) concentration variance, i.e., 𝜎2 
𝐶 𝑥 

ME-based (continuous red curves) and MC-based (continuous blue curves), ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩ME-based (dashed red curves) and MC-based 

(dashed blue curves), and ⟨𝐶 𝑥 |𝛽 2 ⟩ ME-based (green curves). Red boxes represent the support 𝛽 ∈ [ 𝛽min , 𝛽max ] of the probability distribution of 𝛽. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Joint effects of uncertain material interface and dispersivities for the (F–C) material arrangement: (a–c) average concentration, i.e., ⟨C x ⟩ME-based (red curves) 

and MC-based (blue curves), and conditional average concentrations ⟨𝐶 𝑥 ⟩|𝛽= 𝛽min 
(black curve) ⟨C ⟩| 𝛽 =0.5 (green curves) and ⟨𝐶 𝑥 ⟩|𝛽= 𝛽max 

(purple curves) all ME-based; 

(d–f) concentration variance, i.e., 𝜎2 
𝐶 𝑥 

ME-based (continuous red curves) and MC-based (continuous blue curves), ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩ME-based (dashed red curves) and MC-based 

(dashed blue curves), and ⟨𝐶 𝑥 |𝛽 2 ⟩ ME-based (green curves). Red boxes represent the support 𝛽 ∈ [ 𝛽min , 𝛽max ] of the probability distribution of 𝛽. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 depict concentration variance 𝜎2 
𝐶 𝑥 

computed via MEs (continuous red

urves) and MC (continuous blue curves). For completeness, the second-
rder (ME-based) approximation of the two terms in (23) contributing

o 𝜎2 
𝐶 𝑥 

, i.e., ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩ and ⟨𝐶 𝑥 |𝛽2 ⟩, together with the MC-based evaluation

f ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩ are also depicted. The MC computed ⟨𝐶 𝑥 |𝛽2 ⟩ (not reported)

ractically coincides with its ME counterpart, the latter depending only
n the second-order conditional mean concentration field (see (23) ).
e also note that the ME-based ⟨𝜎2 

𝐶 𝑥 |𝛽 ⟩ is in good agreement with its

C counterpart, only slightly underestimating the MC-based peak value.
orresponding curves for the (F–C) arrangements are shown in Fig. 4 . 

Ensemble average spatial profiles ⟨C x ⟩ do not display discontinu-
ties of the kind shown in Figs. 1 and 2 for the conditional ⟨C x ⟩| 𝛽 . This
s related to the observation that ⟨C x ⟩| 𝛽 displays a discontinuity in its
erivative only close to 𝛽. Thus, averaging ⟨C x ⟩| 𝛽 over all possible real-
zations of 𝛽 yields a regular ⟨C x ⟩ profile. This finding is consistent with
he smoothing of the profiles of averaged heads due to randomness of
he internal boundary between two media of distinct conductivities ob-
erved by Winter and Tartakovsky (2000) and Guadagnini et al. (2003) .
e further note that ⟨C x ⟩ does not coincide (in general) with ⟨C x ⟩| 𝛽 = 0.5 ,

.e., the expected value of the solute concentration cannot be accurately
valuated simply by conditioning on the mean value of the material
nterface position and is affected by the uncertainty of the interface lo-
ation. Neglecting the latter source of uncertainty would result in a sig-
ificant error in the prediction of both the peak and the spread of the
ean concentration profile. 

Figs. 3 d–f and 4 d–f show that, even as ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩ decreases with time

see also our previous discussion about 𝜎2 
𝐶 𝑥 |𝛽 in Section 3.1 ), the total

ariance 𝜎2 
𝐶 𝑥 

increases from t 1 to t 2 . This is related to our lack of knowl-

dge about the interface position, as quantified by the contribution of

𝐶 𝑥 |𝛽2 ⟩ in (21) . At short time (e.g., t 1 ), the presence of the second ma-

erial has a low (see Fig. 3 d) or negligible (see Fig. 4 b) impact on 𝜎2 
𝐶 𝑥 

.

s time progresses, the second material contributes to the variability of
he spreading behavior of the traveling solute, leading to increased val-
55 
es of 𝜎2 
𝐶 𝑥 

. The same line of reasoning explains the observed drop of the

ontribution due to ⟨𝐶 𝑥 |𝛽2 ⟩ at time t 3 . Note that the typical three-peak

ehavior previously observed for 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 is also a distinctive signature

f ⟨𝐶 𝑥 |𝛽2 ⟩. The latter finding is rooted in the same mechanisms dictating

he spatial pattern of 𝜎2 
𝐶 𝑥 |𝛽=0 . 5 . This is clearly seen by recalling (21) and

oting that the term ⟨𝐶 𝑥 |𝛽2 ⟩ quantifies the variability of ⟨C x ⟩| 𝛽 with re-
pect to ⟨C x ⟩. When the effect of the coarse material is dominant (e.g.,
onsider ⟨𝐶 𝑥 ⟩|𝛽max 

for (C-F)), ⟨C x ⟩| 𝛽 is lower than ⟨C x ⟩ at the plume cen-
er and exhibits higher tails than does ⟨C x ⟩, the opposite being observed
hen the effect of the fine material is dominant (e.g., consider ⟨𝐶 𝑥 ⟩|𝛽min 

or (C–F)). It then follows that the degree of spreading around its center
f mass (whose location is dictated by the deterministic fluid velocity)
f the profile of ⟨C x ⟩| 𝛽 at a given time markedly depends on the location
f 𝛽. 

A close inspection of Figs. 3 and 4 reveals that values of ⟨C x ⟩, ⟨𝜎2 
𝐶 𝑥 |𝛽 ⟩

nd ⟨𝐶 𝑥 |𝛽2 ⟩ calculated for the (C–F) and (F–C) settings coincide at a loca-
ion equal to twice the value of ⟨𝛽⟩ (details not shown). This finding is in
greement with our previous observation about the dependency of the
onditional moments on the average dispersive length scales traveled
y the solute. In other words, for the setting here analyzed the solution
f the mean and variance of concentrations is insensitive to the material
rrangement at a spatial location equal to twice the value of ⟨𝛽⟩. 
. Conclusions 

We consider solute transport taking place in a composite porous
edium in the presence of uncertainty about ( i ) the position of the in-

erface between two distinct geomaterials, and ( ii ) the dispersivity value
ithin each geomaterial (i.e., the local dispersivity). We derive and solve
oment Equations (MEs) for the first two (statistical) moments (i.e.,
ean and variance) of solute concentration. We analyze settings corre-

ponding to two arrangements of the sub-domains forming the system: a
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oarse to fine (denoted as C–F) and a fine to coarse arrangement (termed
–C). Our work leads to the following major conclusions. 

1. Our MEs clearly show that it is possible to decompose the concen-
tration variance as the sum of two distinct contributions. These
are respectively associated with our lack of knowledge on the
geomaterial dispersivities and on the location of the interface be-
tween the two geomaterials. Our ME-based results compare well
with those obtained through a numerical Monte Carlo approach
in all configurations analyzed, either in the presence of informa-
tion about the geomaterial interface knowledge or when the latter
is modeled as a random variable. 

2. The spatial distribution of the conditional solute concentration
variance exhibits a characteristic three-peak pattern with two lo-
cal minima. This behavior is governed by the effect of the ran-
dom local dispersivity values which dictate the strength of solute
spreading around the center of mass across the ensemble of re-
alizations. The same behavior is recovered for the contribution
to the solute concentration variance associated with our lack of
knowledge of the geomaterial interface. 

3. In our set-up the behavior of the (ensemble) moments of solute
concentrations at a given space and time coordinate is driven by
the overall amount of dispersive length scales traveled (on aver-
age) by the solute. As consequence, for a given known location
( 𝛽) of the geomaterial interface, the conditional mean and vari-
ance of concentration in the (C–F) and (F–C) arrangements co-
incide at a location x = 2 𝛽. Similar results hold at x = 2 ⟨𝛽⟩ when
randomness of 𝛽 and local dispersivities are jointly considered. 

4. The spatial distribution of the conditional coefficient of varia-
tion of solute concentration suggests that the relative discrep-
ancy between the conditional concentration profiles that one can
observe in the domain across a collection of Monte Carlo realiza-
tions tends to decrease as a consequence of the heterogeneity of
the dispersion properties of the two media. 
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ppendix A – Cross-covariance between dispersivity and 

oncentration, ⟨𝜶′
𝑳 𝒊 
𝑪 𝒙 ⟩|𝜷

The equation satisfied by the (conditional) cross-correlation terms
𝛼′

𝐿 𝑖 
𝐶 𝑥 ⟩|𝛽 (with i = 1, 2) appearing in (11) can be obtained by multiply-

ng (7) by 𝛼′
𝐿 𝑖 

and considering the second of (9) as 

𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑡 

+ 

𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑥 

− 

𝜕 

𝜕𝑥 

( [ 
𝐻 ( 𝛽 − 𝑥 ) 𝜕 

𝜕𝑥 

⟨ 
𝛼𝐿 1 

𝛼′
𝐿 𝑖 

𝐶 𝑥 

⟩ ||||𝛽
+ 𝐻 ( 𝑥 − 𝛽) 𝜕 

𝜕𝑥 

⟨ 
𝛼𝐿 2 

𝛼′
𝐿 𝑖 

𝐶 𝑥 

⟩ ||||𝛽
] ) 

= 0 (A.1) 

ubject to the initial and boundary conditions ⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||𝛽 = 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 
56 
lim 

𝑥 →0 + 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
⟨ 
𝛼𝐿 1 

⟩ 𝜕 ⟨ 𝛼′
𝐿 𝑖 

𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑥 

+ 

𝜕 

𝜕𝑥 

⟨ 
𝛼′

𝐿 𝑖 
𝛼′

𝐿 1 
𝐶 𝑥 

⟩ ||||𝛽
⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 0 , 

𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||𝛽
𝜕𝑥 

= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (A.2) 

The zero-order component ⟨𝛼′
𝐿 𝑖 

𝐶 𝑥 ⟩|[0] 𝛽
(with i = 1, 2) vanishes, while

he second-order contribution ⟨𝛼′
𝐿 𝑖 

𝐶 𝑥 ⟩|[2] 𝛽
in (14) is evaluated from

A.1) as 

𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||[ 2 ] 𝛽

𝜕𝑡 
+ 

𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||[ 2 ] 𝛽

𝜕𝑥 

− 

𝜕 

𝜕𝑥 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
(
𝐻 ( 𝛽 − 𝑥 ) 

⟨ 
𝛼𝐿 1 

⟩ 
+ 𝐻 ( 𝑥 − 𝛽) 

⟨ 
𝛼𝐿 2 

⟩ ) 𝜕 
⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||[ 2 ] 𝛽

𝜕𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

𝜕 

𝜕𝑥 

⎛ ⎜ ⎜ ⎝ 𝐻 ( 𝛽 − 𝑥 ) 𝜎2 
𝛼𝐿 𝑖 

𝜕 ⟨𝐶 𝑥 ⟩||[ 0 ] 𝛽

𝜕𝑥 

⎞ ⎟ ⎟ ⎠ (A.3) 

ubject to the initial and boundary conditions ⟨ 
𝛼′

𝐿 𝑖 
𝐶 𝑥 

⟩ ||||[ 2 ] 𝛽

= 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
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𝛼𝐿 1 

⟩ 𝜕 ⟨ 𝛼′
𝐿 𝑖 
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⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
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𝜕 
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𝐶 𝑥 

⟩ ||||[ 2 ] 𝛽

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 (A.4) 

here 𝜎2 
𝛼𝐿 𝑖 

is the variance of 𝛼𝐿 𝑖 
. 

ppendix B – Solute concentration covariance, ⟨𝑪 

′
𝝃𝑪 

′
𝒙 ⟩|𝜷

To evaluate the conditional concentration covariance, we write the
quation satisfied by C ′ x | 𝛽 = C x | 𝛽 − ⟨C x ⟩| 𝛽 upon subtracting (11) from
7) as 

𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑡 
+ 

𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑥 
− 𝜕 

𝜕𝑥 

⎛ ⎜ ⎜ ⎝ 𝐻 ( 𝛽 − 𝑥 ) 
⎛ ⎜ ⎜ ⎝ 𝛼′

𝐿 1 

𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

+ 𝛼𝐿 1 

𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑥 
− 

𝜕 
⟨
𝛼′

𝐿 1 
𝐶 𝑥 

⟩|||𝛽
𝜕𝑥 

⎞ ⎟ ⎟ ⎠ 
+ 𝐻 ( 𝑥 − 𝛽) 

⎛ ⎜ ⎜ ⎝ 𝛼′
𝐿 2 

𝜕 ⟨𝐶 𝑥 ⟩||𝛽
𝜕𝑥 

+ 𝛼𝐿 2 

𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑥 
− 

𝜕 
⟨
𝛼′

𝐿 2 
𝐶 𝑥 

⟩|||𝛽
𝜕𝑥 

⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ = 0 (B.1) 

ubject to the initial and boundary conditions 

𝐶 

′
𝑥 
||𝛽 = 0 𝑓 𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 

lim 

𝑥 →0 + 

⟨
𝛼𝐿 1 

⟩𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑥 
+ 𝛼𝐿 1 

′
𝜕 ⟨𝐶 𝑥 ⟩||𝛽

𝜕𝑥 
= 0 , 

𝜕 𝐶 

′
𝑥 
||𝛽

𝜕𝑥 
= 0 𝑓 𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 

(B.2) 

Multiplying (B.1) - (B.2) by concentration perturbation at space-time
ocation ( 𝜉, 𝜏), C ′ 𝜉| 𝛽 , and applying the second of (9) , one obtains the
quation satisfied by the conditional concentration covariance, as given
y (16) - (17) . 

ppendix C – Numerical technique for the solution of the Moment 

quations 

All equations satisfied by the conditional moments illustrated in
ection 2.2.1 and in Appendices A and B have the same format. Their
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olution requires an accurate scheme with very limited numerical diffu-
ion, especially in light of concentration variations taking place around
he geomaterials’ interface (see Fig. 1 a–c as an example). We adapted
he numerical methods and strategy developed by Siegel et al. (1997) to
olve numerically the following system: 

 

 

 

 

 

 

 

𝜕𝜓 

𝜕𝑡 
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𝜕 

𝜕𝑥 

(
𝜓 − 𝛼𝜓 

𝜕𝜓 

𝜕𝑥 

)
= 𝑄 𝜓 

𝜓 = 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 , 𝑡 = 0 
lim 

𝑥 →0 + 
− 𝛼𝜓 

𝜕𝜓 

𝜕𝑥 
= 0 , 𝜕𝜓 

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 

(C.1) 

Here, 𝛼𝜓 and Q 𝜓 respectively are the (dimensionless) dispersivity
nd source term associated with the equation satisfied by generic quan-
ity 𝜓 . Note that in (C.1) , the initial pulse injection (when needed) is
mbedded in Q 𝜓 and the specifics of the boundary condition at x = 0
s treated in Section 2.2.1 for each given quantity 𝜓 of interest in our
tudy. 

To identify and apply the most suited numerical method to solve the
dvective (hyperbolic) and dispersive components, the transport equa-
ion is split in two parts, 

 

 

 

 

 

 

 

�̃� 𝑛 +1 − 𝜓 𝑛 

Δ𝑡 
+ 

𝜕𝜓 

𝜕𝑥 
= 0 

�̃� = 0 𝑓𝑜𝑟 𝑡 = 0 , 0 ≤ 𝑥 ≤ 1 
lim 

𝑥 →0 + 
�̃� = 0 , 𝜕 ̃𝜓 

𝜕𝑥 
= 0 𝑓𝑜𝑟 𝑥 = 1 , ∀𝑡 > 0 

𝜓 𝑛 +1 − ̃𝜓 𝑛 +1 

Δ𝑡 
+ 

𝜕 

𝜕𝑥 

(
− 𝛼𝜓 

𝜕𝜓 

𝜕𝑥 

)
= 𝑄 𝜓 

(C.2) 

here �̃� is the solution of the advective problem and n is the current
ime step. The hyperbolic part is solved by discontinuous Galerkin finite
lement ( Cockburn and Shu, 1998; Di Pietro and Ern, 2012 ) while the
ispersive part is solved by classical finite differences. 

Numerical solution of the advective part of the transport equation 

The spatial domain is discretized into N E elements of uniform width
x , the temporal simulation window being discretized across N T uni-

orm time steps, of length Δt . We treat 𝜓 in each element E as a linear
ombination of two nodal values, i.e., 

̃ ( 𝑥, 𝑡 ) = 𝜔 𝑖 ( 𝑥 ) ̃𝜓 𝑖 ( 𝑡 ) + 𝜔 𝑖 +1 ( 𝑥 ) ̃𝜓 𝑖 +1 ( 𝑡 ) for 𝑥 ∈
[
𝑥 𝑖 , 𝑥 𝑖 +1 

]
; (C.3)

 𝑖 = 

𝑥 𝑖 +1 − 𝑥 

Δ𝑥 
; 𝜔 𝑖 +1 = 

𝑥 − 𝑥 𝑖 

Δ𝑥 
; Δ𝑥 = 𝑥 𝑖 +1 − 𝑥 𝑖 . (C.4)

Here, ( 𝜔 i , 𝜔 i + 1 ) are linear basis functions defined over element E ; �̃� 𝑖 

nd �̃� 𝑖 +1 are the nodal approximations of �̃� ; and ( x i ,x i + 1 ) are the spatial
oordinates of the two nodes delimiting E . Similar to the finite element
ethod, the hyperbolic equation is written in a variational form, using

 𝜔 i , 𝜔 i + 1 ) as weighting functions, leading to 

 

𝜕 ̃𝜓 

𝜕𝑡 
𝜔 𝑖 𝑑𝑥 = − ∫

𝐸 
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𝜕𝑥 
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𝑑𝑥 − 

[
�̃� 𝑖 +1 𝜔 𝑖 ( 𝑥 𝑖 +1 ) − �̃� 𝑖 𝜔 𝑖 ( 𝑥 𝑖 ) 

]
= ∫

𝐸 

�̃� 

𝜕 𝜔 𝑖 
𝜕𝑥 

𝑑𝑥 + �̃� 𝑖 

(C.5) 

Using the approximation of �̃� defined by Eq. (C.3) and the definition
f the interpolation functions (C.4) , (C.5) becomes: 

Δ𝑥 

6 

[ 
2 
𝜕 ̃𝜓 𝑖 

𝜕𝑡 
+ 

𝜕 ̃𝜓 𝑖 +1 
𝜕𝑡 

] 
= − 

1 
2 
(
�̃� 𝑖 + ̃𝜓 𝑖 +1 

)
+ ̃𝜓 𝑖 (C.6)

Similarly, using 𝜔 i + 1 as weigthing function leads to: 

Δ𝑥 
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[ 
𝜕 ̃𝜓 𝑖 

𝜕𝑡 
+ 2 
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] 
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1 
2 
(
�̃� 𝑖 + ̃𝜓 𝑖 +1 

)
− ̃𝜓 𝑖 +1 (C.7)

The time discretization of the spatial derivative is split in two parts to
mprove accuracy and reduce numerical diffusion ( Siegel et al., 1997 ).
he first step consists in computing the variable at time ( n + 1/2) using
alf of the time step length and an explicit time scheme. Eqs. (C.6) and
C.7) become 
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(C.8) 
57 
here 𝜅 = Δt / Δx is the Courant number. For the second step, Eqs.
C.6) and (C.7) become 
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The last terms ( ̃𝜓 

𝑛 +1∕2 
𝑖 

, ̃𝜓 

𝑛 +1∕2 
𝑖 +1 ) in both equations of system (C.9) rep-

esent the variable at location x i and x i + 1 , respectively. At x i , (and re-

pectively at x i + 1 ), there are two possible values for ̃𝜓 

𝑛 +1∕2 
𝑖 

(respectively

̃ 
𝑛 +1∕2 
𝑖 +1 ), one defined for element E and the other defined at the previous
respectively next) element. The selected value is the upstream one, i.e.,
ssuming that the flow direction coincides with the positive direction of
he x -axis, we have 
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Therefore, the solution of the advective part is obtained by solving
he following system of equations 
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(C.11) 

The stability of the solution is improved by a slope limiting procedure
 Hoteit et al., 2004 ). The latter consists in reducing the variation of
he target variable within the element to provide physically acceptable
olutions. This procedure does not change the mass inside the element,
nd, therefore, does not negatively affect mass balance over the domain.
he local values of �̃� are changed following 
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here �̃� 

𝑛 +1 
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is the average of �̃� 

𝑛 +1 in element E , i.e., 
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)
(C.13) 

The solution is stable for a Courant number 𝜅 = Δt / Δx < 1.0. 
Numerical solution of the dispersive part of the transport equation 

The second equation of system (C.2) is solved with a standard finite
ifferences formulation using an implicit time scheme which leads to 
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(C.15) 

The inter-element equivalent dispersivities ( 𝛼𝐸 
− , 𝛼

𝐸 
+ ) are the harmonic

ean of the element dispersivities. Such an harmonic mean is obtained
y fulfilling the requirement of continuity for state variables and flux
etween two elements. 

Considering the boundary conditions described in Eq. (C.1) and
ewriting Eq. (C.14) leads to the following system of equations 
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(C.16) 

This tri-diagonal system is solved by a standard LU decomposition
Thomas algorithm). 
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