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Abstract 11 

The proper scheduling of pumps operations in water supply systems yields to energy cost-12 

savings. The pumps schedule is the set of many combinations of pumps  operation  parameters, 13 

variables in time, which must fulfil the system restrictions. Traditional approach to this problem 14 

leans on the man’s experience, while in the last decades many optimization procedures have 15 

been developed. 16 

In the paper, a method based on Genetic Algorithms to optimize the pumps functioning in water 17 

distribution networks is chosen and described. The purpose of the optimization is to reduce the 18 

energy consumption while maintaining a good service, considering the problems related to the 19 

calibration of a high number of parameters and many constraints.  20 

The developed method is then applied to the water supply network of Milano, Italy, which is a 21 

large and complex system with no suspended reservoirs because the hydraulic head is 22 

maintained by the action of 31 pumping stations. On the basis of real data, and following a field 23 

survey, the operations of the entire network and its pumping stations, with the actual scheduling, 24 

are firstly simulated with a purpose-developed software which uses the Epanet Toolkit, and then 25 

optimized with the proposed method.  26 
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The results of the applied optimization procedures show that the new operational system 27 

produces a significant improvement and economic saving.  28 

Keywords: water distribution, genetic algorithms, optimization, energy saving. 29 

1. Introduction 30 

Water distribution networks are crucial components of water supply systems. They are among the 31 

main infrastructure assets of a society, and their management must be effective, efficient and energy 32 

saving. The hydraulic head of large towns is very often completely maintained by the action of a 33 

number of pumping stations: in such systems a good management of the pumping station, in order to 34 

minimize the power consumption, is a critical aspect. To this end, hydraulic constraints are not 35 

sufficient to find the best system, which requires that economic and energy conditions be taken into 36 

account. In order to handle this kind of complex and multi-objective optimization problem 37 

Evolutionary Computation (EC) methods are often used. Because of the large number of parameters 38 

and the complexity of the system, the early methods based on linear or non-linear programming or, 39 

even worse, complete enumeration, are not applicable. Starting in the early Nineties, the different 40 

existing (meta)heuristics frameworks have been applied to solve the water supply networks related 41 

optimization problem. The taxonomy reported in De Corte and Sörensen (2012) divides metaheuristics 42 

frameworks into three classes: (i) Local search metaheuristics, which operate on a single complete 43 

solution and iteratively improve it by making small adjustments called moves; (ii) Population-based 44 

metaheuristics operate on a set of solutions and find better solutions by combining solutions from that 45 

set into new ones; (iii) Constructive metaheuristics build a solution by working with a single, 46 

unfinished, solution and adding one solution element at a time. 47 

Genetic Algorithms (GA) (Goldberg 1989) methods, which belong to the “population based 48 

metaheuristics”, are often chosen. GA are a technique of Evolutionary Computation appropriate for 49 

combinatorial optimization (Eiben and Smith, 2003) and their use is central in modern water resources 50 

planning and management. They have been widely used in the past two decades to improve the 51 

efficiency of water distribution systems when traditional calculus-based and enumerative optimization 52 

methods have proved unable to deal with the geometrical complexity of those systems. One of the first 53 
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water engineering applications of GA was related to the optimization of pump schedules for a serial 54 

pipeline (Golberg and Kuo, 1987; Simpson et al, 1994). GA have been also used for least-cost design 55 

(Savic and Walters, 1977 ); as mentioned, network optimization has also been studied, applying 56 

different methods (Schaake and Lai, 1969; Alperovits and Shamir, 1977; Fujiwara and Khang, 1990). 57 

Mackle et al. (1996) were among the first to apply a binary GA to pump scheduling problems in order 58 

to minimize energy costs, subject to reservoir filling and emptying constraints. Savic and Walters 59 

(1997) developed a multi-objective GA (MOGA) approach to minimize both the energy costs and the 60 

number of pump switches, while Wu et al. (2009) directly computed the pump speed through the 61 

matrix system of a global gradient algorithm. The first industrial applications of GA to the pump 62 

scheduling problem are reported in (De Schaetzen et al., 1998; Illich and Simovic, 1998; Atkinson et 63 

al., 2000). Van Zyl et al. (2004) developed a hybrid optimization approach in order to reduce 64 

excessive running times. Further computational efficiency have been achieved by Rao and Salomons 65 

(2007) through their new approach for the real-time, near-optimal control of water-distribution 66 

networks through a process based on the combined use of an artificial neural network for predicting 67 

the consequences of different control settings and a genetic algorithm for selecting the best 68 

combination. Prasad and Park (2004) developed a multiobjective GA approach to the design of a water 69 

distribution network, the objectives considered were minimization of the network cost and 70 

maximization of a reliability measure. Shamir and Salomons (2008) used a reduced model of the 71 

network which reproduces its performance over time with high fidelity with optimization by a genetic 72 

algorithm. Costa et al. (2010) used GA for optimizing the water supply system operations in the city of 73 

Ourém (Portugal). Behandish and Wu (2013) applied a modified GA able to deal with integer 74 

parameters and ANN to predict the hydraulic state of water distribution.  75 

Dealing with real networks is not a simple task, and this is probably the reason why Walski et al. 76 

(2010) stated “A great deal of research has been conducted on optimizing pumping operation but such 77 

optimization is still not widely used.” therefore a number of different solutions has been developed.  78 

In this paper, GA have been selected as the Authors found (Becciu et al., 2014) that methods 79 

belonging to the “Local search metaheuristics” risk to be trapped in unfeasible spaces, while methods 80 

belonging to “Constructive metaheuristics” are promising but quite difficult to be calibrated and 81 
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requires further research. Therefore, a simple GA is set out in order to improve the performance of the 82 

water distribution system in Milano (Italy) in terms of power consumption at pumping stations, trying 83 

to assess whether this method is appropriate to be used in the field. In Milano, as mentioned, similarly 84 

to most of large cities, there are no reservoirs and the hydraulic head is given by 26 pumping stations 85 

positioned quite uniformly all over the city.  86 

Results show that significant improvements can be achieved in terms of savings of energy and, 87 

therefore, of money. Tests on a pumping station demonstrate that the results obtained are reliable. 88 

Finally, GA are metaheuristic methods that can be successfully applied to pumps optimization in 89 

complex systems; they have been shown to be stable and to bring to good results. Possible 90 

improvements are investigated and briefly described in the conclusions. 91 

2. Optimization algorithm 92 

The aim of the research was to find the best scheduling of pumps functioning, able to ensure the same 93 

level of service now guaranteed with the minimum energy expenditure. Water is presently distributed 94 

assuring that heads in all the nodes of the network are higher than 25 m. This is an optimization 95 

problem with constraints, and Genetic Algorithms technique is found to be appropriate among the 96 

Evolutionary Computing “dialects” (Eiben and Smith, 2003; Becciu et al., 2015). 97 

The method is implemented in a purpose developed software, which uses the Epanet Toolkit to solve 98 

the network once a new scenario is defined. 99 

The status of the pumps has been implemented in a binary string, where each pump is represented by 3 100 

bits (i.e. 823 =  possibilities) which describe its working status, i.e.: pump off, pump on working at 40, 101 

50, 60, 70, 80, 90 and 100% of its nominal speed. 102 

The objective function (O.F.) to be minimized is the power required by the system W (and 103 

consequently the required energy) which is obtained by summing the power required by each running 104 

pump: 105 

𝑂𝑂.𝐹𝐹. = W = ∑ γHQ
η

 

Npump
i=1  (1) 106 

where 𝛾𝛾 is the specific weight of the fluid (water), H is the heads of the pumps for the discharge Q, 107 

and 𝜂𝜂 is the efficiency of the pump; this O.F. is minimized every full hour. 108 
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The first step in the implementation of the GA is the generation of a number of configurations that are 109 

used as the first generation of solutions (“population”): one of these is the actual configuration, the 110 

others are created randomly by the software.  111 

New populations are generated starting from the previous with the usual methods of cross-over and 112 

mutation (Goldberg, 1989; Eiben and Smith, 2003). Moreover, a 10% of elitism has been used in order 113 

not to lose the best individuals. 114 

Each configuration (individual) is simulated using the Epanet Toolkit in order to evaluate the 115 

correspondent value of the objective function (i.e. its fitness), and to check the constrains. If the 116 

pressure at some control points falls below the above-mentioned value of 25 m, the value of the O.F. 117 

is increased in function of the difference from the acceptable (MinPres) and the computed (CompPres) 118 

pressures in order to penalize the configuration; the O.F. therefore becomes: 119 

𝑂𝑂.𝐹𝐹. = 𝑊𝑊 ∙ 5 ∙ �1 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

� when CompPres<MinPres (2) 120 

where W is defined with the eq. (1) and, as mentioned, MinPres = 25 m. Obviously, the penalty 121 

functions are not derived from theoretical consideration, but depend on the problem to be studied; in 122 

this case the function is studied in order to increase the required power of 20% per meter; moreover, a 123 

check on the respect of the condition 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 25 𝑚𝑚 has been performed on all the carried out 124 

solutions, and it has been found that the “best” solutions satisfy this requirement. 125 

Optimization is run hour by hour, so the daily optimization is given by the combination of hourly best 126 

results. Figure 1 shows the framework of the whole procedure. Because of the intrinsic randomness of 127 

the algorithm, each simulation may produce a different result; therefore, for every hour of the day 10 128 

simulations were run with different starting points, i.e. different initial populations, composed by one 129 

individual equal to the actual configuration and the others randomly generated. 130 

3. Case study: the Milano water supply network 131 

The water supply system of Milano (Motta 1989) acquires drinking water from a number of wells, and 132 

pumps convey the discharge to reservoirs located at ground level. Water is pumped directly from those 133 

reservoirs into the network, without further reservoirs located at higher altitude being necessary. The 134 
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hydraulic head is therefore generated by the pumping stations, the action of which balances the effects 135 

of water demand, as suspended reservoir are not present.  136 

The pipelines have a total length of 2200 km. The network comprises 31 pumping stations (at the 137 

moment 26 are working and connected to the main network, and therefore inserted in the model), and 138 

a number of pumps (their number being in the range 3-5) are installed in each of them; each pump 139 

works with a discharge in the range 200-400 l/s and with a maximum head of 50 m. On the whole, 96 140 

pumps are currently working connected to the main network. Most of the pumps work with a fixed 141 

engine speed, but some of them are equipped with Adjustable Speed Drive which enable pumps to 142 

work at different velocities. Currently, the network is managed with traditional and empirical 143 

techniques. 144 

The first step of the study was building the model of the network in order to evaluate its behaviour and 145 

verify whether the knowledge about the system is sufficient for its adequate representation, if 146 

necessary through the calibration of the model itself. We are perfectly aware that it is simply not 147 

possible to represent such a network in all its details and therefore there will be always some model 148 

descriptions which can be judged as “rough” or “not adequate”. However, to show the potential of the 149 

applied model and to improve the efficiency of the studied system the representation adopted seemed 150 

to be appropriate. 151 

The available data were the geometry (topology of the network, lengths, diameters, materials, etc.), the 152 

mean daily water demand, the pumping schedule for each station, the values of pressure and discharge 153 

downstream of each station and in some other junctions quite uniformly distributed within the 154 

network. Figure 2 presents a scheme of the whole network. 155 

These data were used to build a simplified model of the water supply network using the well-known 156 

Epanet software. Simplifications consisted in the insertion in the model only of pipes with a diameter 157 

larger than 300 mm. This simplifications was necessary to reduce the time required to build the model 158 

and to perform the simulations. However, it was possible to produce a fairly accurate reconstruction of 159 

the network, which model is made of 4964 junctions, 96 pumps, and 26 stations, with an overall length 160 

of pipes equal to 460 km. As mentioned, five pumping stations have been neglected because not 161 

directly connected to the main system or not working. 162 
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The network was simulated for an average day using the daily average hourly demand curve with a 163 

time step of 5 minutes. 164 

Figure 3 shows the comparison between simulation results and real data recorded in a pumping station 165 

(Baggio, positioned in the SW of the town) and at some points of the network equipped with 166 

appropriate instrumentation. As can be seen, the simulated pressures are, in most cases, above the 167 

recorded values, and this has been investigated with field tests. 168 

4. Field tests 169 

Some tests were performed at one of the pumping stations in the Milano network, in order to evaluate 170 

the performance of the real system and the robustness of the model. The station chosen, named 171 

Salemi, is located in the North of the town and it is equipped with four pumps, two with Adjustable 172 

Speed Drives and two without such devices. The curves of the pumps were reconstructed in order to 173 

be compared with the theoretical curves provided by the system manager and used as inputs to the 174 

Epanet model; the result was a good adaptation. Field tests also revealed that fixed speed pumps 175 

installed in the Milano water supply network are oversized, as can be seen in figure 4. When the speed 176 

of the pump is 100%, the working point is positioned somewhat “to the right” of the curve; the 177 

efficiency of the pumps falls dramatically and it is often below 60%. Only when the velocity is 178 

reduced the working point moves “to the left” and the efficiency increases. To avoid cavitation, the 179 

managers of the network have to partially close the valves positioned downstream the pumps, 180 

especially in the morning when the pumps are turned on quite early and their use is slowly requested 181 

by the users. These valves induce headlosses which rise power consumption. However, as can be seen 182 

in figure 4, the speed reduction which can be obtained with the Adjustable Speed Drives, increases the 183 

efficiency of the pumps. 184 

The presence of such valves, not included in the model, explains the differences between recorded and 185 

simulated data. However, in the paper it has been decided not to insert those valves, as they are not 186 

good management of the system; moreover, in the model a fixed efficiency equal to 0.75 has been 187 

assigned, because lower values mean that the selected pumps are inappropriate for the system.  188 
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5. Results 189 

The results revealed a weak relation between the population size and the number of iterations; 190 

generally speaking, the optimum is reached when the individuals are few tens only, while the required 191 

number of iterations is even smaller. In this job, the number of individuals has been set equal to 100, 192 

which is quite small, if compared with the number of the variables to be set (equal to the number of 193 

pumps, and therefore 96) while, applying the rule-of-thumb of a number of individuals equal to five 194 

times the number of parameters, convergence should be expected overcoming 500 individuals. 195 

However, in Table 1 results are reported for 7:00 a.m. and different numbers of individuals and 196 

iterations. As can be seen, the best result is improving when increasing the number of individuals, but 197 

that improvement is quite small (1.3% passing from 50 individuals to 100, and 2.8% passing from 100 198 

individuals to 500). No improvements can be ascribed to the increasing of the number of iterations; 199 

this is applicable to all the other hours: Figure 5 shows the obtained power (W) trend for each 200 

configuration obtained through the simulations, carried out for 9:00 p.m. and, as can be seen, the value 201 

of W decreases, becoming steady after about 20 thousand runs, but with the minimum reached after 202 

only 1500 iterations that, for a population of 100 individuals, means 15 generations.  203 

The fast convergence can be ascribed to the fact that the variables to be set (i.e. the velocity of pump 204 

functioning) are not continuous and they can assume only fixed (predetermined) values, and therefore 205 

the possible solutions fall in a limited field.  206 

As mentioned, simulations have been performed considering the efficiency of the pumps is equal to 207 

0.75, which is larger than the values computed for the actual pumps, but it has been used in order to 208 

have a more consistent comparison between the different scenarios and to carry out results which can 209 

be considered more general. For the case of Milano, the consequence is obviously that the expected 210 

benefits deriving from the installation of the Adjustable Speed Drivers and their optimization is greater 211 

than those computed. 212 

Table 2 presents a summary of the results, considering the best configuration (individual) found for 213 

each hour of the day. As can be seen, it is possible to save up to 18.9% of energy (on average on one 214 

day) with fixed velocity pumps and up to 30.2% of that energy using Adjustable Speed Drivers.  215 
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In particular, the simulations performed using Adjustable Speed Drivers show that a significant 216 

improvement is possible: the minimum saving is 17.1% (at 5:00 a.m.) and the maximum is 38.8% (at 217 

10:00 p.m.). Meanwhile, improvements related to the system without these devices have a minimum 218 

of 7.6% (at 8:00 a.m.) and a maximum of 29.2% (at 2:00 a.m.).  219 

Moreover, to be noted is that in all cases the speed of the pumps never decrease below 70%, because 220 

below that value the head of the pump is not sufficient to provide discharge to the network. The 221 

required power over the day is summarized in figure 6 for the actual case and for the two 222 

optimizations (with and without the Adjustable Speed Drivers). 223 

Finally, in order to gain an idea of the possible economic savings, the energy cost is set equal to 0.10 224 

€/kWh for the entire day. Therefore, considering the actual total energy in a year equal to 38,200,000 225 

kWh, without Adjustable Speed Drivers it is possible to save up to 6,840,000 kWh/year, which means 226 

an economic saving of the order of 684,000 €; with the use of those devices it is possible to save up to 227 

11,627,000 kWh/year, which means an economic saving of 1,162,700 €. 228 

6. Conclusions 229 

The paper described the application of Genetic Algorithms to optimize the functioning of the pumping 230 

stations of the city of Milano (Italy).  231 

To this end, the model of the water supply network was implemented in the well-known Epanet 232 

software, and the results of the simulations were checked against real data. 233 

Thereafter, thousands of different pumping configurations were tested by means of a simple Genetic 234 

Algorithm in order to find the best configuration, i.e. the configuration able to guarantee the same 235 

today service and the best energy savings. The configurations were tested with and without the use of 236 

Adjustable Speed Drivers. The results showed that a dramatic improvement is possible, both with and 237 

without the use of these devices. 238 

The results may require further refinement owing to the simplifications adopted for the model, but 239 

they are nevertheless encouraging because of the savings that can be achieved in terms of both energy 240 

and costs. 241 
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Field tests showed that the pumps installed in the Milano stations are probably oversized, and 242 

therefore the above mentioned values can be increased with a more appropriate choice of the pumps. 243 

So far, GA have proved to be an appropriate method for optimization purposes, with many parameters 244 

involved and with constraints. As well known, these methods do not allow to find the “best” solution, 245 

but a solution which is close to the maximum. Therefore, although good results have been achieved, 246 

refinements might be required to further improve the solution. Moreover, methods based on 247 

“constructive metaheuristics”, as PSO which has been found promising in Becciu et al. (2015), should 248 

be tested to take advantage of their capabilities. 249 

Moreover, further research is necessary to combine the energy savings with the different requirements 250 

of a complex network like Milano’s, which targets might be contradictory and therefore it may be 251 

required to move on the Pareto boundary. 252 
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 309 

Individuals 50 100 500 500 

Iterations 100 100 100 500 

# Run Power Power Power Power 

1 318404 315949 314083 311146 

2 319605 315641 307342 304444 

3 317896 315597 307875 313530 

4 316469 316574 309452 312418 

5 319605 313486 310333 310123 

6 319605 312243 310139 311367 

7 319605 315640 312134 308330 

8 317871 316469 307748 313426 

9 315641 311533 309895 304454 

10 316080 312473 302695 312189 

Table 1: Energy required: results of the simulations for 7 a.m. with different GA parameters. 310 

  311 
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 312 
Hours 0 1 2 3 4 5 6 7 8 9 10 11 

% savings fixed 
speed 17.1 23.3 29.2 28.3 24.2 12.5 11.1 16.4 7.6 9.5 11.5 17.5 

% savings 
adjustable speed 30.0 36.8 36.3 33.0 28.7 17.1 20.2 18.8 26.8 26.1 37.8 31.4 

Hours 12 13 14 15 16 17 18 19 20 21 22 23 

% savings fixed 
speed 18.5 21.8 17.1 19.1 19.0 21.2 18.8 22.2 20.4 18.3 21.3 27.4 

% savings 
adjustable speed 32.8 30.1 33.1 34.8 37.4 28.0 24.8 29.2 28.3 34.7 38.8 30.6 

Table 2: Energy saved, in percentages, with and without the use of inverters for each hour of the 313 

average day. 314 
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