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Abstract

We develop a Reinforcement Learning framework for the optimal management
of the operation and maintenance of power grids equipped with prognostics
and health management capabilities. Reinforcement learning exploits the in-
formation about the health state of the grid components. Optimal actions are
identified maximizing the expected profit, considering the aleatory uncertainties
in the environment. To extend the applicability of the proposed approach to re-
alistic problems with large and continuous state spaces, we use Artificial Neural
Networks (ANN) tools to replace the tabular representation of the state-action
value function. The non-tabular Reinforcement Learning algorithm adopting an
ANN ensemble is designed and tested on the scaled-down power grid case study,
which includes renewable energy sources, controllable generators, maintenance
delays and prognostics and health management devices. The method strengths
and weaknesses are identified by comparison to the reference Bellman’s opti-
mally. Results show good approximation capability of Q-learning with ANN,
and that the proposed framework outperforms expert-based solutions to grid
operation and maintenance management.

Keywords: Reinforcement Learning, Artificial Neural Networks, Prognostic
and Health Management, Operation and Maintenance, Power Grid,
Uncertainty

1. Introduction

Power Grids are critical infrastructures designed to satisfy the electric power
needs of industrial and residential customers. Power Grids are complex systems
including many components and subsystems, which are intertwined to each other
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and affected by degradation and aging due to a variety of processes (e.g. creep-
age discharge [1], loading and unloading cycles [2], weather-induced fatigue [3],
etc.). Maximizing the Power Grid profitability by the a safe and reliable delivery
of power is of primary importance for grid operators. This requires developing
sound decision-making frameworks, which account for both the complexity of
the asset and the uncertainties on its operational conditions, components degra-
dation processes, failure behaviors, external environment, etc.
Nowadays, Power Grid Operation and Maintenance (O&M) management is en-
hanced by the possibility of equipping the Power Grid components with Prog-
nostics and Health Management (PHM) capabilities, for tracking and managing
the evolution of their health states so as to maintain their functionality [4].
This capability can be exploited by Power Grid operators to further increase
the profitability of their assets, e.g. with a smarter control of road lights [5]-[6],
exploiting wide are control of wind farms [7] or with a better microgrid control
[8] and management [9]. However, embedding PHM in the existing Power Grid
O&M policies requires addressing a number of challenges [10]. In this paper, we
present a framework based on Reinforcement Learning [11]-[12], for settings the
generator power outputs and the schedule of preventive maintenance actions in
a way to maximize the Power Grid load balance and the expected profit over
an infinite time horizon, while considering the uncertainty of power production
from Renewable Energy Sources, power loads and components failure behaviors.
Reinforcement Learning has been used to solve a variety of realistic control and
decision-making issues in the presence of uncertainty, but with a few applica-
tions to Power Grid management. For instance, Reinforcement Learning has
been applied to address the generators load frequency control problem [13], the
unit commitment problem [14], to enhance the power system transient stabil-
ity [15] and to address customers’ private preferences in the electricity market
[16]. Furthermore, the economic dispatch [17] and the auction based pricing
issues [18] have also been tackled using Reinforcement Learning. In [19], a Q-
learning approach has been proposed to solve constrained load flow and reactive
power control problems in Power Grids. In [9], a Reinforcement Learning-based
optimization scheme has been designed for microgrid consumers actions man-
agement, and accounting for renewable volatility and environmental uncertainty.
In [20], a comparison between Reinforcement Learning and a predictive control
model has been presented for a Power Grid damping problem. In [21] a review
of the application of reinforcement learning for demand response is proposed,
whereas in [8], the authors have reviewed recent advancements in intelligent
control of microgrids, which include a few Reinforcement Learning methods.
However, none of the revised works employs Reinforcement Learning to find
optimal O&M policies for Power Grids with degrading elements and equipped
with PHM capabilities. Moreover, these works mainly apply basic Reinforce-
ment Learning algorithms (e.g., the SARSA(λ) and Q-learning methods [12]),
which rely on a memory intensive tabular representation of the state-action
value function Q. The main drawback of these tabular methods lies in their
limited applicability to realistic, large-scale problems, characterized by highly-
dimensional state-action spaces. In those situations, the memory usage becomes

2



burdensome and the computational times are intractable. To extend the appli-
cability of Reinforcement Learning methods to problems with arbitrarily large
state spaces, regression tools can be adopted to replace the tabular representa-
tion of Q (refer to [12] for a general overview on algorithms for RL and [22] for
a introduction to deep RL).
In [23], a deep Q-learning strategy for optimal energy management of hybrid
electric buses is proposed. In [24], Reinforcement Learning method is used to
find the optimal incentive rates for a demand-response problem for smart grids.
Real-time performance was augmented with the aid of deep neural networks.
Two RL techniques based on Deep Q-learning and Gibbs deep policy gradient
are applied to physical models for smart grids in [25]. In [26], a RL method
for dynamic load shedding is investigated for short-term voltage control; the
southern China Power Grid model is used as a test system. In [27], RL for
residential demand response control is investigated. However, only tabular Q-
learning methods are investigated. To the best authors knowledge, none of the
reviewed work proposed a non-tabular solution to operational and maintenance
scheduling of power grid equipped with PHM devices.
In this paper, to extend the applicability of the proposed Reinforcement Learn-
ing method, we use Artificial Neural Networks (ANNs), due to their approxima-
tion power and good scalability propriety. The resulting Reinforcement Learning
algorithm enables tackling highly-dimensional optimization problems and its ef-
fectiveness is investigated on a scaled-down test system. This example allows
showing that Reinforcement Learning can really exploit the information pro-
vided by PHM to increase the Power Grid profitability.
The rest of this work is organized as follows: Section 2 presents the Reinforce-
ment Learning framework for optimal O&M of Power Grids in the presence
of uncertainty; a scaled-down power grid application is proposed in Section 3,
whereas the results and limitations of Reinforcement Learning for Power Grid
O&M are discussed in Sections 4; Section 6 closes the paper.

2. Modeling framework for optimal decision making under uncer-
tainty

In the Reinforcement Learning paradigm, an agent (i.e. the controller and
decision maker) learns from the interaction with the environment (e.g. the grid)
by observing states, collecting gains and losses (i.e. rewards) and selecting ac-
tions to maximize the future revenues, considering the aleatory uncertainties
in the environment behavior. On-line Reinforcement Learning methods can
tackle realistic control problems through direct interaction with the environ-
ment. However, off-line (model-based) Reinforcement Learning methods are
generally adopted for safety-critical systems such as power grids [28], due to the
unacceptable risks associated with exploratory actions [28].
Developing an off-line Reinforcement Learning framework for Power Grid O&M
management requires defining the environment and its stochastic behavior, the
actions that the agent can take in every state of the environment and their
effects on the grid and the reward generated. These are formalized below.
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2.1. Environment State

Consider a Power Grid made up of elements C = {1, ..., N}, physically
and/or functionally interconnected, according to the given grid structure. Sim-
ilarly to [10], the features of the grid elements defining the environment are the
nd degradation mechanisms affecting the degrading components d ∈ D ⊆ C and
the np setting variables of power sources p ∈ P ⊆ C. For simplicity, we assume
D = {1, ..., |D|}, P = {|D|+ 1, ..., |D|+ |P |} and |D|+ |P | ≤ N . The extension
of the model to more complex settings can be found in [10].
Every degradation mechanism evolves independently from the others, obeying a
Markov process that models the stochastic transitions from state sdi (t) at time
t to the next state sdi (t + 1), where sdi (t) ∈ {1, ..., Sdi }, ∀t, d ∈ D, i = 1, ..., nd.
These degradation states are estimated by the PHM systems (e.g., [29]).
Similarly, a Markov process defines the stochastic transitions of the p-th power
setting variable from spj (t) at time t to the next state spj (t + 1), where spj (t) ∈
{1, ..., Spj }, ∀t, p ∈ P, j = 1, ..., np. Generally, these transitions depend on ex-
ogenous factors such as the weather conditions.
Then, system state vector S ∈ S at time t reads:

St =
[
s1

1(t), s1
2(t), . . . , s

|P |+|D|
n|P |+|D|

(t)
]
∈ S (1)

where S =× f=1,...,nc

c=1,...,|P |+|D|
{1, ..., Scf}.

2.2. Actions

Actions can be performed on the grid components g ∈ G ⊆ C at each t. The
system action vector a ∈ A at time t is:

at =
[
ag1(t), . . . , ag%(t), . . . , a|g||G|(t)

]
∈ A (2)

where action ag% is selected for component g% ∈ G among a set of mutually
exclusive actions ag% ∈ Ag% , % = 1, ..., |G|, A =×%=1,...|G|Agρ . The action set

Ag% includes both operational actions (e.g. closure of a valve, generator power
ramp up, etc.) and maintenance actions. Specifically, Corrective Maintenance
(CM) and Preventive Maintenance (PM) are the maintenance actions consid-
ered in this paper. When CM action is performed to fix a faulty component,
which is put from an out-of-service condition to a in-service, As-Good-As-New
(AGAN) condition. Differently, predictive maintenance can be performed on an
in-service, non-faulty (but degraded), component, to improve its degradation
state.
Constraints can be defined for reducing Ag% to a subset Âg%(S) ⊆ Ag% , to take
into account that some actions are not allowed in particular states. For example,
Corrective Maintenance (CM), cannot be taken on As-Good-As-New (AGAN)
components and, similarly, it is the only possible action for failed components.
In an opportunistic view [10], both Preventive Maintenance (PM) and CM ac-
tions are assumed to restore the AGAN state for each component. An example
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of Markov process for a 4 degradation state component is presented in Figure
1.

Operation Actions

Mainteinance Actions

 

AGAN

Deg1

Deg2

Fail

PM

PM

CM

PM

Figure 1: The Markov Decision Process associated to the health state of a degrading com-
ponent; circle markers indicate maintenance actions whereas squared markers indicate opera-
tional actions.

2.3. Stochastic behavior of the environment state

As mentioned before, the development of a Reinforcement Learning frame-
work for optimal O&M of Power Grids has to necessarily rely on a model of the
stochastic behavior of the environment. We assume that this is completely de-
fined by transition probability matrices associated to each feature f = 1, ..., nc

of each component c = 1, ..., |P |+ |D| and to each action a ∈ A:

Pa
c,f =


p1,1 p1,2 · · · p1,Scf

p2,1 p2,2 · · · p2,Scf
...

...
. . .

...
pScf ,1 pScf ,2 · · · pScf ,Scf


a

c,f

(3)

where pi,j represents the probability Pa
c,f (sj |a, si) of having a transition of

component c from state i to state j of feature f , conditional to the action

a,
nc∑
j=1

pi,j = 1.

This matrix-based representation of the environment behavior is not mandatory
to develop a Reinforcement Learning framework. However, it allows applying
dynamic programming algorithms that can provide the Bellman’s optimal O&M
policy with a pre-fixed, arbitrarily small error ([11]). This reference true solu-
tion is necessary to meet the objective of this study, which is the investigation of
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the benefits achievable from the application of Reinforcement Learning methods
to optimal Power Grid O&M, provided that these methods must not be tabular
for their application to realistic Power Grid settings.
The algorithm used to find the reference solution is reported in Appendix 6.

2.4. Rewards

Rewards are case-specific and obtained by developing a cost-benefit model,
which evaluates how good the transition from one state to another is, given that
a is taken:

Rt = R (St , at , St+1) ∈ R

Generally speaking, there are no restriction on the definition of a reward func-
tion. However, a well-suited reward function will indeed help the agent converg-
ing faster to an optimal solution [30]. Further specifications will depend strongly
on the specific RL problem at hand and, thus, will be provided in section 3.3.

2.5. A non-tabular Reinforcement Learning algorithm

Generally speaking, the goal of Reinforcement Learning for strategy opti-
mization is to maximize the action-value function Qπ∗(S,a), which provides an
estimation of cumulated discounted future revenues when action a is taken in
state S, following the optimal policy π∗:

Qπ∗(S,a) = Eπ∗
[ ∞∑
t=0

γtR(t)|S,a

]
(4)

We develop a Reinforcement Learning algorithm which uses an ensemble of
ANNs to interpolate between state-action pairs, which helps to reduce the num-
ber of episodes needed to approximate the Q function.
Figure 2 graphically displays an episode run within the algorithm. In details,
we estimate the value of Qπ(St,at) using a different ANN for each action, with
network weights µ1, . . . ,µ|A|, respectively. Network Nl, l = 1, ...|A|, receives
in input the state vector St and returns the approximated value q̂l(St|µl) of
Qπ(St,at = al).
To speed up the training of the ANNs ([31]), we initially apply a standard super-
vised training over a batch of relatively large size nei, to set weights µ1, . . . ,µ|A|.
To collect this batch, we randomly sample the first state S1 and, then, move
nei + Φ steps forward by uniformly sampling from the set of applicable actions
and collecting the transitions St,at → St+1,at+1 with the corresponding re-
wards Rt, t = 1, ..., nei + Φ − 1. These transitions are provided by a model of
the grid behavior.
Every network Nl, l ∈ {1, . . . , |A|}, is trained on the set of states {St|t =
1, ..., nei,at = l} in which the l-th action is taken, whereas the reward that
the ANN learns is the Monte-Carlo estimate Yt of Qπ(St,at):

Yt =

t+Φ∑
t′=t

γt
′−t ·Rt′ (5)
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After this initial training, we apply Q-learning (e.g., [30],[12]) to find the
ANN approximation of the optimal Qπ∗(St,at). Namely, every time the state
St is visited, the action at is selected among all available actions according to
the ε−greedy policy π: the learning agent selects exploitative actions (i.e., the
action with the largest value, maximizing the expected future rewards) with
probability 1− ε, or exploratory actions, randomly sampled from the other fea-
sible actions, with probability ε.
The immediate reward and the next state is observed, and weights µat of net-
work Nat are updated: a single run of the back-propagation algorithm is done
([32],[33]) using Rt + γ ·maxl∈{1,...,|A|} q̂l(St+1|µl) as target value (Equation 6).
This yields the following updating:

µat ← µat+αat ·[Rt+γ · max
l∈{1,...,|A|}

q̂l(St+1|µl)− q̂at(St|µat)]·∇q̂at(St|µat) (6)

where αat > 0 is the value of the learning rate associated to Nat ([30]).
Notice that the accuracy of the estimates provided by the proposed algorithm
strongly depends on the frequency at which the actions are taken in every state:
the larger the frequency, the larger the information from which the network
can learn the state-action value [30]. In real industrial applications, where
systems spend most of the time in states of normal operation ([34]), this may
entail a bias or large variance in the ANN estimations of Qπ(St,at) for rarely
visited states. To overcome this issue, we increase the exploration by dividing
the simulation of the system, and its interactions with the environment and
O&M decisions, into episodes of fixed length T . Thus, we run Nei episodes,
each one entailing T decisions; at the beginning of each episode, we sample
the first state uniformly over all states. This procedure increases the frequency
of visits to highly degraded states and reduces the estimation error. At each
episode ei ∈ {1, . . . , Nei}, we decrease the exploration rate ε = εei according to
ε = ε0 · τeiε , and the learning rate αl = α0 · ( 1

1+Kα·tl ), where α0 is the initial
value, Kα is the decay coefficient and tl counts the number of times the network
Nl has been trained ([30]).

3. Case study

A scaled-down Power Grid case study is considered to apply the Reinforce-
ment Learning decision making framework. The Power Grid includes: 2 con-
trollable generators, 5 cables for power transmission, and 2 renewable energy
sources which provide electric power to 2 connected loads depending on the
(random) weather conditions (Figure 3). Then, |C|=11. The two traditional
generators are operated to minimize power unbalances on the grid (Figure 3).
We assume that these generators, and links 3 and 4, are affected by degrada-
tion and are equipped with PHM capabilities to inform the decision-maker on
their degradation states. Then, D = {1, 2, 3, 4}. The two loads and the two
renewable generators define the grid power setting, P = {5, 6, 7, 8}

7



s(
t+

1)

S
to

ch
a
st

ic
 G

ri
d

 M
o

d
e
l

  
1

  
2

  
3   
4

  
5

  
6

  
7

  
8

  
9

  
1
0

  
1
1

  
1
2

  
1
3

  
1
4

  
1
5

  
1
6

  
1
7

  
1
8

  
1
9

  
2
0

  
2
1   
2
2

  
2
3

  
2
4

  
2
5

  
2
6

  
2
7  

2
8

  
2
9   
3
0

P
H
M

P
H
M

a(
t)

R
(t

+
1)

s(
t)

a(
t+

1)

t=
t+

1

ra
nd

()
<
ε

y
n

Ex
pl
oi
ta
ti
on

ar
gm

ax
a(

A
N

N
a[

s(
t+

1)
])

Ex
pl
or
at
io
n

ra
nd

()

A
g

e
n

t 
S

e
le

ct
 A

ct
io

n
s

s(
t+

1)

T
ra

in
 A

N
N

 f
o

r 
a
ct

io
n

 a
(t

)

O
ut

: 
R
(t

+
1)

+
𝛾	

m
ax

a(
t+

1)
 A

N
N

a(
t+

1)
[s

(t
+

1)
]

In
pu

t:
 S

(t
) 

A
N

N
ac

ti
on

1

A
N

N
 a

ct
io

n
 n

..
..

A
N

N
 a

ct
io

n
 2

Q
(S

,a
)

S a

Le
a
rn

in
g

 A
g

e
n

t

ob
se

rv
ed

 n
ew

 s
ta

te

ob
se

rv
ed

 r
ew

ar
d

𝛼1 𝛼2 𝛼n
s(

t+
1)

La
rn

in
g

 r
a
te

 d
e
ca

y
𝛼a

(t
)=
f(
𝛼a

(t
),
k)

t=
1

st
ar

t

S
(1

)=
ra

n
d
i(

N
s)

In
it

ia
li

ze

Ep
is

od
e 

Ru
n 

Figure 2: The flow chart displays an episode run and how the learning agent interacts with the
environment (i.e. the power grid equipped with PHM devices) in the developed Reinforcement
Learning framework; dashed-line arrows indicate when the learning agent takes part in the
episode run.
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3.1. States and actions

We consider nd = 1 degradation features, d = 1, .., 4, and np = 1 power
features, p = 1, .., 4. We consider 4 degradation states for the generators, sd1 =
{1, .., Sd1 = 4}, d = 1, 2, whereas the 2 degrading power lines, d = 3, 4, have
three states: sd1 = {1, .., Sd1 = 3}. State 1 refers to the AGAN condition,
whereas state Sd1 to the failure state and states 1 < sd1 < Sd1 to degraded states in
ascending order. For each load, we consider 3 states of increasing power demand
sp1 = {1, .., Sp1 = 3}, p = 5, 6. Three states of increasing power production are
associated to the Renewable Energy Sources, sp1 = {1, .., Sp1 = 3}, p = 7, 8.
Then, the state vector at time t reads:

S(t) =
[
s1

1, s
2
1, s

3
1, s

4
1, s

5
1, s

6
1, s

7
1, s

8
1

]
Space S is made up of 11664 points.
The agent can operate both generators to maximize the system revenues by
minimizing the unbalance between demand and production, while preserving
the structural and functional integrity of the system. Then, g ∈ G = {1, 2} and
% = 1, ..., |G| = 2. Being in this case subscript % = g, it can be omitted.
Notice that other actions can be performed by other agents on other components
(e.g. transmission lines). These are assumed not under the agent control, and,
thus, are included in the environment. Then, the action vector reads a = [a1, a2],
whereas Ag = {1, .., 5}, g ∈ {1, 2}, and |A| = 25. This gives rise to a 291600
state-action pairs. For each generator, the first 3 (operational) actions concern
the power output, which can be set to one out of the three allowed levels. The
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last 2 actions are preventive and corrective maintenance actions, respectively.
CM is mandatory for failed generators.
Highly degraded generators (i.e. Sdg = 3, d = 1, 2) can be operated at the lower
power output levels, only (ag = 1 action).
Tables 1-3 display, respectively, the costs for each action and the corresponding
power output of the generators, the line electric parameters and the relation
between states sp1 and the power variable settings.

Table 1: The power output of the 2 generators in [MW] associated to the 5 available actions
and action costs in monetary unit [m.u.].

Action: 1 2 3 4 5

Pg=1 [MW] 40 50 100 0 0
Pg=2 [MW] 50 60 120 0 0
Ca,g [m.u.] 0 0 0 10 500

Table 2: The transmission lines ampacity and reactance proprieties.

From To Ampacity [A] X [Ω]
Gen 1 Load 1 125 0.0845
Gen 1 Load 2 135 0.0719
Gen 1 Gen 2 135 0.0507
Load 1 Gen 2 115 0.2260
Load 2 Gen 2 115 0.2260

Table 3: The physical values of the power settings in [MW] associated to each state Sp1 of
component p ∈ P .

State index sp1 1 2 3

p = 5 Demanded [MW] 60 100 140
p = 6 Demanded [MW] 20 50 110
p = 7 Produced [MW] 0 20 30
p = 8 Produced [MW] 0 20 60

3.2. Probabilistic model

We assume that the two loads have identical transition probability matrices
and also the degradation of the transmission cables and generators are described
by the same Markov process. Thus, for ease of notation, the components sub-
scripts have been dropped.
Each action a ∈ A is associated to a specific transition probability matrix Pa

g ,
describing the evolution of the generator health state conditioned by its opera-
tive state or maintenance action.
The transition matrices for the considered features are reported in Appendix
6. Notice that the probabilities associated to operational actions, namely ag =
1, 2, 3, affect differently the degradation of the component. Moreover, for those
actions, the bottom row corresponding to the failed state has only zero entries,
indicating that operational actions cannot be taken on failed generators, as only
CM is allowed.
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3.3. Reward model

The reward is made up of four different contributions: (1) the revenue from
selling electric power, (2) the cost of producing electric power by traditional
generators, (3) the cost associated to the performed actions and (4) the cost of
not serving energy to the customers. Mathematically, the reward reads:

R(St , at , St+1) =

=

6∑
p=5

(
Lp(t)−

ENSp(t)

∆t

)
·Cel−

2∑
g=1

Pg ·Cg−
2∑
g=1

Ca,g−
6∑
p=5

ENSp(t) ·CENS

where Lp is the power demanded by element p, Cel is the price paid by the
loads for buying a unit of electric power, Pg is the power produced by the gen-
erators, Cg is the cost of producing the unit of power, Ca,g is the cost of action
ag on generator g, ∆t = 1h is the time difference between the present and the
next system state and ENSp is the energy not supplied to load p; this is a
function of the grid state S, grid electrical proprieties and availability M, i.e.
ENS(t) = G(S,M) where G defines the constrained DC power flow solver ([35],
see Figure 2). CENS is the cost of the energy not supplied.
Costs CENS , Cg and Cel are set to 5, 4 and 0.145 monetary unit (m.u.) per-unit
of energy or power, respectively. These values are for illustration, only.

4. Results and discussions

The developed algorithm (pseudo - code 1 in Appendix) provides a non-
tabular solution to the stochastic control problem, which is compared to the
reference Bellman’s optimality (pseudo-code 2 in Appendix). The algorithm
runs for Nei = 1e4 episodes with truncation window T = 20, initial learning
rate α0 = 0.02, initial expiration rate ε0 = 0.9 and decay coefficientsKα = 1e−2.
The learning agent is composed of 25 fully-connected ANNs having architectures
defined by Nlayers = [8, 10, 5, 1], that is: 1 input layer with 8 neurons, 1 output
layer with 1 neuron and 2 hidden layers with 10 and 5 neurons, respectively.
The results of the analysis are summarized in the top panel in Figure 4, where
the curves provide a compact visualization of the distribution of Qπ∗(S,a) over
the states, for the available 25 combinations of actions. For comparison, the
reference optimal action-value function is displayed in the bottom panel. The
results of the two algorithms are in good agreement, although minor inevitable
approximation errors can be observed for some of the state-action pairs. Three
clusters can be identified: on the far left, we find the set of states for which
CM on both generators is performed; being CM a costly action, this leads to
a negative expectation of the discounted reward. The second cluster (C 2 )
corresponds to the 8 possible combinations of one CM and any other action on
the operating generator. The final cluster (C 1 ) of 16 combinations of actions
includes only PM and operational actions. If corrective maintenance is not
performed, higher rewards are expected.
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Figure 4: The Q(s, a) values displayed using ECDFs and the 3 clusters. Comparison between
the reference Bellman’s solution (bottom plot) and the QL+ANN solution (top plot).
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Figure 5: The maximum expected reward, q̂a(S|µa), for increasing total load and different
degrading condition of the generators.

In Figure 5, each sub-plot shows the maximum expected discounted reward given
by the policy found by Algorithm 1, conditional to a specific degradation state
of the generators and for increasing electric load demands. It can be noticed
that when the generators are both healthy or slightly degraded (i.e.

∑2
d=1 s

d
1 =

2, 3, 4), an increment in the overall power demand entails an increment in the
expected reward, due to the larger revenues from selling more electric energy to
the customers (dashed lines display the average trends). On the other hand, if

the generators are highly degraded or failed (i.e.
∑2
d=1 s

d
1 = 7, 8), an increment

in the load demand leads to a drop in the expected revenue. This is due to the
increasing risk of load curtailments and associated cost (i.e. cost of energy not
supplied), and to the impacting PM and CM actions costs. Similar results can
be obtained solving the Bellman’s optimality (e.g. see [36]).

To compare the Q values obtained from Algorithm 1 to the Bellman’s ref-
erence, a convergence plot for 3 states is provided in Figure 6. Every state is
representative of one of the 3 clusters C 1, C 2 and C 3 (see Figure 4): S1 =
[1, 1, 1, 1, 1, 1, 1, 1] has both generators in the AGAN state, S2 = [4, 1, 1, 1, 1, 1, 1, 1]
has one generator out of service while S3 = [4, 4, 3, 3, 3, 3, 3, 3] has both genera-
tors failed. Figure 6 also reports the corresponding reference Bellman’s solutions
(dashed lines): their closeness indicates that the Reinforcement Learning algo-
rithm converges to the true optimal policy.

4.1. Policies comparison

Table 4 compares the results obtained from the developed Reinforcement
Learning algorithm with the Bellman’s optimality and two synthetic policies.
The first suboptimal policy is named Qrnd, in which actions are randomly se-
lected. This comparison is used as reference worst case, as it is the policy that
a non-expert decision maker would implement on the Power Grid. The second
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generators fully-operative, partially failed/degraded and fully-failed).

synthetic policy, named Qexp, is based on experience: the agent tries to keep the
balance between loads and production by optimally setting the power output
of the generators. However, he/she will never take PM actions. This reference
policy is that which an agent not informed on the health state of the compo-
nents would apply on the Power Grid elements.
Table 4 shows on the first row the Normalized Root Mean Squared Error
(NRMSE, i.e., the error averaged over all the state action pairs and normalized
over the min-max range of the Bellman’s Q) between the considered policies
and the Bellman’s reference Q.
In the next rows, Table 4 shows the averaged non-discounted return R(t) =∑T

t=1 R(t)

T , independent from the initial state of the system, its standard de-

viation σ[R(t)], the average value of the energy not supplied, ENS, and the
corresponding standard deviation σ[ENS]. These values have been obtained by
Monte Carlo, simulating the system operated according to the four considered
policies.
We can see that the Reinforcement Learning policy yields negative values of the
average energy-not-supplied (about -45.2 MW), which are smaller than those of
the reference Bellman’s policy solution method (-6.7 MW). This indicates that
both Bellman’s and Reinforcement Learning policies yield an overproduction of
electric power. However, the reward of the Bellman’s solution is larger, due to
the closer balance between load and demand and, thus, lower costs associated
to the overproduction.
Concerning the expert-based policy Qexp, it behaves quite well in term of aver-
age ENS, with results comparable to the Bellman’s optimality. On the other
hand, the resulting Q and R(t) are both smaller than those of the Bellman’s
policy and the Reinforcement Learning policy. This is due to the increased
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occurrence frequency of CM actions and associated costs. The random policy
produces sensibly worsen the results of both ENS and rewards.
To further explain these results, we can look at Table 5. For the four considered
policies, the panels report the frequency of selection of the 5 actions available
for the generators, conditional to their degradation state: the Bellman’s policy
in the top panel, left-hand side, the Reinforcement Learning policy in the top
panel, right-hand side, the suboptimal random policy in the bottom panel, left-
hand side, and the expert-based policy in the bottom panel, right-hand side. In
each panel, the first 4 rows refer to the possible degradation states of Gen 1,
whilst the last 4 rows show the results for Gen 2.
With respect to the Bellman solution it can be observed that when Gen 1 is
nearly failed (s1

1 = 3), it undergoes PM for the vast majority of the scenarios
(80.9 % of the states). Conversely, when Gen 2 is nearly failed (s2

1 = 3), the
optimal policy is more inclined to keep it operating (54.3 % of the scenarios)
rather than perform a PM (45.7 %). This means that in the states for which
s2

1 = 3, the agent is ready to: (1) take the risk of facing failure and (2) have the
generator forcefully operated at the minimum power regime. This difference in
the operation of the two generators can be explained by considering the spe-
cific topology of the system, the inherent asymmetry in the load, renewable and
controllable generators capacity, and the PHM devices which are not uniformly
allocated on the grid.
In terms of action preferences, the Reinforcement Learning policy presents some
similarities and differences when compared to the Bellman ones. In particular,
given a nearly failed state for Gen 1, this is more likely to undergo PM (20.4
% of the times) if compared to Gen 2 (only 14.1 %). This is in line with the
results of the Bellman’s policy. However, a main difference can be pointed out:
following the Reinforcement Learning policy, PM actions are taken less fre-
quently, with a tendency to keep operating the generators. This is reflected in
the rewards, which are slightly smaller. Nonetheless, the Reinforcement Learn-
ing policy tends to optimality and greatly outperforms the random policy, as
expected, and also presents an improvement with respect to the expert-based
solution to the optimization problem. This gives evidence of the benefit of PHM
on the Power Grid.
As expected, the action selection frequencies of the randomized policy do not
depend on the states of the generators and PM are not selected in the expert-
based policy, as required when it has been artificially generated.

One main drawback of the developed algorithm is that it is computationally
quite intensive (approximately 14 hours of calculations on a standard machine,
last row in Table 4). This is due to the many ANNs trainings, which have to be
repeated for each reward observation. However, its strength lies in its applica-
bility to high dimensional problems and with continuous states. Furthermore,
its effectiveness has been demonstrated by showing that the derived optimal
policy greatly outperformed an alternative non-optimal strategy, with expected
rewards comparable to the true optimality. Further work will be dedicated to
reducing the computational time needed for the analysis, possibly introducing
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time-saving training algorithms and robust and efficient regression tools .

Table 4: Comparison between the policy derived from the QL+ANN Algorithm 1, a synthetic
non-optimal random policy, an expert-based policy and the reference Bellman’s optimality

Policy π Bellman’s QL+ANN Qrnd Qexp

NRMSE 0 0.083 0.35 0.11
R(t) 532.9 439.1 260.3 405.2
σ[R(t)] 347.5 409.3 461.6 412.2
ENS -6.71 -45.22 15.16 -8.1
σ[ENS] 71.2 75.8 80.9 66.2
Comp. time [s] 17.3e4 5e4 - -

5. Discussion, limitations and future directions

The proposed approach has been implemented in the open source compu-
tation framework OpenCossan [] has been tested on a scaled-down power grid
case study with discrete states and relatively small number of actions. This was
a first necessary step to prove the effectiveness of the method by comparison
with a true optimal solution (i.e., the Bellman’s optimal solution). It is worth
remarking that RL cannot learn from direct interaction with the environment,
as this would require unprofitably operating a large number of systems. Then,
a realistic simulator of the state evolution depending on the actions taken is
required. This seems not a limiting point in the Industry 4.0 era, when digital
twins are more and more common and refined. Future research efforts will be
devoted to test the proposed framework on numerical models of complex sys-
tems (for which reference Bellman’s solution is not obtainable) and on empirical
data, collected from real world systems, is also expected.

6. Conclusion

A Reinforcement Learning framework for optimal O&M of power grid system
under uncertainty is proposed. A method which combines Q-learning algorithm
and an ensemble of Artificial Neural Networks is developed, which is applica-
ble to large systems with high dimensional state-action spaces. An analytic
(Bellman’s) solution is provided for scaled-down power grid, which includes
Prognostic Health Management devices, renewable generators and degrading
components, giving evidence that Reinforcement Learning can really exploit
the information gathered from Prognostic Health Management devices, which
helps to select optimal O&M actions on the system components. The proposed
strategy provides accurate solutions comparable to the true optimal. Although
inevitable approximation errors have been observed and computational time is
an open issue, it provides useful direction for the system operator. In fact,
he/she can now discern whether a costly repairing action is likely to lead to a
long-term economic gain or is more convenient to delay the maintenance.
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Table 5: Decision-maker actions preferences. Percentage of actions taken on the genera-
tors conditional to their degradation state (following the Bellman’s policy, the Reinforcement
Learning policy, the sub-optimal policy and the expert-based policy).

Bellman’s policy Reinforcement Learning policy

a1 = 1 2 3 4 5 1 2 3 4 5

s1
1 = 1 24.3 7.4 58 10.2 0 7.5 20.5 71.5 0.65 0
s1

1 = 2 28.2 6.4 65.4 0 0 0.6 29.4 69.4 0.6 0
s1

1 = 3 19.1 0 0 80.9 0 79.6 0 0 20.4 0
s1

1 = 4 0 0 0 0 100 0 0 0 0 100

a2 = 1 2 3 4 5 1 2 3 4 5

s2
1 = 1 38.9 8.6 45 7.4 0 2.7 27.6 69.6 0 0
s2

1 = 2 36.1 11.4 52.5 0 0 2.4 24.3 72.9 0.3 0
s2

1 = 3 54.3 0 0 45.7 0 85.9 0 0 14.1 0
s2

1 = 4 0 0 0 0 100 0 0 0 0 100

Randomized Policy Expert-based policy

a1 = 1 2 3 4 5 1 2 3 4 5

s1
1 = 1 25.6 25.2 24.6 24.3 0 0 37 63 0 0
s1

1 = 2 23.8 25.3 25 25.9 0 0 37 63 0 0
s1

1 = 3 52.1 0 0 47.9 0 100 0 0 0 0
s1

1 = 4 0 0 0 0 100 0 0 0 0 100

a2 = 1 2 3 4 5 1 2 3 4 5

s2
1 = 1 24.6 24.9 25.6 24.7 0 76 2.4 21.6 0 0
s2

1 = 2 24.5 25.1 24.9 25.4 0 76.6 1.8 21.6 0 0
s2

1 = 3 50.4 0 0 49.6 0 100 0 0 0 0
s2

1 = 4 0 0 0 0 100 0 0 0 0 100
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Appendix 1

Formally, a MDP is a tuple 〈S,A,R,P〉, where S is a finite state set, A(s) is
a finite action set with s ∈ S, R is a reward function such that R(s, a) ∈ R,∀s ∈
S, a ∈ A and P is a probability function mapping the state action space:

Ps,a,s′ : S ×A× S 7→ [0, 1]

A specific policy π is defined as a map from the state space to the action space
π : S 7→ A with π(s) ∈ A(s) ∀s ∈ S and it belongs to the set of possible policies
Π. The action-value function Qπ(s, a) is mathematically defined as [30]:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(st, π(st))|S0 = s,A0 = π(s0)

]
s ∈ S

where γ ∈ [0, 1] is the discount factor and a γ < 1 is generally employed to avoid
divergence of the cumulative rewards as well as to reflect the fact that is some
cases earlier rewards are more valuable than future rewards. The Bellman’s
optimality equation provides an analytical expression for Qπ∗(s, a), which is the
action-value function for optimal policy π∗. The Bellman’s optimality is defined
by a recursive equation as follows [37]-[30]:

Qπ∗(st, at) =
∑
st+1

P(st+1|st, at)
[
R(st+1, at, st) +max

at+1

γQπ∗(st+1, at+1)

]
(7)

Equation 7 can be solved by Dynamic Programming such as policy iteration or
value iteration [30].

The QL+ANN algorithm 1 consists of two phases: (1) an initialization phase
of the ANNs ensemble and (2) the learning phase, where Q-learning algorithm is
used in combination to the ANNs to learn an optimal decision-making policy.In
phase (1) an ANN is associated with each action vector a and its architecture,
i.e. number of layers and nodes per layer, is defined by the Nlayers vector.
Each network is first trained using the Levenberg-Marquardt algorithm, pro-
viding as input the state vectors and as output the estimator of Q obtained
from the future rewards. In phase (2) the Reinforcement Learning algorithm
run, Artificial Neural Networks select the actions and the ensemble is incremen-
tally trained to improve its predictive performance. Notice that, whilst tabular
Reinforcement Learning methods are guaranteed to convergence to an optimal
action-value function for a Robbins-Monro sequence of step-sizes αt, a general-
ized convergence guarantee for non-tabular methods has not been provided yet
and an inadequate setup can lead to suboptimal, oscillating or even diverging
solutions.Thus, an empirical convergence test has been designed to assess the
the reliability of the results. For further details, please refer to [30].
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Algorithm 1 The QL+ANN Algorithm.

Set ei = 1, nei Nei, Kα, ε0, α0, γ, Nlayers;
Phase 1: Off-Line Training
Initialize Networks Nl and tl = 1, l = 1, ...|A| with architecture Nlayers;
Sample transitions St,at → St+1,at+1 and observe rewards Rt, t = 1, ..., nei;
Approximate Q by the MC estimate Yt =

∑t+Φ
t′=t γ

t′−t ·Rt′
Train each Nl using {St|t = 1, ..., nei,at = l} and the estimated Yt (output);

Phase 2: Learning
while ei < Nei (Episodic Loop) do

Set t = 1 initialize state St randomly
ε = ε0 · τeiε
while t < T (episode run) do

if rand() < 1− ε (exploit)
at = arg max

l∈{1,...,|Âg% |}
q̂l(St|µl)

else (explore)
Select at randomly s.t. at ∈ Âg%

end
Take action at, observe St+1 and reward Rt
Update network Nat weights, ε and α
µat
← µat

+αat ·[Rt+γ · max
l∈{1,...,|A|}

q̂l(St+1|µl)− q̂at(St|µat
)]·∇q̂at(St|µat

)

αat = α0 · ( 1
1+Kα·tat

)

Set t = t+ 1 and tat = tat + 1
end while
go to next episode ei = ei+ 1

end while
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Pad=1
d =


0.98 0.02 0 0

0 0.95 0.05 0
0 0 0.9 0.1
− − − −

 d = 1, 2 Pad=2
d =


0.97 0.03 0 0

0 0.95 0.05 0
− − − −
− − − −

 d = 1, 2

Pad=3
d =


0.95 0.04 0.01 0

0 0.95 0.04 0.01
− − − −
− − − −

 d = 1, 2

Pad=4
d =


1 0 0 0

0.5 0 0.5 0
0.5 0 0 0.5
− − − −

 d = 1, 2 Pad=5
d =


− − − −
− − − −
− − − −

0.15 0 0 0.85

 d = 1, 2

Pa
d =

0.9 0.08 0.02
0 0.97 0.03

0.1 0 0.9

∀ a, d = 3, 4 Pa
p =

0.4 0.3 0.3
0.3 0.3 0.4
0.2 0.4 0.4

 ∀ a, p = 5, 6

Pa
7 =

0.5 0.1 0.4
0.3 0.3 0.4
0.1 0.4 0.5

∀ a Pa
8 =

0.5 0.2 0.3
0.4 0.4 0.2
0 0.5 0.5

∀ a

Algorithm 2 The value iteration algorithm (Bellman’s optimality)

Initialize Q arbitrarily (e.g. Q(s, a) = 0 ∀s ∈ S, a ∈ A)
Define tolerance error θ ∈ R+ and ∆ = 0
while ∆ ≥ θ do

for each s ∈ S do
get constrained action set As in s
for each a ∈ As do
q = Q(s, a)

Q(s, a) =
∑
s′ P(s′|s, a)

[
R(s′, a, s) +max

a′
γQ(s′, a′)

]
∆ = max(∆, |q −Q(s, a)|)

end for
end for

end while
Output a deterministic policy π ≈ π∗
π(s) = arg max

a∈As
Q(s, a) ∀s ∈ S
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