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Abstract
The coupled attitude and orbit dynamics of solar sails is studied. The shape of the sail is a
simplified quasi-rhombic pyramid that provides the structure helio-stability properties. After
adimensionalization, the system is put in the form of a fast–slow dynamical system where
the different timescales are explicitly related to the physical parameters of the system. The
orientation of the body frame with respect to the inertial orbit frame is a fast phase that can
be averaged out. This gives rise to a simplified formulation that only consists of the orbit
dynamics perturbed by a flat sail with fixed attitude perpendicular to the direction of the
sunlight. The results are exemplified using numerical simulations.

Keywords Solar sails · Helio-stability · End-of-life disposals · Multiple timescale
dynamics · averaging

List of symbols
a Semimajor axis (km)
α Aperture angle of the sail (deg or rad)
As Area of the panels (m2)
β Frequency of the Sun-pointing direction (deg or rad)
C Inertia moment around the ζ axis (kg m2)
d Center-of-mass–center-of-pressure offset (m)
e Eccentricity [–]
ε Ratio between characteristic timescales [–]
Fb Body frame
FI Earth-centered inertial frame
F Force vector (N)
γ Difference ω − � (deg or rad)
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h Height of the panels (m)
i Unit vectors of a basis
J2 Adimensional J2 coefficient [–]
λ Angle between Sun position and ix (rad or deg)
ms/2 Mass of the panels (kg)
mb Mass of the bus (kg)
M, M Torque vector, component of torque vector (Nm)
μ Earth’s mass parameter (km3/s2)
n Normal vectors to panels
n Mean motion (deg or rad/s)
� Right ascension of the ascending node (deg or rad)
ω Argument of the perigee (deg or rad)
P Sail panel
pSR Solar radiation pressure at 1 AU (N/m2)
r Magnitude of the position vector of the spacecraft (km)
R Earth’s radius (km)

 Surface of section
θ True anomaly (deg or rad)
u Unit vector
v Velocity components and its magnitude (km/s)
ϕ Euler angle (rad or deg)
 Angular velocity of the attitude (rad or deg/s)
φ Difference ϕ − λ (rad or deg)
w Width of the panels (m)
ξ, ν, ζ Coordinates of Fb

x, y, z Coordinates of FI

X Characteristic function of an interval

Subscripts
± That refers to panels + or −
� That refers to Sun
SRP That refers to solar radiation pressure
GG That refers to gravity gradient
ξ, ν, ζ In the direction of, in Fb

x, y, z In the direction of, in FI
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1 Introduction

Solar sails are a low-thrust propulsion system that takes the advantage of solar radiation
pressure (SRP) to accelerate a probe using a highly reflective surface. Even though the
acceleration due to SRP is smaller than that achieved by traditional thrusters, it is continuous
and enables possibilities that range from trajectory design to attitude control.

The effects of the SRP acceleration have been widely studied in the literature. In works
that deal with the effect of SRP acceleration on the dynamics of spacecraft with a solar
sail, its attitude is usually assumed to be fixed with respect to the direction of sunlight. This
assumption simplifies the equations of motion and, in some cases, allows to deal with SRP
acceleration as a perturbative effect and even to write the system as if it had Hamiltonian
structure (Jorba-Cuscó et al. (2016)). But maintaining the attitude fixed with respect to any
direction, in particular that of sunlight, requires attitude control.

For the specific case of works that deal with flat sails whose surface is (theoretically)
assumed to be always perpendicular to the sunlight direction, it is expected that in practice the
attitude oscillates close to this direction if an appropriate center-of-mass–center-of-pressure
offset (that in this paper is referred to as MPO) is assumed.

In thiswork,we investigate the possibility of considering adifferent structure that consist of
a number of flat panels oriented in a way that cancels out some torque components andmakes
the Sun-pointing attitude stable. The motivation is to foster the use of such sails as passive
deorbiting devices, which can be employed as end-of-life disposals that would reduce the
attitude control requirements.Here, the termpassive is understood in the sense of the so-called
passive deorbiting strategy, as defined in Colombo and Bras (2016), that consists of using the
idea of deorbiting “outwards” on an elliptical orbit: The increase in the eccentricity of the orbit
causes the perigee radius to progressively decrease.As justified inLücking et al. (2012, 2013),
this can be attained by orienting the sail panel always perpendicular to the sunlight direction.
Other deorbiting strategies are the so-called active approaches (as opposed to “passive”) that
consist of changing between maximal and minimal SRP acceleration along the motion. This
was first studied in Borja and Tun (2006), where the authors suggested maximizing the SRP
acceleration when traveling toward the Sun and minimizing it when traveling away from the
Sun. A refined version of this approach is to maximize (resp. minimize) the SRP acceleration
when the first averaged variational equation of the eccentricity is positive (resp. negative);
see Colombo et al. (2019). This refinement reduces the number of attitude change maneuvers
from twice per turn around the Earth to twice per year; see Colombo and Bras (2016).
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Apart from considering an adequate MPO, helio-stability can be enhanced by means of a
quasi-rhombic pyramid (QRP) shape. This idea was first introduced in Ceriotti et al. (2013).
The suggested structure consists of 4 reflective panels that resemble the shape of a pyramid. In
case the center line of the pyramid is oriented close enough to the sunlight direction and has an
adequateMPO, this structure cancels out, on average along themotion, the components of the
acceleration in other directions. For example, in Felicetti et al. (2016) the authors study the lin-
ear stability of the Sun-pointing attitude, and this stability can be further enhanced by assum-
ing a moderate spin around the adequate axis of inertia as proposed in Felicetti et al. (2017).

A simplified version of the QRP that consists of a single triangular flat panel and an
appropriately positioned payload of the spacecraft was considered in Ceriotti et al. (2014),
and later exploited in Heiligers and Ceriotti (2017) to design new periodic orbits in the cir-
cular restricted three-body problem. The suggested spacecraft was shown to have undamped
conservative oscillatory dynamics around the Sun-pointing direction.

Although the contributions (Ceriotti et al. 2013, 2014; Felicetti et al. 2016, 2017;Heiligers
and Ceriotti 2017) provide satisfactory results, there is, to the authors’ knowledge, a lack of
understanding of

1. The attitude dynamics, especially close to the Sun-pointing attitude, and
2. The attitude and orbit coupling, especially whether they can be analytically separated

taking into account the fact that these two components have two characteristic timescales.

These two questions are addressed in this paper by considering a sail structure in between
the single panel considered in Ceriotti et al. (2014) and Heiligers and Ceriotti (2017) and the
full QRP (Ceriotti et al. 2013; Felicetti et al. 2016, 2017) whose orbit dynamics (without any
attitude control) evolves strictly on the ecliptic plane if adequate initial attitude conditions
are chosen. The structure consists of two panels with variable aperture and variable position
of the payload, as introduced in Miguel and Colombo (2018). The acceleration due to SRP
assumes that photons are partially specularly reflected and partially absorbed. Building on
previous contributions on the usage of the SRP effect for the design of end-of-life disposals
(see, e.g., Lücking et al. 2012; Colombo et al. 2012), here the considered orbital dynamics
are the J2-perturbed two-body problem1 always perturbed by the SRP acceleration; that is,
the spacecraft is considered to be always illuminated, so the effect of eclipses are not taken
into account. The SRP acceleration depends on the attitude of the spacecraft. The attitude
dynamics are assumed to solely happen around an axis perpendicular to the ecliptic plane
and to be perturbed by the SRP and gravity gradient torques. The effect of atmospheric drag
is not taken into account. Hence, this study is relevant to higher low Earth orbits (LEO) (i.e.,
with altitude 700/800 km and above).

As numerically demonstrated inMiguel and Colombo (2018), this structure has the advan-
tage that under some hypotheses related to the geometry of the sail—that are discussed later
in this contribution—the dynamics close to the Sun-pointing direction is close to a mathe-
matical pendulum, and hence, the motion has a quasi-integral (adiabatic invariant) of motion
that is almost preserved over some time interval. Also, the length of this time interval depends
on the ratio between timescales as usually described by theorems concerning the accuracy
of the averaging method.

The organization and presentation of the main results of this paper are as follows. First of
all, Sect. 2 is devoted to the review of the geometry of the spacecraft under consideration and
to the derivation of the equations of motion. Despite having two characteristic timescales,
the equations are not written in the form of fast–slow systems. The equations are put as

1 This is the motion of an artificial satellite around an oblate planet keeping only the J2 term of the expansion
of the perturbing potential in spherical harmonics.
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a fast–slow system of differential equations, where the variables that evolve in different
timescales are split, and related via a physical parameter that represents the ratio between
timescales that only depends on the geometry of the spacecraft. In Sect. 3, the dynamics of
the system are studied in the context of fast–slow systems, and this includes the discussion of
the possibilities of the separation of the motions. The system obtained by direct averaging of
the fast phase (after adequate changes of variables) is related to the results of the averaging
theorems. The section finishes with an enumeration of the physical interpretations of the
results. The theoretical results and formulas of Sect. 3 are tested in Sect. 4 with special
emphasis on the physical interpretations just mentioned. The paper concludes in Sect. 5,
where the main results of the contribution are summarized and different possible lines for
future research are suggested.

2 Model

This section is devoted to providing the equations ofmotion of the planar dynamics of a helio-
stable solar sail. These are a set of differential equations that govern the coupled attitude and
orbit dynamics of the spacecraft under consideration. The content of Sects. 2.1 and 2.2 is
a summary of the derivation of the equations of motion that is added for completeness. For
further details, the reader is referred to Miguel and Colombo (2018). The section ends by
putting the equations of motion in the context of dynamical systems with multiple timescales
in Sect. 2.3.

2.1 Geometry of the sail structure

The spacecraft under consideration consists of a payload or bus attached to two panels
forming an angle. To avoid out-of-plane motion, one is lead to consider a simplification of a
QRP (Ceriotti et al. 2013) that consists of two panels of equal size P± and of height h, width
w and area As = hw. Assume that the mass of each panel is ms/2, so the mass of the whole
sail structure is ms . In the left panel of Fig. 1, a sketch of the sail structure is depicted.

The attitude dynamics of the spacecraft occurs in a reference frame Fb attached to it. The
coordinates in this frame are referred to as ξ, ν and ζ and the vectors of the basis iξ , iν, iζ .
The panels are attached to each other along an h-long side that lies on a line parallel to the ζ

axis, and they form an angle α with respect to the plane ν = 0. The payload, whose mass is
denoted as mb, is assumed to be on the ξ axis, at a distance d from the center of mass of the

P−
P+

w

h
ξ ν

ζ Fb P−

P+

n+

n−

α

ξ

Fig. 1 Sketch of the sail structure. Left: 3D view. Right: top view
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P−

P+

ξ

ν

α

Fb

P−

P+

ξ
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α

Fb

d

P−

P+

Fig. 2 Sketch of the top view of the spacecraft in Fb , where the bus is depicted as a black square, and the
center of mass of the sail structure is depicted as a blue solid dot. Left: d < 0. Center: d = 0. Right: d > 0

two panels; see Fig. 2. The parametrization of the panels is chosen so that the center of mass
of the spacecraft is at the origin of Fb. The main physical parameters of the system are: α,
the aperture angle, and d , which accounts for the MPO.

Sketches of top views of the spacecraft inFb are shown in Fig. 2, where the bus is depicted
as a black square, and the center of mass of the sail structure is depicted as a blue solid dot,
added to visualize the parameter d . The left, center and right panels are sketches of spacecraft
with d < 0, d = 0 and d > 0, respectively.

The aim of this contribution is to study the oscillatory attitude dynamics close to the
Sun-pointing direction of the spacecraft described in this subsection. For the purposes of this
article and to simplify the exposition, we considered that the back part of the panels (the side
where the angle α is measured in Fig. 2) did not produce any SRP acceleration. In Miguel
and Colombo (2019), the attitude dynamic model is extended to take into account the effect
of the back side neglected here, and the dynamics close to the Sun-pointing attitude is shown
to be exactly the same as the one obtained in this paper. Moreover, a numerical study of
the consequences of considering different reflectance properties is performed in Miguel and
Colombo (2019).

2.2 Equations of motion

The considered planar orbit and attitude dynamics are a coupled system of differential equa-
tions in (S1 × R) × R

4, where S
1 := R/(2πZ): orientation and angular velocity for the

attitude; and position and velocity of the spacecraft in an Earth-centered inertial reference
frame FI .

Here, SRP is considered to be the coupling effect between the attitude and orbit dynamics.
It is then necessary to study the attitude dynamics in relation to the orbit dynamics that are
considered to evolve in FI . The coordinates of FI are denoted x, y and z, and the vectors
of the orthonormal basis are denoted ix,y,z . The vector ix points toward an arbitrarily chosen
direction on the ecliptic (e.g., J2000), and since we are dealing with the planar problem, the
vector iz is parallel to iζ , and they are also perpendicular to the ecliptic plane. The triad is
completed by choosing iy = iz × ix .

As the motion is planar the change of coordinates fromFI toFb is done through R3(−ϕ),
where ϕ ∈ S

1 is an Euler angle and R3 is the rotation matrix around the z (and ζ ) axis. The
rotation matrix R3 reads, for any angle ψ ∈ [0, 2π),

R3(ψ) =
(

cosψ sinψ

− sinψ cosψ

)
.
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The Euler attitude equations in the present situation reduce to

C ϕ̈ = Mζ , (1)

where M = (Mξ , Mν, Mζ ) is the torque due to the external forces considered and C is the
inertia moment around the ζ axis in Fb. Denote Iξ,b, Iν,b, Iζ,b as the inertia moments of the
bus. Then one can see that

C = Iζ,b + D(α, d), D(α, d) = 1

6
msw

2 cos2 α + d2m2
b(mb + 2ms)

(mb + ms)2
. (2)

2.2.1 SRPmodel

The force due to SRP exerted on each panel of the sail in Fb is considered to be modeled
as Markley and Crassidis (2014)

F±
SRP = −pSRAs(n± · u�) (2η(n± · u�)n± + (1 − η)u�) , (3)

where u� is the unit vector in the Earth–Sun direction and n± are the normal vectors to each
panel; recall Fig. 1. Concerning the constants, η ∈ (0, 1) is the (dimensionless) reflectance
of the sail and pSR = 4.56 × 10−6 N/m2 is the solar pressure at 1 AU which is considered
to be constant.

2.2.2 Attitude dynamics

The effects taken into consideration are SRP and the non-symmetry of the spacecraft, so the
total torque isM = MSRP +MGG, the sum of the SRP and gravity gradient torques. Let λ be
the argument of latitude of the apparent position of the Sun. The SRP torque has a different
representation depending on the orientation of the sail structure with respect to the Sun; that
is, it depends on the value of ϕ relative to λ, so denote φ = ϕ − λ. These three angles are
sketched in Fig. 3.

If φ ∈ [−π + α, α], the panel P+ produces torque (see Fig. 4a); and if φ ∈ [−α, π − α],
it is the panel P− which produces torque (see Fig. 4b); in particular, if |φ| ≤ α, both panels
face the Sun (see Fig. 4c). In all panels of Fig. 4, the sunlight direction is depicted as if it was
in the direction (−1, 0)�; hence, λ = 180◦; see Fig. 3.

Fig. 3 Sketch of the angles ϕ, λ

and φ. The angle ϕ informs about
the orientation of Fb relative to
FI , the angle λ informs about the
position of the Sun in FI , and
φ = ϕ − λ is the relative
orientation with respect to the
position of the Sun in FI

x

y
ξ

ν

ϕ
φ

λ

−u
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(c)(b)(a)

x

yFI

P−

P+

u

x

yFI

P−

P+u

x

yFI

P−

P+

u

Fig. 4 Sketches of different orientations of spacecraft in the FI frame. In all three panels, λ = 180◦; see
Fig. 3. Case (a): Only P+ produces torque α ≤ ϕ −λ ≤ π −α; case (b): only P− produces torque −π +α ≤
ϕ − λ ≤ −α; case (c): both panels produce torque |ϕ − λ| ≤ α

Assume that the bus is symmetric in the sense that Iξ,b = Iν,b = Iζ,b. In this case,
as derived in Miguel and Colombo (2018), the attitude equations of motion reduce to the
following second-order ordinary differential equation (ODE)

ϕ̈ = As

mb + ms

pSRk1,1
2C

M1(ϕ − λ) + 3μ

r3
D(α, d)

C
sin (2(θ + ω + � − ϕ)) , (4)

where D(α, d) is defined in Eq. 2; θ , ω and � are the true anomaly, argument of perigee
and right ascension of the ascending node (RAAN) of the osculating orbit; the last is being
considered as it precesses due to the J2 effect considered in Sect. 2.2.3, and

M1(ψ) = M−
0 (ψ)X[−α,π−α](ψ) + M+

0 (ψ)X[−π+α,α](ψ),

= M−
0 (ψ)X[−α,π−α](ψ) − M−

0 (−ψ)X[−π+α,α](ψ) (5a)

M±
0 (ψ) = −1

2
sin(2ψ) ∓ k2,0

k1,1
cos2 ψ ∓ k0,2

k1,1
sin2 ψ, (5b)

where X J is the characteristic function of the interval J ,

X J : R → {0, 1}, X J (ψ) =
{
1 if ψ ∈ J
0 if ψ /∈ J

.

The parameter μ = GM = 3.986 × 1014 m3/s2 is the gravitational parameter of the Earth.
The rest of the coefficients are physical parameters that depend on the geometry of the
spacecraft and on the reflectance parameter η, and read

k1,1 = sin α [2dmb(2η cos(2α) + η + 1) + w(mb + ms)(cosα − η cos(3α))] , (6a)

k2,0 = sin2 α [4dηmb cosα + w(mb + ms)(1 − η cos(2α))] and (6b)

k0,2 = cosα [2dmb(η cos(2α) + 1) + ηw(mb + ms) sin α sin(2α)] . (6c)

The functionM0 in Eq. 5b can be interpreted as the scaled SRP torque due to a single panel.
Since both panels are equal, but oriented in a different way, one expects the expressions for
both panels to be similar. Namely, these can be found to differ only by a sign. The functionM1

in Eq. 5a, on the other hand, represents the joint SRP torque, which takes into consideration
that the panels have to face the sunlight to produce torque; this is why M1 is a piecewise
defined function.
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2.2.3 Orbit dynamics

Inspired by previous studies on the effect of SRP for the design of end-of-life disposals, the
considered orbit dynamics has been the two-body problem, perturbed by the J2 term and the
SRP acceleration due to the sail structure (Lücking et al. 2012; Colombo et al. 2012; Lücking
et al. 2013; Colombo and Bras 2016). The (dimensional) equations of motion of the orbit
dynamics read ⎧⎪⎪⎨

⎪⎪⎩
ẍ = −μx

r3
− 3R2μJ2

2

x

r5
+ As pSR

mb + ms
ax ,

ÿ = −μy

r3
− 3R2μJ2

2

y

r5
+ As pSR

mb + ms
ay,

(7)

where the first summand is the Keplerian term, the second is the J2 effect and the third one
is the SRP acceleration. The constant J2 = 1.082 × 10−3 is the adimensional coefficient of
the second-order term in the expansion of the perturbing potential in spherical harmonics, R
is the radius of the planet, and r = √

x2 + y2.
It is important to remark that the factors ax and ay in the third summands of the right-hand

side of Eq. 7 are piecewise defined, as the SRP acceleration depends on ϕ − λ. Namely, ax
and ay can be expressed as follows:

(ax , ay)
�=

[
(a+

x , a+
y )�X[−α,π−α](ϕ − λ) + (a−

x , a−
y )�X[−π+α,α](ϕ − λ)

]
, (8)

where

a±
x = sin(α ± λ ∓ ϕ)(η cos(2α ± λ ∓ 2ϕ) − cos λ))

a±
y = sin(α ± λ ∓ ϕ)(∓η sin(2α ± λ ∓ 2ϕ) − sin λ))

(9)

are the expressions of the adimensional factor of the accelerations due to panel P+ (sub-
script +) and due to panel P− (subscript −). Equations 9 are obtained from Eq. 3, with

n± = R3(ϕ)(sin α,± cosα)�, u� = (cos λ, sin λ)�.

In the particular case that α = π/2 and ϕ = λ, that is, when the sail is completely
opened, and hence, it is a rectangular flat panel with width 2w and height h, and the direction
of the normal to the surface of the sail is parallel to the Sun–spacecraft direction, the SRP
acceleration reads

−2
As pSR

mb + ms
(1 + η)(cos λ, sin λ)�,

twice the acceleration of a flat panel of area As = hw always oriented toward the Sun,
maximizing the SRP acceleration.

The assumption that the Sun–spacecraft distance is constant and equal to the Sun–Earth
distance is equivalent to considering a linear approximation of the potential of the Sun (Jorba-
Cuscó et al. (2016)).

2.3 Multiple timescale dynamics

The full set of 6 coupled differential equations, Eqs. 4 and 7, have two different timescales,
attitude being faster than orbit dynamics. Hence, these equations fit within the context of
fast–slow dynamical systems. In this section, we choose adequate variables to put them in a
standard form for their treatment as a fast–slow system.
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“Appendix 1” is devoted to the adimensionalization of the equations of motion, where
the adimensionalization factors L (longitude) and T (time) are introduced. For the sake of
lightening the notation, we use the same notation for the adimensional variables, as the
dimensional analogues will not be further used in this contribution. Also (̇ ) denotes the
derivative with respect to the adimensional time, τ . The full set of equations read⎧⎪⎪⎪⎨

⎪⎪⎪⎩

φ̈ = c1M1(φ) + c2
r3

sin(2 arctan(y/x) − 2(φ + λ)),

ẍ = − x

r3
− c3

x

r5
+ c4ax ,

ÿ = − y

r3
− c3

y

r5
+ c4ay,

(10)

where φ = ϕ − λ (depending on adimensional time), ax and ay are as in Eq. 8, and the
constants are the adimensional quantities

c1 = As

mb + ms

pSRk1,1L3

2Cμ
, c2 = 3

D(α, d)

C
, c3 = 3R2 J2

2L2 , c4 = As

mb + ms

pSRL2

μ
.

(11)

Written like this, the problem can be put in the form of a fast–slow system. To write Eq. 10
as an ODE of first order, one must introduce  = φ̇ = ϕ̇ − λ̇, and vx = ẋ, vy = ẏ. Let us
denote φ = (φ,) and x = (x, y, vx , vy).2 Then the following holds.

Proposition 1 Assume that λ̇ = n� = constant and that the torque coefficient k1,1 > 0
(Eq. 6a). There exists ε = ε(c1) > 0 and a phase scaling (φ, x) → (φ̂, x̂) such that in the
(φ̂, x̂) variables Eq. 10 has the following form⎧⎨

⎩
ε
dφ̂
dτ = f (φ̂, x̂, ε)

dx̂
dτ = g(φ̂, x̂)

, (12)

for adequate f and g.

Proof If we define

ε2 := mb + ms

As

2Cμ

pSRk1,1L3 = 1

c1
, (13)

the proposition follows by considering the scaling φ̂ = φ, ̂ = ε, x̂ = x, ŷ =
y, v̂x = vx , v̂y = vy . The maps f and g correspond to the right-hand side of the
resulting equations of motion for φ̂ and x̂, respectively. 	


The parameter ε in Eq. 13 depends solely on physical quantities of the system and on the
choice of the longitude scaling factor L in the adimensionalization procedure; see App. 1. If
L is appropriately chosen, see Sect. 4.1, then ε is small, and Eq. 12 is a fast–slow system,
written in the slow timescale τ . One can consider a time scaling t = τ/ε, the fast timescale,
in which Eq. 12 reads ⎧⎨

⎩
dφ̂
dτ = f (φ̂, x̂, ε)

dx̂
dτ = εg(φ̂, x̂)

. (14)

2 This notation will also be used for other sets of variables that are going to be introduced later: φ̂ = (φ̂, ̂),

φ̄ = (φ̄, ̄), φ̃ = (φ̃, ̃), ˜̃
φ = (

˜̃
φ,

˜̃
), x̂ = (x̂, ŷ, v̂x̂ , v̂ŷ), x̄ = (x̄, ȳ, v̄x̄ , v̄ȳ). x̃ = (x̃, ỹ, ṽx̃ , ṽỹ), ˜̃x =

( ˜̃x, ˜̃y, ˜̃v ˜̃x , ˜̃v ˜̃y).
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Hence, ε is the ratio between the timescales in which the two characteristic motions, orbit
and attitude, take place.

The change to ·̂ variables can be extended to the argument of latitude of the Sun λ̂ = λ

which, in the fast timescale t , varies as dλ̂/dt = εn�, similarly as for the orbital dynamics
in Eq. 12. That is, from the point of view of the attitude, the position of the Sun varies in a
slower constant rate, with factor ε.

2.3.1 Fast equations

The components of the vector field in Eq. 15 of the fast variables are those representing the
evolution of the sail attitude

f (φ̂, x̂, ε) =
(
̂, M1(φ̂) + ε2

c2
r3

sin(2 arctan(ŷ/x̂) − 2(φ̂ + λ̂))
)�

, (15)

where, if we denote

M0(ψ) = −1

2

[
sin(2ψ) − 1

k1,1

(
(k2,0 − k0,2) cos(2ψ) + (k2,0 + k0,2)

)]
, (16)

we can write

M1(φ̂) = M0(φ̂)X[−α,π−α](φ̂) − M0(−φ̂)X[−π+α,α](φ̂). (17)

To obtain these expressions one has to use the double angle formulas in Eq. 5, using the
symmetries of the involved trigonometric functions, arranged as in Eq. 5a.

2.3.2 Slow equations

Concerning the components of the vector field in Eq. 15 of the slow variables, the scaling
of the proof of Prop. 1 is such that x̂ = x, and hence, the form of the equations does not
change. The vector field of the slow subsystem reads

g(φ̂, x̂) =

⎛
⎜⎜⎝

v̂x
v̂y

−x̂/r̂3

−ŷ/r̂3

⎞
⎟⎟⎠ − c3

⎛
⎜⎜⎝

0
0

x̂/r̂5

ŷ/r̂5

⎞
⎟⎟⎠ + c4

⎛
⎜⎜⎝

0
0
âx
ây

⎞
⎟⎟⎠ , (18)

where r̂ = √
x̂2 + ŷ2 + ẑ2 and r̂ = √

x̂2 + ŷ2 and

(âx , ây)
� =

[
(â+

x , â+
y )�X[−α,π−α](φ̂) + (â−

x , â−
y )�X[−π+α,α](φ̂)

]
, (19)

being

â±
x̂ = sin(α ∓ φ̂)(η cos(2α ∓ λ̂ ∓ 2φ̂) − cos λ̂)

â±
ŷ = sin(α ∓ φ̂)(∓η sin(2α ∓ λ̂ ∓ 2φ̂) − sin λ̂).

Written as in Eqs. 12 and 14, the equations of motion can be studied by separately
considering only the attitude or the orbit dynamics. This is possible by dealing with the limit
case ε = 0, which can be interpreted as the spacecraft having an infinitely large area-to-mass
ratio. Setting ε = 0 has two different meanings in each equivalent formulation, Eqs. 12
and 14:
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• In the slow timescale, Eq. 12, the dynamics are the slow (orbit) system, constrained to
the zeros of the function f . In practice, in the context of this paper, this means that the
dynamics is constrained to a specific attitude. In fact, in this case the dynamics is that of a
time-dependent Hamiltonian, and hence, the components of g in Eq. 18 can be obtained
as the derivatives of

H = 1

2
(v̂2x + v̂2y) − 1

r̂
− c3

3r̂3
− c4(x̂ âx̂ + ŷâŷ). (20)

The time dependency comes from the SRP acceleration, as it depends on the position of
the Sun.

• In the fast timescale, Eq. 14, the position of the spacecraft is assumed to be constant
and only the attitude evolves. The position of the spacecraft is, hence, a parameter of the
system.

Moreover, for ε = 0 both the slow and fast timescale dynamics are Hamiltonian: In the
slow timescale, this holds for any fixed attitude, and in the fast timescale, it is not trivial and
is justified in Sect. 3.1. However, the whole problem is not Hamiltonian due to the SRP and
gravity gradient coupling.

3 Dynamical aspects of the coupled system

In this section, we highlight the most dynamically relevant aspects of the coupled adimen-
sional attitude and orbit model. Written as a fast–slow problem, we can deal with the descrip-
tion of the dynamics as it is customary in this field: After splitting the equations of motion
into fast and slow components as in Eq. 14, written in the fast timescale, the parameter ε is
set to 0, leaving only as non-trivial the equations that correspond to the fast dynamics. These
are usually referred to as the fast subsystem or frozen system. The dimension of the resulting
problem is smaller than the original and hence easier to study. The core idea is that, as there
are two timescales, for small values of ε the variables that are frozen for ε = 0 evolve slower
than the fast variables, so the dynamics of the full fast–slow system is expected to be close to
the dynamics of the fast subsystem.More concretely, one can explain the dynamics of the full
systemby proving that some invariantmanifolds of the frozen systemare preservedwhen con-
sidering ε > 0, via the so-called geometrical singular perturbation theory, based on Fenichel’s
theory on the preservation of normally hyperbolic invariant manifolds under perturbation.
The expository text (Kuehn 2015) is strongly suggested for a global overview on the field.

In the context of this contribution, the stability of the Sun-pointing attitude in the fast
subsystem can be translated into the oscillatory motion of the spacecraft close to the Sun-
pointing attitude, which is expected to be preserved for long periods of time. Moreover, the
fast dynamics can be averaged out.

First, Sect. 3.1 is devoted to the study of the dynamics of the fast subsystem assuming that
the slow subsystem is frozen. After this, the averaging of the fast small oscillations of the
sail around the Sun-pointing direction is studied in Sect. 3.2. This allows to obtain a physical
interpretation of the results that are exposed in Sect. 3.3.

3.1 Dynamics of the fast subsystem

Consider Eq. 14, the full system written in the fast timescale t . By setting ε = 0, the orbit
(slow) vector field vanishes, so the only non-trivial equations are those corresponding to the
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attitude (fast) dynamics, which read

d

dt
φ̂ = f (φ̂, x̂, ε); (21)

recall Eq. 15. This is not equivalent to the simplified model found and studied in Miguel
and Colombo (2018), where the orbit dynamics was assumed to happen on a fixed Keplerian
orbit. Recall also that the SRP acceleration due to the back part of the panels is neglected, as
this effect is not relevant for the purposes of this paper.

The first relevant property of the fast subsystem is that it has Hamiltonian structure.

Proposition 2 The system given in Eq. 21 for ε = 0 is Hamiltonian with some Hamiltonian
function K0 and hence can be written as

d

dt
(φ̂, ̂)T = f (φ̂, x̂, 0) = (̂, M1(φ̂))T =

(
∂K0

∂̂
,−∂K0

∂φ̂

)T

. (22)

Proof If Eq. 21 was a Hamiltonian system with Hamiltonian K0, the equations of motion
would be obtained as derivatives of K0 as indicated in Eq. 22. As the first component of f
is ̂, K0 must have ̂2/2 as summand, and as the second component of f is M1, another
summand of K0 would be an appropriate primitive of M1; see Eq. 17. The function M1 is 0,
so one has to make sure that this primitive is C1. If we denote

K0(ψ) = −
[
1

4
cos(2ψ) + 1

4k1,1

(
(k2,0 − k0,2) sin(2ψ) + 2(k2,0 + k0,2)ψ

)]
,

K1(ψ) = K0(ψ) − K0(−α),

then a solution is

K0(φ̂, x̂) = ̂2

2
+ K1(φ̂)χ[−α,π−α](φ̂) + K1(−φ̂)χ[−π+α,α](φ̂)

+ K1(π − α)χ[−π,−π+α)∪(π−α,π ](φ̂).

(23)

	

Remark 1 1. For |φ̂| ≤ α,K0 = ̂2/2−cos(2φ̂)/2−2K0(−α) is the Hamiltonian function

of a pendulum.
2. For ε > 0, the attitude equations of motion can also be written as the derivatives of a

function Kε with respect to φ̂ and ̂. Namely, if we extend Eq. 23

Kε(φ̂, x̂) = ̂2

2
+ K1(φ̂)χ[−α,π−α](φ̂) + K1(−φ̂)χ[−π+α,α](φ̂)

+ K1(π − α)χ[−π,−π+α)∪(π−α,π](φ̂) + ε2
c2
2r3

cos(2 arctan(ŷ/x̂) − 2(φ̂ + λ̂)),

(24)

then for ε > 0 we recover the vector field Eq. 15 via

f (φ̂, x̂, ε) =
(

∂Kε

∂̂
,−∂Kε

∂φ̂

)�
.

The most relevant properties of the fast vector field f in Eq. 22 are: It is C0, the differ-
entiability being lost at the switching manifolds φ̂ = ±π ∓ α,±α; it is 2π-periodic in φ̂;
and it is also symmetric with respect to φ̂ = 0 as Kε((φ̂, ̂), x̂) = Kε((−φ̂, ̂), x̂). An
example of the phase space can be seen in the left panel of Fig. 5, for α = 30◦ and d = 0.
In this figure, each curve represents an orbit of the fast subsystem Eq. 21 that is obtained as
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u

Fig. 5 Dynamics of the fast subsystem, Eq. 22. Left: Phase space, switching manifolds (vertical dashed lines)
and equilibria. Right: Sketch of equilibrium orientations of the sail

a level set of K0, Eq. 23 (that is, points for which K0 = constant). The origin E represents
the Sun-pointing attitude and the orbits around it represent oscillatory motion. The vertical
dashed lines represent switching manifolds, which in this case represent physically that a
panel either starts or ceases to face sunlight and hence starts or ceases to produce torque. For
|φ̂| < 30◦, both panels face sunlight, for 30◦ < |φ̂| < 180◦ − 30◦, only one of them does
(as explained in Sect. 2.2.2), and for |φ̂| > 180◦ − 30◦, the motion is completely rotational,
i.e., the spacecraft tumbles, as no panel is assumed to produce torque.

The set of equilibria are an isolated point E and a continuum: At all points (φ̂, 0) with
φ̂ ∈ I− ∪{0}∪ I+, where I− = [−π,−π +α] and I+ = [π −α, π) the vector field vanishes.
Among these the most dynamically relevant are E = (0, 0), which is stable (provided
k1,1 > 0 in the original coordinates, see Eq. 6), and H± = (±π ∓ α, 0), which are saddles
whose invariant manifolds coincide, Wu(H+) = Ws(H−) and Wu(H−) = Ws(H+). The
equilibria are indicated in the left panel of Fig. 5, and in the right panel, the physical meaning
of E, H± is sketched: E is the Sun-pointing attitude and H± represent the angles of transition
to from no reflective panel facing sunlight to one or vice versa. The rest of the equilibria,
those whose abscissa is φ̂ ∈ I− ∪ I+ \ {−π + α, π − α}, have 0 as double eigenvalue.

3.2 Fast–slow dynamics and averaging

This section is devoted to the study of the dynamics of the full system for ε > 0. For small
values of ε, one expects the structure found in Sect. 3.1 to be close to conserved in a sense that
is made explicit here. More concretely, the function Kε is a first integral of the frozen–fast
subsystem for ε = 0, so for ε > 0 and for adequate initial conditions, it is expected to vary,
but slowly, along orbits. Hence, one expects the system to admit an analogue of an adiabatic
invariant (recall that the full system in Eq. 12 is not Hamiltonian): There is an equivalent
formulation of the system in which one of the variables experiences oscillations of at most
O(ε) for time intervals of length O(1/ε). The goal of this section is to find the adequate
change of variables that translates our problem in this context.

Attitudes close to the Sun-pointing direction φ̂ = 0 are those for which there is numerical
evidence of helio-stability properties of the spacecraft, see Miguel and Colombo (2018), and
the dynamics in this regime is that of a mathematical pendulum; recall item 1 in Rem. 1. The
following study is restricted to this situation.
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For the full set of equations of motion written in the fast timescale in Eq. 14, let G be a
bounded subset of the phase space such that, for all (φ̂, x̂) ∈ G, |φ̂| < α (that is, both panels
face the sunlight) where all trajectories lie wholly in G. Note that, in G, for fixed values of
x̂, the condition Kε = k defines one and only one trajectory of Eq. 14, and the restriction of
G onto the (φ̂, ̂) variables consists of a continuum of closed and nested periodic orbits.

Lemma 1 For small enough ε > 0 and small enough ̂ (that is, close enough to the Sun-
pointing attitude), there exists a real analytic change of variables defined in the interior of G

C : (φ̂, ̂, x̂, ŷ, v̂x̂ , v̂ŷ) �→ (φ̃, ̃, x̃, ỹ, ṽx̃ , ṽỹ)

that transforms Eq. 14, with f and g as given in Eqs. 15 and 18, respectively, into a system
of the form

⎧⎪⎨
⎪⎩

˙̃
φ = β + f̃ (̃, x̃) + ε2R1(φ̃, x̃),
˙̃
 = ε2R2(φ̃, x̃),
˙̃x = ε(g̃(̃, x̃) + R(φ̃, x̃)),

(25)

where f̃ , g̃ have zero average with respect to φ̃.

Proof This result fits within the scope of averaging theory, and the proof can be sketched as
consisting of the two following steps.

1. Consider for the moment the dynamics of the fast subsystem Eq. 22. It depends on φ̂ in a
periodic way, but for each initial condition in G, the period and the range of φ̂ of points
in this orbit are different. Restricting to the behavior close to the Sun-pointing direction,
we can substitute the equations of motion by the Taylor series around φ̂ = 0. Since the
frozen subsystem is Hamiltonian, one can have K0 in mind for the moment. The leading
non-constant terms are

1

2
(̂2 + 2φ̂2).

This suggests to consider a first change of variables (·̂ → ·̄)
C1 : (φ̂, ̂, x̂, ŷ, v̂x̂ , v̂ŷ) �→ (φ̄, ̄, x̄, ȳ, v̄x̄ , v̄ȳ),

where (̄, φ̄) are the usual Poincaré action–angle variables

φ̂ =
√
2̄/β sin φ̄, ̂ =

√
2̄β cos φ̄,

2̄β = ̂2 + β2φ̂2, φ̄ = arctan(βφ̂/̂),
(26)

the frequency being β = √
2. The change is extended to the rest of the variables by

simply choosing x̄ = x̂ , ȳ = ŷ, v̄x̄ = v̂x̂ and v̄ȳ = v̂ŷ .
After this change of variables, the obtained equations of motion are 2π periodic in φ̄,
which is still fast with respect to the rest of the variables.
It is worth noting that as the fast subsystem has Hamiltonian structure and the change of
variables C1 restricted to the attitude motion is canonical, one can still deal with these
two equations as if they were a Hamiltonian system with Hamiltonian function Kε. So,
for orbits in G, we can obtain the equations of motion in the ·̄ variables as follows. Start
by considering
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Kε = ̂2

2
− 1

2
cos(2φ̂) + ε2

c2
r3

cos(2ϑ − 2φ̂)

= ̂2

2
− 1

2
cos(2φ̂) + ε2

c2
r3

(
cos(2ϑ) cos(2φ̂) + sin(2ϑ) sin(2φ̂)

)
, (27)

where ϑ := arctan(ŷ/x̂) − λ̂. Now, the expansion around φ̂ = 0 reads

Kε = ̂2

2
− 1

2

∑
j≥0

(−1) j

(2 j)! (2φ̂)2 j

+ ε2
c2
r3

⎛
⎝cos(2ϑ)

∑
j≥0

(−1) j

(2 j)! (2φ̂)2 j + sin(2ϑ)
∑
j≥0

(−1) j

(2 j + 1)! (2φ̂)2 j+1

⎞
⎠ ,

where, if we introduce the ·̄ variables Eq. 26 with β = √
2, it reads

Kε = √
2̄ +

∑
j≥2

(−1) j+125 j/2−1

(2 j)! ̄ j sin2 j φ̄ (28a)

+ ε2
c2
r3

⎛
⎝cos(2ϑ)

∑
j≥0

(−1) j25 j/2

(2 j)! ̄ j sin2 j φ̄ (28b)

+ sin(2ϑ)
∑
j≥0

(−1) j25(2 j+1)/4

(2 j + 1)! ̄ j+1/2 sin2 j+1 φ̄

⎞
⎠ . (28c)

Now the attitude equations in ·̄ variables can be recovered via

dφ̄

dt
= ∂Kε

∂̄
,

d̄

dt
= −∂Kε

∂φ̄
.

Concerning the orbital motion (or slow subsystem), it only depends on φ̂ via the term
due to SRP acceleration; see the rightmost summand in Eq. 18. In the region G, this
acceleration (see Eq. 19) reads

(
âx
ây

)
=

( −(2 + η) sin α cos λ cos φ̂ − η sin α sin λ sin φ̂ + η sin(3α) cos(λ − 3φ̂)

− sin α((1 + η) sin(λ − φ̂) sin(λ + φ̂) − η(1 + 2 cos(2α)) sin(λ − 3φ̂))

)
.

(29)

This can be treated as we did for Kε above, first separating the dependence on φ̂, substi-
tuting the sine and cosine functions by their Taylor expansions, and then introducing the
·̄ coordinates. These expressions are not added as only a part of them are useful for the
next step, and we can refer to the expansions above to justify the form they have.

2. Let us focus for the moment on the differential equation of ̄, that is, after performing
the first change of variables C1. This equation is obtained as −∂Kε/∂φ̄. Note that all
summands except β̄ in the right-hand side of Eqs. 28 have a factor that depends on φ̄,
only as an argument of a power of a sine function, so after deriving with respect to φ̄,
the derivative of all terms appears in the right-hand side of the equation of motion of ̄.
Moreover, in each summand there is a factor of the form of the right-hand side of
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d

dφ̄
sinl φ̄ = l cos φ̄ sinl−1 φ̄, l ∈ Z, l > 0

that have zero average with respect to φ̄. Hence, one can get rid of the dependence on φ̄

via some averaging steps as done, for instance, in the classical referenceNeishtadt (1984).
After ordering the terms (by orders in ̄, for instance), the j th step would consist of
two substeps. Firstly the terms of the right-hand side we want to get rid of have to be
separated as the sum of periodic (with respect to φ̄) plus average parts. Secondly, a change
of variables has to be constructed in a way that the non-periodic part remains intact and
the periodic targeted terms do not appear in the equations written in the new variables.
This is done at the expense of more terms appearing in higher orders that have to be dealt
with in subsequent averaging steps.
To be able to perform these changes, we have to require that, on the one hand, the
frequency β > 0 has to be bounded away from zero. This is satisfied as β = √

2. On
the other hand, the leading terms of the expansion are O(̄2) (see Eq. 28a); hence, we
have to assume that ̄ is small enough so that the successive changes of variables to be
performed are, in fact, invertible.
To reach the claimed form of the equations, Eq. 25, one has to perform a second change
of variables

C2 : (φ̄, ̄, x̄, ȳ, v̄x̄ , v̄ȳ) �→ (φ̃, ̃, x̃, ỹ, ṽx̃ , ṽỹ)

that is a composition of N ≥ 0 averaging steps. The number of steps N depends on the
size of |̄| relative to ε. Note that there are terms in the expansions in Eqs. 28 that do not
have ε as factor, namely those in the summatory in Eq. 28a, which start with ̄2. It may
happen, if we are far enough from the equilibrium that O(̄2) > O(ε2); that is, these
terms dominate over those in Eqs. 28b and 28c. Let l ≥ 2, l ∈ Z be the first power such
thatO(̄l) < O(ε2). To reach the desired form in the equations of motion in Eq. 25, we
have to get rid of all terms in Eq. 28a that have ̄ j , j < l as factor. This is done via a
sequence of averaging steps, each dedicated to eliminate the lowest power appearing (see,
e.g., Efthymiopoulos 2011). As the first term has order 2 in ̄, the number of averaging
steps to perform is N = l − 2. In particular, if O(̄2) is already smaller than O(ε2), all
terms are small enough, and then, C2 is the identity.
For small enough ̄, C2 is the composition of near-the-identity changes of variable such
that, in the new variables, the lowest order term in ̄ in the Taylor expansion that depends
on φ̄ is exchanged by a zero-average term with respect to φ̄ of the same order in ̄. This
can be done in such a way that after the N steps the differential equations consist of
the average of the original equation written in the ·̄ variables, at the expense of having a
change of variables that does not have zero average, plus higher-order terms that have ε

as factor.

After performing C1 and then C2, Eq. 12 has, in the ·̃ variables, the claimed form Eq. 25,
where f̃ is the derivative with respect to ̄ of the average with respect to φ̄ of the terms in
the sum Eq. 28a up to the first order comparable with ε in magnitude, with ̃ in the place
of ̄; g̃ consists of the slow equations of motion plus the average up to the same order of
Eq. 29; and the functions R1, R2 and the map R contain the non-averaged terms plus extra
terms that appear as a by-product of the successive averaging changes of variables. 	


Now we are in a position of using the averaging principle, which consists of replacing the
right-hand side of Eq. 25 with its average with respect to φ̃ and to neglect the terms O(ε2).
Let us refer to the averaged variables as ˜̃·. The averaged equations of motion read
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˙̃̃
 = 0, ˙̃̃x = ε(g̃ + 〈R〉), (30)

where the angle brackets denote average with respect to φ̃. Recall that φ̃ indicates the average
angle between the ξ axis in Fb (i.e., the orientation of the sail) and the direction of sunlight.
Consider the solutions of Eqs. 25 and 30 starting at the same initial conditions, and denote

them by ˜̃
(t), ˜̃x(t) and ̃(t), x̃(t), respectively.

Theorem 1 Assume ε > 0 is small enough. Then, on the onehand, ̃ is an adiabatic invariant,
that is,

|̃(t) − ̃(0)| = O(ε) for 0 ≤ t ≤ 1/ε.

On the other hand, starting with the same initial conditions, the solution of the slow variables
in Eq. 25 is described by the solution of Eq. 30 with an accuracy ofO(ε) over time intervals
of length O(1/ε), that is,

| ˜̃x(t) − x̃(t)| = O(ε) up to t = O(1/ε).

Proof This follows from the theorem about the accuracy of the averagingmethod; see Arnold
(1988), Chapter 10, Sect. 52. This applies as the equations of motion are analytic, so they
meet the minimum (finite) differentiability requirements, and |β| = √

2 > 0 is bounded
away from zero. 	

Remark 2 The averaging steps performed have been done in such a way that the resulting
equations of motion after the successive changes of variables were the average with respect
to the fast angle φ̄. Although this is the expected observed mean motion, it adds difficulties
in the equations as it forces the successive changes to not have zero average and makes
the remainders of the expression Eq. 25 more involved. If instead one performs these steps
getting rid of all possible periodic terms, the changes and the remainders remain 2π periodic
through the whole process. Moreover, in this situation, the classical theorem in Neishtadt
(1984) is applicable, so there exists a change of variables that separates the phase φ̂ from the
rest of the variables except from a remainder that has exponentially small bounds.

3.3 Explicit equations and physical interpretation

The benefits of the analysis performed in this section are that one can extract physical inter-
pretations of interest for prospective applications: spacecraft design guidelines, simplification
of the equations of motion and the interpretation of the averaged problem as an equivalent
already studied problem.

3.3.1 Stability of the Sun-pointing direction

The first practical benefit can be extracted from the study of the fast dynamics. The condition
k1,1 > 0, which is a hypothesis of Prop. 1, is actually equivalent to

d >
w(mb + ms)

2mb
K (α, η), K (α, η) := η cos(3α) − cos(α)

2η cos(2α) + η + 1
. (31)

This is a necessary constraint between the physical parameters of the system, α and d .
Note that since α ∈ [0, π/2] and η ∈ (0, 1), the function K (α, η) < 0 we have the following
result.
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Fig. 6 Minimum value of the
MPO d for which the
Sun-pointing attitude is a stable
equilibrium of the fast–frozen
subsystem, for reflectance
coefficients
η = 0.75, 0.80, 0.85, 0.90
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Corollary 1 Miguel and Colombo (2018) For each aperture angle α ∈ (0, π/2), there exists
dmin such that if d > dmin the origin of Eq. 22 is locally stable.

This local stability can be physically understood as when the motion starts close enough
to the Sun-pointing attitude, the attitude librates around this state, as shown in Fig. 5.

This result relates the aperture angle to the MPO and can be understood as a guideline
for construction and can be used for future control-related studies. Note that, in particular,
dmin < 0 for α ∈ (0, π/2) and dmin = 0 for α = π/2, the flat plate case; recall Fig. 2. In
Fig. 6, the quantity dmin is displayed as a function of α, for different values of the reflectance
coefficient η.

3.3.2 Averaged equations of motion

The previous analysis justifies the averaging procedure with respect to the oscillations around
the Sun-pointing direction. The main hypotheses for the theorems were, on the one hand,
the closeness to the Sun-pointing direction and, on the other hand, the smallness of ε, which
actually measures the separation of timescales between the attitude and orbit components.
This was already observed in the numerical study performed in Miguel and Colombo (2018).

In the proof of Lemma 1, the changes of variable were chosen to justify the applicability
of the well-known averaging results, but from a practical perspective, provided ε and ̄ are
small, the averaging process can be carried out up to any required order. Namely, the larger
̄ is, the higher the order of the averaging procedure has to be.

Concerning the attitude equations, in practice one can obtain the differential equations by
first averaging the Hamiltonian Kε and then computing the derivatives with respect to the
new averaged action. Namely, using that

1

2π

∫ 2π

0
sinn ψ dψ =

{ 1
2n

( n
n/2

)
if n is even

0 if n is odd
,

the average of Eq. 28 reads (using the same names for the variables)

〈Kε〉 = β̄ +
∑
j≥2

(−1) j+12 j/2−1

( j !)2 ̄ j + ε2
c2
r3

cos(2ϑ)
∑
j≥0

(−1) j2 j/2

( j !)2 ̄ j . (32)

The derivative of 〈Kε〉 with respect to ̄ gives the approximation of the average frequency
of rotation of φ̄.
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Concerning the orbital dynamics, after the averaging procedure they are approximately
decoupled from the attitude. The averaged effect of the SRP acceleration is found by com-
puting the average of Eq. 29.

Let us proceed as done fromEqs. 27 to 28, that is, first separating the dependence on φ̂ and
then expanding the sine and cosine functions around φ̂ = 0 in Eq. 29. After this procedure,
the only terms that will contribute to the average are with those that have cos(lφ̂), l ∈ Z as
factor. These can be written in the following compact form,

−
(
cos λ

sin λ

) (
(2 + η) sin α cos φ̂ − η sin(3α) cos(3φ̂)

)
,

where, if we expand the cosine terms and introduce the ·̄ variables, we obtain

−
(
cos λ

sin λ

) ∑
j≥0

(−1) j2 j/2

(2 j)! ̄ j sin2 j φ̄
[
(2 + η) sin α − η sin(3α)32 j

]
,

whose average reads, reusing again the ·̄ variables for their averaged analogue,
( 〈ax 〉〈

ay
〉
)

= −
(
cos λ

sin λ

) ∑
j≥0

(−1) j2−3 j/2

( j !)2 ̄ j
[
(2 + η) sin α − η sin(3α)32 j

]
. (33)

Note that the sums in both Eqs. 32 and 33 are convergent.

3.3.3 Interpretation as an equivalent flat sail

After the averaging procedure, the attitude and orbit dynamics become decoupled since the
acceleration due to SRP becomes constant in the direction of Eq. 33, which in fact depends
only on the attitude’s initial condition of the integration through the mean amplitude of the
oscillations, as will be seen in Sect. 4.

The first benefit of the analysis is that the equations of motion become Hamiltonian again
as the averaging acts as fixing the attitude (recall the end of Sect. 2.3). In fact, one can interpret
the averaging as follows:

For each initial condition (that fixes the initial value of ̄) the dynamics of the averaged
equations is that of a spacecraft with the samemassmb+ms with a flat panel of effective
area As · Aeff , always perpendicular to the Sun–spacecraft direction.

The expression of this effective area is obtained from Eq. 33. Comparing the acceleration
due to SRP in our problem and the acceleration due to SRP that a sail with the same mass
with area As Aeff would have yields

− As pSR
mb + ms

(
cos λ

sin λ

) ∑
j≥0

(−1) j2−3 j/2

( j !)2 ̄ j
[
(2 + η) sin α − η sin(3α)32 j

]
= − As Aeff pSR

mb + ms

(
cos λ

sin λ

)
,

and from this, we get that

Aeff = Aeff (̄, α) =
∑
j≥0

(−1) j2−3 j/2

( j !)2 ̄ j
[
(2 + η) sin α − η sin(3α)32 j

]
. (34)

This quantity is referred to as the area factor.
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4 Numerical test cases

This section is devoted to the numerical exemplification of the analysis performed in Sect. 3.
Since the results refer strictly to the case in which both panels face sunlight, that is, |φ̂| < α

in Eq. 10, the simulations are restricted to this case. The equations of motion used in this
section are those obtained after the change of variables of Prop. 1, which in the fast timescale
t (denoting ( ′) = d/dt) read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̂′ = ̂,

̂′ = − sin(2φ̂) + ε2
c2
r̂3

sin(2 arctan(ŷ/x̂) − 2(φ̂ + λ̂)),

x̂ ′ = εv̂x̂ ,

ŷ′ = εv̂ŷ,

v̂′
x̂ = ε

(
− x̂

r̂3
− c3

x̂

r̂5
+ c4âx̂

)
,

v̂′
ŷ = ε

(
− ŷ

r̂3
− c3

ŷ

r̂5
+ c4âŷ

)
,

(35)

where (âx̂ , âŷ)
� read are given in Eq. 29.

Note that the theoretical restriction gives a stopping condition for the numerical integra-
tions: If |φ̂| > α simulations are stopped, as in this case the sail is expected to tumble.

4.1 Physical parameters and adimensionalization factors

The system of ODE in Eq. 35 has its own interest for arbitrary choices of the parameters
c1, c2, c3 and c4.Despite this, to justify the usefulness of the analysis performed in prospective
real applications we are lead to choose values of the parameters that correspond to a structure
that is constructible according to current technological boundaries. So, as done in Miguel
and Colombo (2018) and following the guidelines in Dalla Vedova et al. (2018), the physical
parameters of the structure are chosen to be η = 0.8, mb = 100 kg, w = h = 9.20 m and
ms = 3.60 kg, which corresponds to an area-to-mass ratio of As/(mb +ms) = 0.75 m2/kg.

The results are exemplified for spacecraft with α = 35◦, 40◦, 45◦, 60◦, all of them with
d = 0, as for these parameters the Sun-pointing attitude is helio-stable; see Fig. 6. It is worth
noting that smaller aperture angles α allow smaller oscillation amplitude and hence smaller
angular velocity, and any value of d with |d| > 0 would give rise to a larger size of the gravity
gradient perturbation.

Now, the values of the parameters still depend on the adimensionalization quantities, L for
length and T for time; see App. 1. There it is justified that to obtain Eq. 35 one has to choose
T = √

L3/μ, so only L has to be chosen. It has to be done in a way that ε = 1/c−1/2
1 is

small, the gravity gradient torque has to have smaller size than the SRP torque, and the J2 and
SRP accelerations have to be also smaller than the term of the Kepler problem that is O(1).
In Fig. 7, the values of ε = 1/c1/21 , c2ε2—as it appears as prefactor in the equation of ̂′ in
Eq. 35—c3 and c4 are shown as a function of the adimensionalization length factor L , recall
Eq. 11, for α = 45◦, d = 0 m (left) and α = 60◦, d = 0 m (right), as examples. From the
two panels in Fig. 7, one infers that L = 20 000 km (that is highlighted as a vertical dashed
line) is a proper choice for the purposes of this contribution according to the requirements
listed above. The figures corresponding to α = 35◦ and α = 40◦ are qualitatively the same
and quantitatively very similar.
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Fig. 7 Constants c−1/2
1 , ε2c2, c3 and c4 (Eq. 11) as a function of L , for the cases, α = 45◦ (left panel) and

α = 60◦ (right panel), both with d = 0 m

Table 1 Values of the physical parameters for α = 35◦ and α = 40◦

α = 35◦, d = 0 m α = 40◦, d = 0 m

c1 4.133317062536305 × 102 5.747509656406245 × 102

c2 2.014647115843597 × 100 1.923989341570575 × 100

c2 1.650597476175750 × 10−4 1.650597476175750 × 10−4

c2 3.738547970136426 × 10−6 3.738547970136426 × 10−6

ε 4.918703449585804 × 10−2 4.171191657263433 × 10−2

Time unit 2.203569462524180 × 102 s 1.868685651104933 × 102 s

Table 2 Values of the physical parameters for α = 45◦ and α = 60◦

α = 45◦, d = 0 m α = 60◦, d = 0 m

c1 7.624959636935995 × 102 1.366246396170031 × 103

c2 1.811184377377631 × 100 1.297157388066479 × 100

c2 1.650597476175750 × 10−4 1.650597476175750 × 10−4

c2 3.738547970136426 × 10−6 3.738547970136426 × 10−6

ε 3.621439426788271 × 10−2 2.705424915355282 × 10−2

Time unit 1.622397734086550 × 102 s 1.212025036217823 × 102 s

With all these choices, the physical constants of the system that are used in the following
sections are summarized in Tables 1 and 2. It is worth noting that, in both cases, ε = O(10−2)

and that one unit of time t of Eq. 35 is equivalent to T ε ≈ 2 − 3 min.

4.2 Main numerical experiment

The attitude and orbit coupling and averaging results of Sect. 3 are exemplified using one
single orbit initial condition on which all the considered disturbing effects play a strong role.
Namely, all motions considered start at the perigee of a Keplerian orbit characterized by

a0 = 9000 km, e0 = 0.25, ω0 = 0◦, �0 = 0◦.
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Note that, in particular, the perigee radius is above the surface of planet Earth (with
minimal altitude 350 km) and this remains true along all propagation performed. Despite the
low altitude, atmospheric drag is not considered as it was not taken into account in the study
of Sect. 3. Such considerations are left for future contributions.

Concerning the attitude initial conditions, a sampling between the Sun-pointing attitude
and close to the limit of the validity of the theoretical results, |φ̂| < α, has been performed.
More concretely, for each aperture angle α, 480 initial conditions of the form

φ̂0 = 0.9( jα + 1)

480
α, ̂0 = 0, jα = 0, 1, . . . , 479, (36)

have been considered. That is, 0 < φ̂ ≤ 0.90α is sampled. This is to make sure that most
trajectories do not reach |φ̂| > α before the maximal integration time. But this may also
happen before for these initial conditions, as will be observed later in the case α = 35◦.

Finally, the maximal integration time for all considered initial conditions has been 1 year
(that corresponds to a different maximal t for each value of α).

The theoretical study of Sect. 3 only justifies ε-closeness of the original and averaged
system in intervals of length O(1/ε) in the adimensional scale t . In actual time units, using
the data in Tables 1 and 2 this length is O(102) times the time unit, which accounts for
104 s ≈ 3 h in the studied 4 cases. Despite this, in the performed numerical experiments one
observes that for the considered orbit initial condition this interval is larger. The study of the
time intervals where such ε-closeness holds in a large family of orbits is out of the scope of
the present paper, and hence, it is not addressed here.

As a final consideration, as the flow is always transversal to x̂ = 0, instead of the full 6D
ODE we have considered the Poincaré section defined by


 = {
x̂ = 0, ŷ < 0

}
. (37)

Hence, the following is a study of a 5D discrete map on this surface. The reason for this
choice is twofold: On the one hand, this is a reduction in the dimension of the phase space
by one and this eases the analysis, and on the other hand, it allows for better comparison
when studying the system in Eq. 35 and its averaged analogue: Non-averaged and averaged
equations have been integrated with different numerical schemes (an implicit Runge–Kutta–
Gauss of 2 stages and order 4 and a Runge–Kutta–Fehlberg 7(8), respectively) with automatic
step size control. The Poincaré section sets a fixed position where to compare the integrated
orbits of both equations. Note that the integrated equations are different, and hence, the times
where the orbits intersect 
 do not necessarily coincide, even if the integration starts at the
same initial condition.

4.3 Numerical results

A selection of numerical results are shown and described here. These are related to the
shape, size and orientation of the osculating orbit along the integration, to be able to compare
between different apertures and oscillation amplitudes; to the assessment of the applicability
of the equivalent flat sail in the averaged equations; and finally to the assessment of the
difference between the original and averaged equations.
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Fig. 8 Evolution of the semimajor axis a (top row), eccentricity e (middle row) and γ = ω + � (bottom row)
, the sum of the argument of the perigee and the RAAN of the osculating orbit for the initial condition jα = 0
in Eq. 36

4.3.1 Shape, size and orientation of the osculating orbit

The shape, size and orientation of the orbit of the spacecraft are studied via the Keplerian
elements’ semimajor axis a, eccentricity e and γ := ω + �, the sum of the argument of the
perigee and the RAAN. Recall that the latter has to be considered as the J2 effect makes the
ascending node precess. On a scale where the whole evolution along one complete year of
integration is displayed, the differences between these three observables are qualitatively the
same for all the considered values of α.

In Fig. 8, an example of such evolution is displayed. The shown evolution is obtained with
the attitude initial condition with jα = 0 in Eq. 36, that is, the initial attitude closest to the
Sun-pointing direction considered. Top, middle and bottom panels show the evolution of a, e
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Fig. 9 Theoretical factor of the
effective area of the averaged sail
dynamics Aeff 2.5
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and γ , respectively. The differences due to choosing different aperture angles are highlighted
in the right column zooms.

This shows that although the sail has the same shape and size in all cases, the aperture
angle of the sail, even if it oscillates mildly around its helio-stable attitude, produces a
non-negligible impact on the orbit. Namely, in this case we observe O(0.1) variations of a
measured in km, that is,O(10−2) in the adimensional variables;O(0.001) variations in e; and
O(1) variations in γ , measured in degrees. Other attitude initial conditions show differences
of the same orders of magnitude.

4.3.2 The definition of equivalent effective area

From the results concerning the variation of osculating orbit, one reads that the fact that the
oscillations close to the Sun-pointing direction are fast with respect to the orbit dynamics
implies that the sail produces an average uniform effect. This can be interpreted as the QRP
sail behaving as a flat sail with area As · Aeff ; recall Eq. 34.

In Fig. 9, the area factor Aeff is plotted, as a function of ̄ for different values of α that
include the study cases.

Recall that ̄ = (2φ̂2 + ̂2)/(2
√
2), so this action gives information about the amplitude

of the oscillations around the Sun-pointing direction. Figure 9 shows that one can choose
the aperture angle in such a way that for small oscillations the effect of the QRP on the SRP
acceleration magnitude is, on average, that of more than 2 flat panels of area As . In other
words, for adequate α, the oscillations are equivalent as to having a larger flat panel always
oriented toward the Sun.

The question now is how to measure whether this effect can be recovered in the attitude
dynamics and SRP perturbation in the performed simulations. Recall that the results of the
simulations are data on 
 of the propagation of Eq. 35. To test the formulas provided in
Sect. 3, one can proceed as follows:

1. Measure of the average of the action. The quantity ̄ = (2φ̂2 + ̂2)/(2
√
2) evaluated

along the data appears to oscillate in what seems a quasi-periodic manner. Since we are
interested in the average, for each initial condition, we denote

〈
̄

〉
the time average of ̄

along the whole 1-year-long integration.
2. Evaluation of the area factor. With each obtained value of

〈
̄

〉
we can evaluate

Aeff (
〈
̄

〉
, α), the area factor; see Eq. 34. This is referred to as the “theoretical” value.
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Fig. 10 Results of the numerical study of the equivalent flat sail area. Top: time average of ̄ = (2φ̂2 +
̂2)/(2

√
2). Bottom: theoretical vs. numerical area factor; left: nominal values; right: error in log10 scale

3. Measure of the average SRP acceleration. The values of the components of the SRP
acceleration in Eq. 29 are also averaged along the 1-year-long data for each initial con-
dition. As given in this equation, the obtained average values correspond to the area
factor divided by either cos(λ̂) (along x̂) or sin(λ̂) (along ŷ). The mean is denoted as
A�
eff (

〈
̄

〉
, α) and referred to as the “numerical” value.

The results of this study are summarized in Fig. 10. To allow comparison for different
aperture angles, since each aperture angle has a different maximal oscillation, jα is chosen
as abscissa instead of φ̂0 itself; recall Eq. 36. The top panel displays the time average of
̄ = (2φ̂2 + ̂2)/(2

√
2). This shows that the tendency is that the larger the α is, the faster

the
〈
̄

〉
increases in the |φ̂| < α region. In this figure, three phenomena are highlighted as

they require further clarification. Both (d) and (e) correspond to the same phenomenon that
occur for α = 40◦ and 45◦, respectively, that is a plateau. This can be explained by the fact
that the corresponding initial conditions do not evolve on a torus or close to a torus, but on a
large width chaotic region where the attitude can range freely. Even though the phase space
of our problem is 5D and confining manifolds in this context have dimension 4, a geometrical
analogy would be the dynamics of a chaotic orbit in a Birkhoff region of an area-preserving
map (2D): a region that is bounded by invariant curves (confining manifolds of dimension
1) with no other invariant curves inside, where chaotic orbits are confined and their iterates
eventually fill a positive measure set that range the whole width between the two confining
curves. The variations in (f) that occur for α = 35◦ are spurious data, as the corresponding
sail reached |φ̂| > α before 1 year.

The bottom left panel of Fig. 10 shows the theoretical and numerical values of the area
factor. The bottom right panel shows the difference between the theoretical and numerical
values of Aeff (as defined in the enumeration in the beginning of this section).
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Err = ∣∣A�
eff − Aeff

∣∣ .
On the left, the theoretical and numerical values are displayed in dashed and solid lines,
respectively. As expected from the hypotheses of the theory, the fit is better the closer to the
Sun-pointing direction we are, but even for larger values of

〈
̄

〉
Eq. 34 still gives a good first

approximation of the area factor.

4.3.3 Full system versus averaged system

The application of the averaging method converts Eq. 35 into the simplified version that only
contains orbit dynamics whose equations read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃̃x = ˜̃v ˜̃x ,˙̃̃y = ˜̃v ˜̃y,
˙̃̃
v ˜̃x = −

˜̃x
˜̃r3 − c3

˜̃x
˜̃r5 − c4Aeff cos(λ),

˙̃̃
v ˜̃y = −

˜̃y
˜̃r3 − c3

˜̃y
˜̃r5 − c4Aeff sin(λ);

(38)

recall Eq. 30. Note that here the motion can be integrated in the slow timescale τ , so the
notation (˙) = d/dτ has been used. To test numerically how close the orbits of Eq. 38 are
to those of Eq. 35, we use the numerically evaluated area factor; that is, we use Eq. 38 with
A�
eff instead of Aeff .
The initial conditions for this orbit propagation are the same ones as explained in Sect. 4.2.

That is, for each value of α considered, we integrate 480 orbits (one per value of jα), for 1
year, keeping track of the intersections of each orbit in 
; see Eq. 37.

As above, we study the shape, size and orientation of the osculating ellipse via a, e and
γ and the results are compared with the orbits explained in Sect. 4.3.1. On a scale where
the whole evolution along one complete year of integration is seen, the difference between
the evolution of a, e and γ in the averaged and original equations is not noticeable. Their
behavior is such as that shown in Fig. 8. To study the discrepancies between the numerical
results of these two equations, it is convenient to compare the adimensional semimajor axis,
eccentricity and orientation, which shall be denoted as ˜̃a, ˜̃e and ˜̃γ for the averaged equation
Eq. 38 and â, ê and γ̂ for the original one Eq. 35. A sample of the numerical results obtained
is shown in Fig. 11. It is important to stress that the comparison is made at the intersection
of the orbits with 
. Hence, the abscissas are the number of iterates in 
 (a total of 1789440
in all cases), not the integration time as the intersection times in 
 are not necessarily the
same in the two compared problems.

The shown results correspond to 19 different values of
〈
̄

〉
: jα = 0 : 25 : 480. Concerning

the differences in semimajor axes, along this first integration year, they areO(10−2); concern-
ing the differences in eccentricity, they areO(10−5); and those for the orientation, they are at
most O(10−4). Taking into account that ε = O(10−2), these numerical results fit within the
accuracy expectations, but the time span where these seem to be valid, in the chosen example,
exceeds the predictions done by classical theorems that are summarized in Theorem 1.

As a final remark, note that these numerical results depend strongly on the chosen orbit, and
a specific numerical study to investigate this fact should be done to assess this dependence.
For the studied orbit (as it is indicated in the numerical results for Aeff ), one can find a non-
negligible region of practical stability around the Sun-pointing attitude so that it makes sense
to consider such structures as potential candidates for passive deorbiting devices. The studied
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Fig. 11 Difference in adimensional semimajor axes (top) and eccentricity (middle) and orientation (bottom)
of orbits of Eq. 38 and Eq. 35, for α = 45◦, d = 0 m (left) and for α = 60◦, d = 0 m (right)

orbit initial condition example is highly eccentric and produces a large gravity gradient torque
perturbation. Attitude stability is expected to be enhanced in high-altitude orbits, even all the
way down to lowmedium Earth orbits (MEO), i.e., 2000 km of altitude, and for less eccentric
orbits.

5 Conclusions

The coupled attitude and orbit motion is known to be a problem with two characteristic
timescales. Although this property is not necessarily obvious in the form of the equations
of motion, in particular for the class of spacecraft studied in this paper—a simplified quasi-
rhombic pyramid (QRP) that consists of a symmetric payload attached to an already deployed
sail that is composed of two reflective panels forming an angle that endows it with helio-
stability properties—the ratio between timescales, ε, can be found explicitly. An adequate
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time and phase scaling that depend on ε can be performed to highlight the two different char-
acteristic times of the motion. This parameter, in turn, depends solely on physical quantities
that describe the shape and mass distribution of the spacecraft under consideration.

The attitude dynamics can be understood via a formal treatment of the equations by
studying the fast subsystem of the motion by artificially setting the parameter ε to 0 with
equations written in the fast timescale. In the specific case of the simplified QRP, it is a
Hamiltonian system of one degree of freedom with C0 equations of motion that resembles
a pendulum. The Sun-pointing attitude is a stable equilibrium provided an adequate center-
of-mass–center-of-pressure offset and aperture angle are chosen. The phase space inside the
separatrices is foliated by periodic orbits with different periods, but both the Hamiltonian and
their equations of motion are only analytic in a neighborhood of the Sun-pointing attitude. A
change of variables of Poincaré type has to be performed inside this neighborhood to force
all attitude periodic orbits to have the same period.

The separation of the attitude and orbit dynamics by means of direct averaging of the
orientation of the sail with respect to the sunlight direction provides a reasonable first approx-
imation of the orbit dynamics. The theoretical justification of the applicability of averaging
results relies mainly on two independent requirements: smallness of ε and initial closeness to
the Sun-pointing attitude. Also, the smoothness hypotheses of classical theorems only allow
to restrict to the case where both panels face sunlight.

Even though in the studied practical examples, where the chosen physical data are that
of a constructible structure, the value of ε is not necessarily small, the oscillations around
the Sun-pointing direction are fast enough so that the effect along the whole integration is
perceived in the orbit dynamics as uniform.

This uniform effect can be interpreted as the sail structure consisting of a flat panel with
the same reflectance as the original panels, whose area is the area of one of the panels times
a factor that depends on the amplitude of the oscillations and the aperture angle. By tuning
these two parameters, this factor can be made larger than 2, hence giving rise to an effective
area-to-mass ratio that is at least double the amount if we only considered one of the panels
of the structure, but with the advantage of the enhanced stability provided by the oscillating
character.

The formulas for the area factor could be improved by performing the changes of variable
in a way that they have zero average. This would introduce, in particular, terms due to the
gravity gradient in the area factor. The great disadvantage is that the kind of expressions
one would be forced to handle would be increasingly involved as one goes further in the
sequence of averaging steps. So, one should take into account the trade-off between these
tedious computations and the possible improvements in the formula, as the way they are
presented in this contribution may be enough as a first approximation for practical purposes.

Thiswork is intended to be afirst step toward the comprehension of the long-termdynamics
of QRP. Future lines of research include the extension of the results of this paper to the 3D
structure. In this situation, it makes sense to consider eclipses as a moderate spin along one
of the axes of inertia can be considered to enhance attitude stability, as done in Felicetti
et al. (2017). Such assumption would reduce the rotation dynamics from 3 to 2 degrees of
freedom. Other interesting lines of research would include the consideration of damping
effects to enhance the stability properties, and the possible transition scenarios from SRP
dominated to atmospheric drag dominated regions where such as structure should be used as
a drag sail.

Concerning applications, the long-term stability of these families of spacecraftmakes them
suitable for cargo transportation missions and interplanetary transfers; see, e.g., Mengali and
Quarta (2007).
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A Adimensional model

In this section, the adimensional set of differential equations are derived. This is done for
the sake of providing a set of equations written in the form of a fast–slow system where
averaging theorems can be formally applied.

To fix notation, here the superscript ·̃ is used to refer to the original variables with dimen-
sions, not to be confused with those introduced in the averaging Lemma 1. The variables
without ·̃ refer to the adimensional analogues. Let L and T denote the length and time units,
measured in km and sec, respectively. Finally,

(˙) := d

dτ̃
, (′) := d

dτ

are used to denote derivativeswith respect to dimensional and adimensional time, respectively.
Consider the relations

x̃ = Lx, ỹ = Ly and τ̃ = T τ. (39)

The length L and time T units are chosen to normalize the Kepler problem in such a way
that it simplifies to the vectorial equation

x′′ = x/r3, x = (x, y)�, r =
√
x2 + y2.

The first component of the dimensional Kepler problem reads ¨̃x = −μx̃/r̃3, where r̃ =√
x̃2 + ỹ2. From Eq. 39, r̃ = Lr , and also,

x ′′ = d2x

dτ 2
= T 2

L

d2 x̃

dτ̃ 2
= T 2

L
¨̃x = −T 2

L

μx̃

r̃3
= −T 2

L3

μx

r3
!= − x

r3

if we choose

T 2

L3 μ = 1, or, equivalently T =
√

L3

μ
.

It is clear that for this choice the second component of the adimensional Kepler problem
reads y′′ = −y/r3. The choice of L is critical so that the magnitudes of the constants that
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appear in the problem are adequate for the applicability of the known averaging results. This
is done in Sect. 4.

Before scaling the equations of motion, it is convenient to shift the angle ϕ̃: let φ̃ = ϕ̃ − λ̃,
where λ̃ is the argument of latitude the Sun (i.e., the angle between the x axis and its position
vector in Earth-centered coordinates, measured counterclockwise) in its apparent motion
around the Earth.

In the adimensional variables, the attitude equations of motion read

φ′′ = As pSRk1,1L3

2Cμ(mb + ms)
M1(φ) + 3

D(α, d)

C

1

r3
sin(2 arctan(y/x) − 2(λ − φ)), (40)

as the right-hand side of Eq. 4 has to be multiplied by T 2. On the other hand, the translational
equations of motion read⎧⎪⎪⎨

⎪⎪⎩
x ′′ = − x

r3
− 3R2 J2

2L2

x

r5
+ As

mb + ms

pSRL2

μ
ax ,

y′′ = − y

r3
− 3R2 J2

2L2

y

r5
+ As

mb + ms

pSRL2

μ
ay

, (41)

where ax and ay are given in Eq. 8 putting ϕ = φ + λ.
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