
1 INTRODUCTION 
The detection and classification of anomalies and 
faults in nuclear components are important tasks for 
their safe and efficient operation. Conceptually, the 
basis for performing these tasks is that different sys-
tem faults initiate different patterns of evolution of 
the interested variables, measured by properly locat-
ed sensors. The diagnostic problem then becomes 
one of pattern classification, i.e. association of the 
different patterns of evolution to the different classes 
of system faults.  

Extensive research is being carried out in the in-
vestigation of fuzzy clustering techniques for pattern 
classification (Klawonn F., Kruse R., 1995), (Bot-
zheim J. et al., 2001), (Zio E., Baraldi P., 2005). 
These techniques have proven effective also in fault 
classification tasks (Yang M., 1993), (Dunn J., 
1974), (Gustafson D.E., Kessel, W.C., 1979), (Zio 
E., Baraldi P., 2005), (Reifman J., 1997), (Goddu G. 
et al., 1998) but often remain “black boxes” as to the 
interpretation of the physical relationships underpin-
ning the classification. On the other hand, the ap-
plicability in practice of a diagnostic tool requires 
the physical transparency of the underlying models, 
for the interpretation of the relationships between the 
involved variables, for direct inspection and for val-
idation. 

In the present work, a method for manipulating 
clusters of labelled data to extract transparent and 
easily interpretable classification rules is proposed. 
The first stage of the development of the rule-based 
classification model amounts to finding clusters cor-
responding to different types of fault. This is done 
by processing pre-classified, labelled ‘training’ data 

by means of a supervised evolutionary possibilistic 
clustering scheme developed by some of the authors 
(Zio E., Baraldi P., 2005). Then, a fuzzy rule-based 
model is built by optimally partitioning the range of 
each input (the so called universe of discourse, 
UOD) to reflect the previously obtained clusters, 
with each fuzzy cluster inducing a fuzzy classifica-
tion rule. The Fuzzy Sets (FSs) making up a rule 
corresponding to a fuzzy cluster are obtained by pro-
jecting the cluster onto the individual one-
dimensional coordinate axis of the involved varia-
bles (Klawonn F., Kruse R., 1995), (Sugeno M., Ya-
sukawa T., 1993).  

Section 2 sets the terminology and framework of 
fuzzy reasoning (Klir G.J., Yuan B., 1995). Section 
3 illustrates the membership functions’ (MFs) prop-
erties and semantic constraints which are introduced 
to achieve a transparent model and the pruning pro-
cess introduced to “clean” the model. Section 4 re-
ports the application of the approach to the classifi-
cation of simulated nuclear transients in the 
feedwater system of a Boiling Water Reactor 
(BWR). A discussion concerning the advantages and 
limitations of the proposed approach is provided in 
the last Section. 

2 FUZZY REASONING 
The two key elements of fuzzy reasoning are the 
Fuzzy Rule Base (FRB) (or Knowledge Base, KB) 
and the fuzzy inference engine. The former consists 
of a set of R  if-then rules. The generic j -th fuzzy 
rule, 1, 2,...,j R= , is made up of a number of ante-
cedent and consequent linguistic statements, suitably 
related by fuzzy connections: 
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The linguistic variables px , 1,...,p n= , are the 

antecedents, represented in terms of the FSs pjX  of 

the UOD 
pxU , with MFs )( pX x

pj
 . The linguistic 

variables qy , 1,...,q m= , are the consequents, repre-

sented by the FSs qjY  of the UOD 
qyU , with MFs 

)( qY y
qj

 . The connective operator and links two 

fuzzy concepts and it is generally implemented by 

means of a t-norm, typically the minimum operator 

or the algebraic product. The rules of the FRB are 

joined by the connective else, generally implement-

ed by means of an s-norm, typically the maximum 

operator (Klir G.J., Yuan B., 1995), (Zadeh, L.A., 

1965). 
The fuzzy inference engine receives the (linguis-

tic) variables which constitute the Fact, viz., 

Fact: 
1x  is 

1X   and … and 
nx  is 

nX   

where pX   is a FS on the UOD 
pxU  of the p -th lin-

guistic input variable px , and compares it with the 

antecedents of the rules in the FRB to arrive at the 

Conclusion, viz., 

Conclusion: 
1y  is 

1Y   and … and 
my  is 

mY   

where qY   is a FS on the UOD 
qyU  of the q -th out-

put variable qy . 

In the case of fault classification, the fuzzy infer-
ence engine i) receives as Fact the n  values of the 
monitored variables, possibly fuzzyfied to account 
for measurement imprecision, ii) computes the 
‘strength’ with which each of the R  rules in the 
FRB is activated by the incoming input Fact and iii) 
properly combines the consequents of the rules, 
weighed by their  respective strengths, to determine 
the output memberships to the different fault classes 
(Klir G.J., Yuan B., 1995). 

3 OBTAINING A TRANSPARENT FUZZY 
RULE-BASED MODEL 

In (Zio E., Baraldi P., 2005) a classifier based on 
fuzzy clustering has been proposed. The resulting 
classification model remains a ‘black box’, due to 
the difficulties of describing and interpreting the 
multi-dimensional FSs of the identified clusters in 
terms of rules antecedents.  

The method here propounded to extract a trans-
parent, rule-format FRB from the obtained fuzzy 
clusters proceeds according to the following 3 steps: 
1.  projection of the n-dimensional fuzzy clusters into 

n mono-dimensional FSs.  

According to the clustering classification algorithm 
presented in (Zio E., Baraldi P., 2005), each n -
dimensional training pattern ,  1,...,kx k N= , is pos-
sibilistically classified by its membership ( )ki x


  to 

each class 1,...,i c= . This produces c  clusters repre-
sented by an equal number of n -dimensional FSs, 
each of which can be projected onto the input varia-
bles as follows (Babuska R., Verbuggen H.B., 
1995): 

i.    the mono-dimensional MFs of the antecedents 
FSs are generated by pointwise projection of the 
membership value ( )ki x


  onto the antecedent 

variables UODs (Klawonn F., Kruse R., 1995), 
(Babuska R., Verbuggen H.B., 1995), (Castella-
no G. et al., 2003), (Nelles O. et al., 1999) (Fig-
ure 1).  

 
Figure 1. Projections of one 2-dimensional cluster onto the 

UODs of 2 antecedents 
1x  and 

2x  (abscissa: antecedent val-

ues; ordinate: membership value of the generic k -th pattern 

kx  to the cluster projection, 1,...,k N= ) 

 

ii. the resulting non-convex MFs are trans-
formed into convex MFs (Figure 2). To do this, 
starting  from the smallest value of the anteced-
ent px , only the membership of those values 
that have a higher membership than the previous 
one are kept, until the maximum membership 
value is reached (Sugeno M., Yasukawa T., 
1993). Then, the same procedure is applied 
starting from the highest value of the anteced-
ent, until the maximum MF is reached.  

 
Figure 2. Approximation of the cluster projections of Figure 1 
into convex non typical FSs 

 

iii. the convex FSs are approximated by linear 
interpolation to MFs of trapezoidal shape (Fig-
ure 3). Before performing the linear interpola-
tion, all membership values under a threshold 
(chosen to be 0.1 in the present work) are 
rounded off to 0 and analogously all member-



ship values above an upper threshold (chosen to 
be 0.9 in the present work) are rounded off to 1. 

 
Figure 3. The trapezoidal FSs corresponding to the cluster pro-
jections of Figure 2  

By so doing, the n -dimensional FS iX  representing 
the i -th cluster is transformed into a fuzzy proposi-
tion of the kind: 

( ) ( )1 1     ...    i n niif x is X and and x is X  (2) 

where piX  is the projection of cluster i  onto the p -
th input variable, 1,2,...,i c= , 1, 2,...,p n= . Obvi-
ously, the method is approximate and some infor-
mation on the cluster is inevitably lost in the projec-
tion, due to the decomposition error arising from 
projecting the multi-dimensional FS into its mono-
dimensional constituents (Babuska R., Verbuggen 
H.B., 1995). On the other hand, it enables expressing 
the FRB in a form with a clear and interpretable se-
mantic meaning. 
2. enforcement of appropriate semantic constraints 

on the obtained FSs.  
To achieve the physical interpretability of the model, 
semantic constraints are imposed to the FSs obtained 
in the previous step in an attempt to obtain an “op-
timal” interface (De Oliviera J.V., 1999). This is 
sought through the procedure described below in 
which each of the FSs modifications required is ac-
tually carried out only if the classification perfor-
mance on the training data is not significantly de-
creased. 
i. Pruning of FSs covering a large portion of the 

UOD  
Some FSs projections can turn out to be covering 
great portions of the variables UODs, adding little 
specific information to the model and over-
shadowing more focused FSs (Figure 4). Such 
sets can be removed from the antecedents of the 
rules (Babuska R., 1999).  

The criterion for elimination of the FSs widely 
covering the UOD 

pxU  is (Song B.G. et al., 
1993): 

; 1,..., ;  1,...,
pi po X xl U p n i c  = =          (3) 

where 
piXl  is the width at half height of the i -th 

FS piX  of variable px  and 1o   is the so-called 

overlap parameter. The larger is the value of o , 

the more severe is the pruning criterion. 

 
Figure 4. Overlapping MFs obtained from the clusters projec-
tion. The thick solid line in the left Figure denotes the FS to be 
pruned 

 

The pruning of a FS modifies only the rules in 
which the FS appears as antecedent. The modifi-
cation amounts to canceling from the antecedents 
the one corresponding to the eliminated FS. 

ii. Addition of FS “nearly zero” 
If the training data do not contain realizations 
from the class of no faults (stationary state), there 
is no cluster representing such situation and cor-
respondingly no antecedents FSs and no rules. In 
this case, a new triangular FS called “nearly zero” 
is forced in the partition of the UOD 

pxU  of each 
variable px . The new FS is centered in 0 and the 
zero-membership vertices are arbitrarily chosen 
equal to  0.1 of the minimum and maximum of 
the UOD 

pxU  of the antecedent variable px , re-
spectively. A rule tailored to stationary conditions 
can then be added to the FRB. 

iii. Annihilation of narrow FSs 

In order to avoid the overlapping among pairs of 

linguistic terms and the possible consequent se-

mantic inconsistencies, it is necessary to have 

sufficiently distinct FSs. If a FS pjX  is too nar-

row (Figure 5), its contribution is too specific and 

model transparency is somehow lost. Annihila-

tion of FS pjX  is performed if there is a FS piX  

for which the following criterion is satisfied (Ba-

buska R., 1999): 

1 2 3 4 ;  
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where 
piXl  and 

pjXl are the half-height widths of 

the FSs pi
X  and pjX  of the same input variable 

px , 1a   is the annihilation parameter and sz , 

1,2,3,4s = , stands for the input variable values 

corresponding to the four vertices of a trapezoidal 

MF (Botzheim J. et al., 2001), (Juang C.F. et al., 

1999), (Lin C.T., Lee C.S.G., 1994). The larger is 

the value of a , the more severe is the annihila-



tion criterion (Botzheim J. et al., 2001), (Song 

B.G. et al., 1993). 

 
Figure 5. Annihilation of a narrow FS (arrow) 

 

The FRB is appropriately modified by replacing the 

canceled FS pjX  with the FS piX . 

iv. Fusion of similar FSs 
If two FSs describing the same variable are suffi-
ciently overlapped, then they should be fused into 
a single FS because similar (Botzheim J. et al., 
2001), (Song B.G. et al., 1993). Appropriate 
measures can be used in order to asses the pair-
wise similarity of the FSs in the FRB. 

The similarity measure   of the two FSs piX  

and pjX  here adopted is given by the ratio be-

tween the intersection and the union of their two 

areas (Salmeri M. et al, 2000): 
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If the value of   is higher than a pre-established 
threshold, the two FSs are deemed similar and 
they are fused (Figure 6). The four parameters of 
the new, fused trapezoidal MF will be: 

, ;  1,2,3,4
pi pj

pi pj

i X j X

fus s

X X

z l z l
z s

l l

+
= =

+
            (6) 

where ,fus sz  stands for the input variable values 

corresponding to the four vertices of the trapezoi-

dal MF (Botzheim J. et al., 2001), (Juang C.F. et 

al., 1999), (Lin C.T., Lee C.S.G., 1994) resulting 

from the fusion and 
piXl , 

pjXl  are the half-height 

widths of the FSs piX  and pjX , respectively. 

 
Figure 6. Fusion of two similar FSs (arrows) 

 

3. generation of the fuzzy rules. 

The implementation of the previous steps 1 and 2 

leads to the generation of a FRB formed by c  rules, 

one for each physical class. The antecedent part of 

the rules is given by eq. (2), while, with respect to 

the set up of the consequent part, a discrete output 

variable qy  is associated to each class, 1,...,q c= . 

Each output variable is described by two linguistic 

labels  ,YES NO , with corresponding singletons 

FSs 
NO

qY  and 
YES

qY .  

Then, in the consequent part of the fuzzy rule rep-

resenting the i -th class, all the output variables qy , 

q i , appear labelled with the FS 
NO

qY , except the 

i -th output variable 
iy , representing the i -th class, 

which is labelled with 
YES

qY : 

( ) ( )

( ) ( ) ( )
1 1

1 1

     ...      

    ...    ...    

i n ni

NO YES NO

i i c c

if x is X and and x is X then

y is Y and y is Y and y is Y
(7) 

This form of the consequents allows a possibilistic 
classification which provides the degree of member-
ship of a pattern to each class and thus an easier 
handling of multiple faults (Castellano G. et al., 
2003). 

The c  fuzzy logic rules derived from the identified 

clusters constitute the FRB of the classification 

model. On the basis of these rules, the possibilistic 

classification of the generic pattern 'x  of the values 

of the monitored variables is performed by a 

Mamdani Fuzzy Inference Engine leading to the 

fuzzy conclusion 1 1  '   ...    'c cy is Y and and y is Y  

where 'qY , 1,...,q c= , is the discrete output FS of 

the variable qy , constituted by the two values of 

membership or non-membership to class q . Figure 7 

shows an example of output FSs for a given input 

pattern to be classified into one of three possible 

classes: the pattern most possibly belongs to class 3 

(with degree 0.95) but it could possibly belong also 

to class 1 (with degree 0.7) and 2 (with degree 0.3).  



 

Figure 7. Example of a possibilistic classification into 3 clas-
ses. 

 

4 CASE STUDY: CLASSIFICATION OF 
TRANSIENTS IN THE FEEDWATER 
SYSTEM OF A BWR  

4.1  Problem statement 

The identification of a predefined set of faults in a 
Boiling Water Reactor (BWR) is considered. Transi-
ents corresponding to the faults have been simulated 
by the HAMBO simulator of the Forsmark 3 BWR 
plant in Sweden (Puska E., Noemann S., 2002). 

The considered faults occur in the section of the 
feedwater system where the feedwater is preheated 
from 169 oC to 214 oC in two parallel lines of high-
pressure preheaters while going from the feedwater 
tank to the reactor. Process experts have identified a 
set of 18 faults that are generally hard to detect for 
an operator and that produce efficiency losses if un-
detected (Roverso D., 2003). The 6c =  faults re-
garding line 1 are here considered as the classes to 
be distinguished by the classification. These are 
numbered F1-F5 and F7, coherently with the origi-
nal numbering (Puska E., Noemann S., 2002). 

For each type of fault, the patterns to be used for 
building the classification model have been con-
structed by simulating transients with the plant at 
80% of full power, taking values every 6 seconds 
from 80int s=  to 200fint s= . 

Among the 363 monitored signals, only 5n =  
signals have been chosen for the transient classifica-
tion using the feature selection algorithm proposed 
in (Zio E. et al., 2005): position level of control 
valve for preheater EA1 (PLV), temperature of drain 
4 before valve VB3 (T1), water level of tank TD1 
(WL), feedwater temperature after preheater EA2 
(T2) and feedwater temperature after preheater EB2 
(T3).  

4.2 Application and results 

The objective is that of using the available pre-
classified patterns for building a classifier based on 
fuzzy clustering and then extracting from it a set of 
transparent and accurate diagnostic rules for classi-

fying the feedwater system faults. 80% of the avail-
able patterns have been used for building the classi-
fier and the remaining 20% for testing its accuracy. 

The application of the evolutionary algorithm for 

optimizing the possibilistic clustering model de-

scribed in (Zio E., Baraldi P., 2005) leads to 6 clus-

ters, each one corresponding to a different type of 

fault. These are translated into a possibilistic cluster-

ing classifier, based on a FRB in which the multi-

dimensional input FSs correspond to the multi-

dimensional fuzzy clusters. With respect to the final 

class assignment of an incoming pattern 'x  

( )' ' '

1 2, ,..., nx x x  starting from the inferred output FSs 

' ' '

1 2, ,..., cY Y Y  the pattern is possibilistically assigned to 

all the classes whose corresponding output qy , 

1,2,...,q c= , has the FS 
'

qY  with membership value 

to the linguistic label  YES  larger than a threshold 

  (here chosen equal to 0.6). Figure 8 shows an ex-

ample of possibilistic classification of a pattern. If 

none of the membership grades to the label  YES  is 

larger than  , then the pattern is labeled ‘atypical’. 

If more than one membership grade is larger than  , 

then the pattern is labeled ‘ambiguous’. 

 
Figure 8. Class assignment  

 

Projecting the multi-dimensional clusters onto the 
UODs of the five antecedents corresponding to the 
five input signals, the FSs reported in Figure 9 are 
obtained. With this partition of the 5n =  mono-
dimensional antecedents UODs, a new fuzzy rule-
based classification model is built, based on a FRB 
with rules of the form of eq. (7) and equal in number 
to the fault classes. Comparing these results with 
those obtained directly from the multi-dimensional 
input FSs representing the clusters, a minor deterio-
ration of the classification performance is observed: 
one pattern previously correctly classified is now 



found atypical. This minor decrease in the perfor-
mance is due to the loss of information following the 

projection of the multi-dimensional FSs into their 
mono-dimensional constituents.  

 
Figure 9. Projection of the six clusters onto the input signals 

 
Applying the transparency constraints of Section 3 
for obtaining an optimal partition of the UODs 

pxU  
of the input variables ,  1,...,5px p = , the FSs in Fig-
ure 10 are obtained.  

 

 
Figure 10. Final partition of the inputs UOD 

 

Application of the steps 2 and 3 of the procedure 

illustrated in Section 3 results in a more transparent 

FRB without decreasing the classification perfor-

mance of the multi-dimensional cluster (Table 1). In 

particular, all the test patterns are now correctly 

classified, except one pattern characterized by the 

first input variable 1x  with a value out of the range 

of the training patterns. This pattern is correctly la-

beled as atypical by the FRB of the classification 

model. 
To appreciate the transparency of the seven rules 

obtained after the last step of the proposed approach, 
Table 2 reports the resulting FRB. 

 
 
 
 
 
 
 
 
 



 
 
 

Table 1. Classification performances 

Type of FRB 
Correct 

[%] 
Error 
[%] 

Am-
biguous 

[%] 

Atypi-
cal* 

[%] 

Multi-dimensional 
input FSs 

96 0 0 4 

M
o

n
o

-d
im

en
si

o
n

al
 

in
p

u
t 

F
S

s 
af

te
r:

 

Projection 92 0 0 8 

Rule-based 
classifier 

96 0 0 4 

* Including the patterns with an input variable out of range. 
 
 

Table 2. The Table of rules of the FRB 

Rule 

IF 

PLV T1 WL T2 T3 

THEN 

F1 F2 F3 F4 F5 F7 

1 Open Colder Higher 
Nearly 
equal 

Very 
cold 

Yes No No No No No 

2 
Partially 

open 
Colder Lower Colder Hotter No Yes No No No No 

3 
Very 

closed 
Colder Lower 

Nearly 
equal 

Colder No No Yes No No No 

4 
Partially 
closed 

Hotter Lower Hotter 
Very 
hot 

No No No Yes No No 

5 
More 
closed 

Colder Lower 
Nearly 
equal 

Colder No No No No Yes No 

6 
Closed 

 
- Lower - Hotter No No No No No Yes 

7 
Partially 

open 
Colder Lower 

Nearly 
equal 

Colder No No No No No No 

 
 

5 CONCLUSIONS  

An innovative approach to building a transparent 
fuzzy logic model for pattern classification has been 
propounded for tackling fault diagnosis tasks. Dif-
ferently from other classification techniques, the 
proposed approach for mining transparent fuzzy 
rules from data emphasizes the linguistic interpreta-
bility of the acquired knowledge, which is a funda-
mental requirement for the application of diagnostic 
tools in safety-critical fields like nuclear engineer-
ing. 

Starting from an a priori available partition of la-
beled patterns in different classes, an evolutionary 
clustering algorithm is applied to find an optimal 
Mahalanobis metric for each cluster. Each cluster 
induces a classification rule. Mono-dimensional FSs 
corresponding to a given cluster are then obtained by 
projection onto each input variable domain. These 
are optimally combined into a transparent and physi-
cally interpretable representation of the input/output 

relations in terms of fuzzy rules, while maintaining 
accuracy in the classification.  

As output, the model provides the possibilistic 
membership grades to the different classes, thus ex-
plicitly accounting for the ambiguities of the classi-
fication problem inherent in its characterizing input 
features.  

The methodology has been successfully applied 
to a test case regarding the classification of simulat-
ed transients of the feedwater system of a Boiling 
Water Reactor. The results obtained are satisfactory 
in terms of both classification accuracy and model 
interpretability. 
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