On a Class of Interval Predictor Models
with Universal Reliability

S. Garatti

Dipartimento di Elettronica, Informazione e Bioingegneria. Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italia.

M.C. Campi, A. Care

Department of Information Engineering. Universita di Brescia, via Branze 38, 25128 Brescia, Italia.

Abstract

An Interval Predictor Model (IPM) is a rule by which some observable variables (system inputs) are mapped into an interval
that is used to predict an inaccessible variable (system output). IPMs have been studied in [1], where the problem of fitting
an IPM on a set of observations has been considered. In the same paper, upper-bounds on the probability that a future
system output will fall outside the predicted interval (misprediction) have also been derived in a stationary and independent
framework. While these bounds have the notable property of being valid independently of the unknown mechanism that has
generated the data, in general the actual probability distribution of the misprediction does depend on the data generation
mechanism and, hence, these bounds may introduce conservatism when applied to a specific case. In this paper, we study the
reliability of an important class of IPMs, called minimaz layers, and show that this class exhibits the special property that
the probability distribution of the misprediction is known exactly and is universal, i.e., is always the same irrespective of the
data generation mechanism. This result carries important consequences on the use of minimax layers in practice.
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1 Introduction The process (xy,yr), t = 1,2,..., with x; € RP and
Yy € R is i.i.d. (independent and identically distributed).

An Interval Predictor Model (IPM) is a rule I(-) that as- It52(unknown) distribution at any time t is denoted with

signs to a vector of explanatory variables x € RP (system
inputs) an interval I () C R, which is used to predict the
system output. Often, the rule I(-) is constructed from
observations: one collects a set of input-output data,
(x4, y:),t=1,...,N,! and identifies an IPM guided by
the following two principles: i) the IPM is consistent with
the data-set, that is, points in the data-set are correctly
described by the IPM, ii) the IPM width is minimized
S0 as to obtain small and informative prediction inter-
vals. In [1], the reliability of interval predictors identified
along the above described scheme have been studied in
a stationary and independent framework as specified by
the following assumption.

Under this assumption the reliability of an IPM I(-) is
formally defined in [1] as

n(I) =Py € I(z)},

where (x,y) are distributed according to P. The closer
n(I) to 1, the more reliable the predictor. When this def-

inition is applied to the IPM I that is identified from
the data-set (¢, y:), t = 1,2,..., N, one should note

2 Stationarity (that is, the distribution of (a¢,y:) is the
same for any t) says that the system is invariant in time.

Assumption 1 (stationarity and independence)

1 Although we adopted the standard time index ¢, the results
of this paper apply also to non-temporal sequences of data,
e.g. spatially indexed data.

Preprint submitted to Automatica

Independence, instead, rules out the presence of inter-time
correlations. However, the results in [1] are approximately
applicable to correlated processes provided that the correla-
tion pattern is estimated and compensated for according to
a deconvolution process, see [1] for more discussion.

July 23, 2019



that n(f ) becomes a random variable because I depends
on the observed data (a;, y;). Being a random variable,

n(I) is characterized by its probability distribution, and
one would like this distribution to concentrate near the
value 1 (high reliability). The main result proven in [1],
and then refined in [2] and [3], is that (PV refers to
data (x¢,y:), t = 1,2,..., N, by which I has been con-
structed)

PY{n(l) <1—¢} <5, (1)
where 8 (confidence parameter) goes to zero exponen-
tially fast with IV, and can therefore be made very small
(e.g., 1079) for data sample sizes N of practical interest.
When S is so small to be negligible, one can think of 1 —e
as a “practically certain” lower-bound for 7(I). Impor-
tantly, 8 does not depend on P (i.e., the data generation
system).

1.1 The result of this paper

Result (1) is valid for any data generation mechanism.

Nonetheless, in general, the distribution of () does de-
pend on the specific data generation mechanism and,
therefore, the bound in (1) can be conservative for a spe-
cific data generation mechanism. In contrast, in this pa-
per our goal is to investigate classes of IPMs for which
the reliability 7(1) is independent of the data generation
mechanism and can therefore be evaluated without con-
servatism. It turns out that the class of minimaz layers
which is well-known from the statistical literature (see
Section 2.3) does have this property. This result is es-
tablished and discussed in full extension in this article.

In more specific terms, minimax layers are obtained from
linearly parameterized regression models by fitting the
parameters according to a minimax criterion and then
considering the smallest layer around the so-obtained
model that contains the data points (all of them, or
all but the exception of some of them). The main re-
sult of this paper is that, under very general assump-
tions, the distribution of the reliability 1(I) for min-
imax layers is always the same independently of the
data generation mechanism. In other words, the value
of PN{n(I) < 1 — €} does not depend on how data are
generated and, hence, it becomes a quantity known to
the user who can employ it to certify the reliability of
the prediction (e.g., by building ezact confidence inter-

vals for n(I)). We express this fact by saying that the
reliability is wniversal. Another fundamental fact also
proved in this paper is that the reliability distribution
does not depend on the type of regressors (e.g., polyno-
mial or trigonometric) that are used in the model. At a
conceptual level, this result implies a separation princi-
ple: while the chosen regressors do impact on the width
of the minimax layer, the reliability distribution is not
influenced by them. Hence, any prior knowledge on the
data generation mechanism can be used to properly de-
sign the regressors and, moreover, one can adjust the re-

gressors by a-posteriori evaluating the layer width while
the reliability is kept under control by the theoretical
results established in this paper.

1.2 Discussion on related literature

The present paper is in the vein of the IPM theory in-
troduced in [1]. Interval predictor models as descriptive
tools existed before [1], and the reader can consult the
theory of differential inclusions, set-valued dynamical
systems and set prediction, [4,5,6,7,8]. For a philosoph-
ical discussion on the probabilistic viewpoint as com-
pared to bounding approaches (see e.g. [8]), the reader
is instead referred to the position paper [9]. See also
[2,10,11,12,13] for other recent contributions on IPMs,
and [14,15] for a software and a fast algorithm.

The theoretical framework of this paper is grounded on
the scenario approach of [16,17,18,19]. In the terminol-
ogy of the scenario approach, Lemma 1 in Appendix A
of the present paper states that estimating a minimax
layer is a fully supported problem (see Definition 3 in [17]).
This is key to establishing the fundamental result here
proved that the distribution of the reliability of minimax
layers does not depend on the data generation mecha-
nism and on the regressors. Moreover, in this paper we
also introduce IPMs with tunable width and guarantee
their reliability in the spirit of the results proved in a
different context in [20]. Parts of the material here pre-
sented appeared in preliminary form in the conference
paper [21]: specifically, when Theorem 1 of this paper
is applied to describe the reliability of the widest layer
(¢ =1 in Theorem 1) the main theorem of [21] is recov-
ered. Importantly, Theorem 1 of the present paper lends
itself to be used as a rigorous quantitative tool for the
selection of the layer width, which is not possible from
the result in [21].

Minimax layers are grounded on the minimax criterion
of best fit, also known as L, criterion. We shall provide
some references about the L., criterion of best fit in
Section 2.3 after rigorously defining the construction of
minimax layers.

1.8  Structure of the paper

Minimax layers are formally introduced in the next Sec-
tion 2. In Section 3, we focus on the universal reliability
of minimax layers and provide a complete description of
the corresponding reliability distribution. Conclusions
are drawn in Section 4. All of the technical proofs are
provided in Appendix A.

2 Minimax layer IPMs

We consider linearly parameterized regression models of
a variable y € R on a p-dimensional vector of explana-



tory variables & € RP. Precisely, given g regressor func-
tions f; : RP — R, j =1,...,q, the regression model is
given by

() = Z 0;f;(x) = ()"0, (2)

where f(z) = [fi(z) --- f,(x)]" is the vector of regres-
sor functions and 0 = [¢; --- 6,]T is the vector of tun-
able parameters. As a simple example, (2) encompasses
affine models in z, that is §(x) = 012 + 0y 4. +
9px(1’) + 0,11, where superscript (¢) indicates the i-th
component of vector .

Given a batch of N independent and identically dis-
tributed (i.i.d.) observations (x¢,y:), t = 1,..., N, the
regression model is tuned according to the minimax, or
L, criterion of best fit, which amounts to selecting the
parameters ¢; so as to minimize the maximum deviation
of the observed y;’s from §(x;), namely,

. _ T
g, 1 A [t f:)"0). (3)

The optimal solution of (3) is denoted by 6* =

[07 -+ 0;]7, and the optimal value is h* := max;—;

f(x;)T0*|. The layer of vertical height 2h* centered

I(j) = f(x)T9*+h*
- @)

@

xT X

Figure 1. The minimax layer and the corresponding interval
prediction for a given &.

around the fitted model j(x) := f(x)70* is called
the minimaz layer (also known as the Chebyshev
layer), see Figure 1. The minimax layer provides a rule
I:xz — I(x) C R, where, to each x, there corresponds
the interval I(x) given by the intersection of the vertical
line departing from @ with the minimax layer, i.e.,

I(x) = [f()"0" — h*, f(x)"0" + h"]. (4)

This rule defines a so-called Interval Predictor Model
(IPM), [1].

2.1 Minimax £-th layer IPMs

The minimaz layer described above is not the only IPM
that can be of interest and other layers can be defined
based on the fitted function §(z) = f(x)70*; for in-
stance, one can consider layers that include some but not
all of the observations. More formally, consider the set of
values vy = |y;— f(x4)T0*|,t = 1,..., N, sort them in de-
scending order with no repeats so that vy > vy > - -
and define hj to be the (-th highest value, i.e., hy = v().
Note that, with this notation, h] = h*. The minimaz ¢-
th layer IPM (or, for short, just the £-th layer) is defined
by the rule

Io(@) = [f(x)70" — hi, f(@)70" + hj] ()

(note that I;(x) = I(z)). While the minimax layer (£ =
1) includes all the observations, for £ > 1 the ¢-th layer is
not consistent with all of them, i.e., y, ¢ I;(2;) for some
values of ¢t € {1,...,N}, and it is a remarkable fact,
proved in Appendix A (see Lemma 1 and the discussion
thereafter) that, under very mild assumptions, the ¢-th
layer is inconsistent with precisely £+ ¢ — 1 observations.
The fact that the ¢-th layer I,() is thinner than I(x)
comes at the price of a loss in reliability. As we shall see,
an ezact evaluation of this loss for all the values of / is
possible under very general conditions.

2.2 Notation

The reliability of the minimax ¢-th layer (5) is defined as
P{(x,y) such that |y — f(x)T6*| < h;}, and it will be
indicated by n(I;) or just n, for short.

2.3 Some historical remarks on Lo, regression

Lo regression has a long history, see e.g. [22]. It was in-
troduced by Euler, [23], some half a century before least
squares regression, although a first resolution method for
particular cases was given only in the late 18th century
by Laplace, [24,25], and then extended to a more gen-
eral framework in the early 19th century by Fourier, [26].
Since then, L., regression has been further developed by
many authors, notably by Chebyshev and Haar, [27,28].
A surge of renewed interest for this method started in the
1950s, partly spurred by the development of linear pro-
gramming techniques to compute the L., regression so-
lution, [29,30,31,32,33,34,35]. See [36,37,38] for compre-
hensive presentations of L., regression. Paper [39] points
out that the minimax method is a valuable alternative
to least squares provided that the causes of variability
of y are well-captured by the explanatory variables x.

3 The Universal Reliability of Minimax Layers

Before stating the main theorem, we prove some prelim-
inary results of independent interest that are instrumen-



tal to the derivation of the main theorem.

3.1 FExistence and uniqueness of 0*

The existence of #* immediately follows by the observa-
tion that the function to be minimized, max;—1 . n |y:—
f(x;)T0], is non-negative and piecewise-linear.

Uniqueness is more involved and is proven under the
following conditions.

Condition 1 The probability P according to which ob-
servations are generated admits density p(x,y). *

Condition 2 For any 0 € RY, 6 # 0, relationship
f(x)T0 = 0 holds at most on a zero Lebesgue measure
set. *

Condition 2 says that the functions f;(x) are linearly in-
dependent on nonzero Lebesgue measure sets, and this
corresponds to requiring that none of the regressor func-
tions is superfluous over a set having nonzero Lebesgue
measure. For example, this condition is not satisfied
when the regressor functions are n+2 polynomials of de-
gree at most n, so that one regressor function is certainly
a linear combination of the others. However, standard
choices of regressor functions satisfy the condition (e.g.,
monomials of different degrees, orthonormal trigonomet-
ric terms, etc.).

Since (x,y) admits density, « also does, that is, the
marginal probability P, of x is absolutely continuous
with respect to the Lebesgue measure, so that Condi-
tion 2 implies that

Pm{f(:c)Tg - o} —0, YR, £0.  (6)

Uniqueness of the solution of (3) follows from (6), as es-
tablished in the following proposition (the proof of which
is in Appendix A.1).

Proposition 1 Problem (3) with N > q admits with
probability 1 a unique solution if and only if (6) holds. *

3.2 The probability distribution of ng

The following theorem is the main result of this paper
and states that the minimax layer (¢ = 1) and minimax
¢-th layers (¢ > 1) have universal reliability.

Theorem 1 Let N > q + 1, and assume that Con-
ditions 1 and 2 hold. For any given £ € {1,...,n},
where n is the number of distinct values in the set {|y: —
flx)T0%|, t =1,..., N}, the probability distribution of

e € [0,1] is
q+£—1
=< = 3 (V)a-aw o
1=0

Note that F,(z) does not depend on the probability P
according to which data are generated, nor does it depend
on the regression functions f; used. *

In the theorem, PNV = P x --- x P refers to the prod-
uct probability distribution of the N observations
(x1,91),-..,(@n,yn). The proof is given in Appendix
A.2; in the following we discuss the significance of the
theorem.

In words, Theorem 1 says that 7, is a random vari-
able with a Beta distribution with parameters (N — ¢ —
¢+ 1,q+ ), irrespective of the probability with which
(s, y:) are extracted and of the functional form of the
regressors f;. The property that the distribution of 7,
does not depend on the distribution of the observations
can be phrased by saying that “ny is a pivotal random
variable”. Note that, differently from results like (1) that

f; m(z)w
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Figure 2. fp,(z) for ¢ = 7 and N = 50 (dash-dotted line),
N = 150 (dashed line), N = 250 (solid line).

are available in the IPM literature, equation (7) does not
only provide a bound, it assigns the exact probability
distribution of 7.2 From equation (7) one can compute

3 For a more specific comparison with the results of [3], note
that equality (7) holds for the class of IPMs considered in
this paper, while the results in Theorem 2.1 of [3] are valid
in wider generality. It can be observed that the distribution
n1 as computed in the present paper achieves exactly the
bound given in [3], Theorem 2.1 (equation (3) with & = 0).
Hence, this paper proves that the bound in [3] is tight for
the class of IPMs at hand in this paper. On the other hand,
the bound in [3] is looser than (7) when the IPM is allowed
not to be consistent with some of the data points (¢ > 1
in this paper; kK > 0 in [3]), as it is clear from the extra
binomial coeflicient term in equation (3) of [3]. Moreover,
the construction in this paper and in [3] are different: £ in
this paper determines the width reduction of the minimax
layer around the fitted model §(x), while the parameter k in



the probability density of 1y, which is

fne(2) = %Fm(z) = (q+¥) (qﬁ[) (1—z)att-1,N=a—¢,

Its expectation

N—-—qg—/(+1

N +1 (®)

Efr] = / 2fae() dz =

is the mean value of the reliability n,.

The probability density function of 7, is graphically vi-
sualized for different values of N in Figure 2. As it ap-
pears, the distribution of 777 tends to concentrate near 1
as IV increases. By using this density, one can quantify
exactly the reliability of the minimax layer for any finite
N without availing of any knowledge of the data gen-
eration mechanism. For an approximate evaluation one
can use Lemma 1 in [40], so obtaining

/N ; , 1—-2 N
Pon <=3 () Jua e (R s
=0

which reveals that, for any fixed z, PV {n; < 2z} tends to
zero exponentially fast as NV increases.

Besides characterising the minimax layer, Theorem 1
also quantifies the loss in reliability incurred for reducing
the width of the minimax layer by taking larger values
of ¢. By inspecting (7), one observes that ¢ and ¢ only
appear one summed to the other in the upper limit of
the summation, so that increasing ¢ to ¢ + 1 has the
same effect as increasing by one the size of the parameter
Velctor 6. In particular, it holds that E[ne11] = E[n,] —

N+1°

In the following, we provide an example and additional
comments to help gain insight in all these results.

3.3 An example

Lety € Rand 2 € R,* and suppose that N = 250 inde-
pendent points (z1,¥1), - - -, (€250, Y250) are available. ®

[3] accounts for the removal of data points from the data-set
according to a generic scheme, see [3] for more details.

4 We consider a toy example with € R to allow visualiza-
tion of the results.

5 For the sake of completeness, we let the reader know that
the points (@, y:) were generated according to the equation

2
-
where the @:’s are i.i.d., uniformly distributed over [—1, 1],

1+uy

T ) with u

and the n.’s are defined by n: = 0.09 log(
independently and uniformly distributed over [—1, 1].
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Figure 3. Polynomial regression model and correspond-
ing minimax layer. (0* = [—0.7233, —2.1691, 4.3338, 7.2844,
—6.9323, —5.6068, 3.3085], h* = 0.5536).

A polynomial regression model y(x) = 61 + o + ... +
072% is tuned according to the L, criterion:

min max
0=[0; - 07]T t=1,...,250

‘yt — (01 + Oxs 4 ... +0:28)], (9)

and the corresponding minimax layer is shown in Fig-
ure 3.

What is the confidence we have in the claim that a next,
still unseen, point falls in the layer with probability at
least 90%? This question is the same as asking for the
probability that 17; > 0.9, and the answer can be found in
Theorem 1: this probability is equal to 1 —ZZZO (2?) (1—
0.9)70.9%%=% ~ 1 —1075. In other words, it is extremely
likely that the obtained minimax layer contains at least
90% of the probability mass with which data are gener-
ated. From equation (8) we also see that the mean value
of the reliability n; for minimax layers constructed based
on (9) is exactly 32811 ~ 0.968. Knowing the exact dis-
tribution of 7, as given by Theorem 1 makes it possible
to compute an upper-bound to the reliability 7; as well,
and therefore to provide an exact confidence interval for
n1. For example, it holds true that PV {n; < 0.996} =

S0 (339)(1-0.996)70.99625°~ ~ 1107, from which

7

PN {n; €[0.9,0.996]} ~1—2-107°.

Upon inspection of Figure 3, it appears that the con-
structed layer is not tight around the data points and in
fact the layer contains wide empty portions. Consider-
ing instead a trigonometric regression model, we can set
out to solve the minimization problem

min max | yr — (61 + B2 sin(may) + 03 cos(mat) +

0=[61 - 67)T t=1,...,250
-+ + O sin(3may) + 07 cos(3my))|.

The obtained layer is in Figure 4, and it more tightly
wraps the observations (which is also clear from the op-
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Figure 4. Trigonometric regression model and corresponding
minimax layer. 8* = [—0.2311, —0.2818, —0.3758, —0.1876,
—0.1037, —0.1839, —0.0144], h* = 0.3936).

timal value h* = 0.3936 against the optimal value with
a polynomial regression that was h* = 0.5536). As al-
ready noted, Theorem 1 holds irrespective of the chosen
regression functions, so that we can make in this case
the same claims as before; in particular that a layer con-
structed around the trigonometric regression model sat-
isfies condition 7; > 0.9 with probability 1 — 107°.

In closing, we note that in this toy example data (x, y;)
are in R?, should « be of higher dimension, all the con-
siderations here exposed would remain the same since
the results in this paper do not depend on the dimension
of « but only on the number of regressor functions used.

3.4 A-posteriori selection of the regressor functions

The example in the previous section shows that the layer
width h* depends on the chosen regressor functions. In
selecting the regression functions, one uses the prior in-
formation available on the problem. Moreover, the value
of h* becomes known to the user at the end of the opti-
mization procedure. This suggests that one can try dif-
ferent choices of regressor functions and a-posteriori se-
lect the one that gives the highest accuracy, that is, the
lowest value of h*. For instance, in the example of Sec-
tion 3.3, the user can inspect the result represented in
Figure 3 against that in Figure 4 and decide in favor of
the second construction since it provides a tighter de-
scription of the observations. This way of proceeding,
however, involves a choice that requires some attention
as explained in what follows. The fact that a polyno-
mial layer like the one in Figure 3 is reliable at level 90%
with confidence 1 — 1075 means that in one experiment
out of 10° the layer has reliability less than 90%. Simi-
larly, a trigonometric layer like the one in Figure 4 has
reliability less than 90% in one out of 10° cases. If one
layer is chosen from the two types of layers after that
they have been constructed from data, it is possible that,

every time a layer (either polynomial or trigonometric)
with reliability below 90% is constructed, this layer is
chosen by the user. This fact may increase above 1075
the probability of selecting a layer with reliability be-
low 90%. This probability, however, can be taken under
control by a rigorous union bound: if a polynomial layer
can have reliability below 90% with probability 1072,
and so does a trigonometric layer, then both layers cer-
tainly have reliability not less than 90% with probabil-
ity at least 1 — 2-107° and, hence, whichever criterion
is used to select the layer, with probability 1 —2- 1077,
the chosen layer has the desired level of reliability.

More in general, many regression models can be com-
pared and one of them can be chosen while preserving
high confidence. Suppose e.g. that we insist to have con-
fidence 1 —10~° that the reliability is at least 90% while
choosing an IPM from a set of 100 IPMs. Using Theo-
rem 1, one can draw the conclusion that this result can
be achieved by an increase of the number of observations
from 250 (as it was in the example in Section 3.3) to 309.
In fact, formula (7) in Theorem 1 ensures that, with 309
observations, a given IPM is guaranteed to have reliabil-
ity 1 > 0.9 with probability 1 — 10~7. Thus, the proba-
bility that none of the 100 candidate IPMs has reliability
less than 90% is at least 1 — 100-10~7 =1 — 10~°. The
fact that the confidence can be increased from 1 — 107
to 1 — 1077 and yet the number of observations remains
moderate is due to the fact that the Beta distribution is
thin-tailed. This can be expressed by saying that confi-
dence is cheap.

3.5  A-posteriori selection of £

The user might be willing to accept a reduction in reli-
ability to favor accuracy, i.e., to obtain a thinner layer.
To this end, minimax ¢-th layers can be built for various
values of ¢ and the reliability of the chosen one can be
taken under control by the same union bound argument
that was used in Section 3.4. For example, we have seen
that the construction of the minimax layer in Figure 4 is
reliable at level 90% with confidence 1 — 10~°. The 19-
th layer for the same data-set is shown in Figure 5 and
is reliable at level 80% with confidence 1 — 10~5. Thus,
with probability 1 — 2 - 107° it holds that the construc-
tion in Figure 4 returns a layer with reliability at least
90% and, simultaneously, the construction in Figure 5
returns a layer with reliability at least 80%. Therefore,
an a-posteriori selection leaves the user with a confidence
of 1 —2-107° that the reliability is either 90% or 80%
depending on the choice.

4 Conclusions

In this paper we have shown that minimax layers form a
class of Interval Predictor Models that achieve universal
reliability, i.e., their reliability has the same probability
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Figure 5. Trigonometric regression model and corresponding
minimax 19-th layer (hig = 0.3032). We recall that the min-
imax ¢-th layer is not consistent with £+ g — 1 observations,
and therefore in this case 25 data points lie outside the layer.

distribution independently of the data generation mech-
anism under very general assumptions. We have dis-
cussed the implications of this universal reliability prop-
erty in terms of complete separation between accuracy
and reliability. We have also shown that a union bound
argument allows one to guarantee the reliability of a
model that is selected a-posteriori among several ones.
Future work will concentrate on improving the union
bound so as to possibly remove any conservatism in it
contained. Moreover, one can devise more sophisticated
schemes to generate various models to choose from. For
example, a regularization approach similar to [41] can
be employed in order to slim down the number of re-
gressors, while the theory here developed can be used to
keep control on the reliability of the chosen layer.

A  Proofs
A.1  Proof of Proposition 1

(if) Suppose that (6) holds, so that the probability that
the vector f(x) = [fi(z) --- f,(x)]T belongs to a given
subspace of R? of dimension less than ¢ is zero. We show
that this implies that the condition

for every choice of g different indexes t1,t2,...,%,
from 1,..., N, the vectors f(x¢,), f(®s,), ..., [(xs,)
are linearly independent (A1)

holds with probability 1. Since (A.1) is the well-known
Haar’s condition for the uniqueness of the solution of (3)
(see [28,38]), the “if” part of the proposition is then es-
tablished.

To show (A.1), note that (6) implies that the probabil-
ity that f(x:,) = 0, i.e. that f(z,) falls at the origin,
is zero. Hence, f(x:,) # 0 with probability 1, and con-
sider the 1-dimensional subspace containing f(x;, ). The

probability that f(x.,) belongs to this subspace is zero
again by (6), so that f(x:,) and f(x:,) form a subspace
of dimension 2 with probability 1. Proceeding the same
way with all the ¢ vectors f(x:,), f(xs,), ..., f(xy,), we
arrive to the conclusion that (A.1) holds with probabil-
ity 1.

(only if) Suppose instead that (6) does not hold, that
is, Po{f(x)T0 = 0} > 0 for some given 6 # 0. Then,
there is a non-zero probability that f(x;)T6 = 0 for all
t =1,...,N. In this case, denoting by 6* a solution
to (3), we have that max;—1___n |y: — f(z:)T (0" +0)| =
max;—1.. N |yt — flx)T0%|, i.e. 0% + 0 attains the same
optimal value as 0*. This shows that the solution is not
unique with non-zero probability. O

A.2  Proof of Theorem 1

Preliminary results.

To establish the result, we have to enlarge our view-
point and, instead of considering minimax problems with
N independent observations, we need to consider any
number M, M > q + 1, of independent observations

(z1,11),---,(xrr, yamr) generated according to P
. _ T
min max lys — f ()" 6. (A.2)

yeeny

Throughout this part on preliminary results, (6*, h*) de-
notes the (unique with probability 1) solution and opti-
mal value of (A.2).

Definition 1 (observation of support) An observa-
tion (xk,yx), k € {1,2,..., M}, is of support for (A.2)
if

min max
0 te{l,...M}
t#k
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‘yt—f(mt)TH‘ < mGint:IE%i(M ‘yt—f(ﬁct)Ta

i.e., if its removal improves the solution. *

Thanks to convexity, it is clear that an observa-
tion of support (xy,yr) must be also active, that is,
lyr — f(xx)T0*| = h*. In the present setup, it also holds
true with probability 1 that an active observation is of
support, so that with probability 1 the observations of
support coincide with the active observations.

To show this, suppose that there is an observation, say
(zar,ya), that is active but not of support. Because it
is active, it holds that

lyar — flaar)T 6% = h*. (A.3)

On the other hand, (0*, h*) is with probability 1 also the
solution and the optimal value of the problem

min _max - f@)70,  (A4)

PR,



because (A.4) attains the same optimal value of (A.2)
since (x 7, yar) is not of support and the solution to (A.4)
is unique with probability 1 (note that M —1 > ¢). Thus,
(0*, h*) only depends on (1, 1), . - ., (®ar—1, yar—1)- For
any given x s there are just two values of ys such that
(A.3) holds true and since (s, yp) is independent of
(x1,91),. .., (®rr—1,yar—1), and thereby of 6%, the prob-
ability that yjs takes one of these two values is zero,
because (xr, yar) is generated according to P, a proba-
bility that has density. This gives the sought result that
the probability that (as,yar) is active but not of sup-
port is zero.

To proceed, we need the following lemma.

Lemma 1 For any M > q+ 1, the number of observa-
tions of support for (A.2) is ¢ + 1 with probability 1. *

Proof of Lemma 1: We first show that the number
of observations of support can be less than ¢ + 1 with
probability zero only.

With probability 1 we have that

R* =min max |y — f(x)76], (A.5)
0 t=t1,...,taq
where (x4, ¥t,),- -, (L, Yt,) are the observations of

support. Indeed, with probability 1 the observations of
support are the active observations and these latter alone
determine the solution (6*,h*) to (A.2) by convexity.
Consider now data-sets (x1,y1),. .., (€, yar) for which
the number of observations of support d is less than
q + 1. Since 6 has dimension g and d < ¢, 0 has at least
as many components as there are observations of sup-
port. Hence, equation (A.5) implies that h* = 0 when-
ever f(xs),..., f(xs,) are linearly independent, a sit-
uation that occurs with probability 1 (see the proof of
Proposition 1). On the other hand, h* is also given by
h* = maxi—1,._m |ye — f(x:)T0*|, so that h* = 0 implies
that

yr = f(x)T0%, forallt =1,..., M. (A.6)

The first part of the proof is now completed by show-
ing that (A.6) can happen with probability zero only. To
this end, suppose that the observations of support are
the first d observations; then, 6* in (A.6) depends on ob-
servations (x1,41), (€2,Y2),- .-, (€4, yq) only. The next
observation (Z44+1,Yyq+1) (this observation is in the set
of M observations since M > g+ 1 > d) is independent
of the first d observations, and thereby of #*, and has to
satisfy the relation in (A.6), that is, yg41 = f(@ar1)?0*.
For any value of 411, only one value of y441 satisfies
this relation, and this happens with probability zero only
because (€441, Yd+1) is generated according P, a proba-
bility that has a density.

We next show that the number of observations of sup-
port cannot be more than ¢ + 1.

For the sake of contradiction, suppose that the number

of observations of support is greater than ¢+ 1, and con-
sider the following M + 1 regions in R9*1:

F,={(0,h) e RT™™ ¢ |y, — f(z:)"0 < B},
fort=1,...,M, and
Frpr = {(6,h) e R . h < h*}.

For any choice {t1,t2, ..., tq+2} of ¢+ 2 indexes from the
set {1,2,..., M + 1}, we have that

(| F#0. (A7)

t=t1,...,tq+2

Indeed, if {tl,tg,...,tq+2} S {172,...7M}7 then
(0*,h*) is a point in (,_, ., . F; and hence (A.7)
holds. Suppose instead that one of the indexes
ti,t2,.. ., tgyo is M + 1, say tq420 = M + 1. Then, we
certainly have ming maxy—¢, .. ¢, |yt — flx)T0| < h*
because at least one observation of support is missing in
the list of ¢ + 1 observations with respect to which max
is taken (recall that we have supposed that the number
of observations of support is greater than ¢ + 1). This
means that (,_,, , . Fi contains a point (6, %) with

h < h*. But then, this point is also in Fp;41 and (A.7)
remains proven in this case too.

Since (A.7) holds and since all sets Fy, t =1,..., M +1,
are convex, resorting to Helly’s theorem (see e.g. [42])

now yields
ﬂ Fi #9.
t=1,...,M+1

This last relation means that we can find a point
(6**, h**) which is simultaneously inall F;, t = 1,..., M,
so that it satisfies |y, — f(z)T0™| < h*™*, t=1,..., M,
and that is also in Fj;y1, so that h** < h*. But then
this (0**, h**) would outperform (6*,h*), the optimal
solution, and this is a contradiction. This concludes the
proof of the lemma. O

As a consequence of the previous results, with proba-
bility 1 there are exactly ¢ + 1 observations, those of
support, that lie on the boundary of the optimal min-
imax layer (|y; — f(z¢)T0*| = h*) and that univocally
determine it. All other M — (g + 1) observations, which
are not of support, are strictly inside the optimal layer,
and, since they are generated independently of the ob-
servations of support, and thereby of 8%, Condition 1
straightforwardly gives the following property.

Proposition 2 (non-degeneracy property) The

probability that for some t,7 € {1,...,M}, t # T,
‘yt - f($t)T0*‘ = ‘yT - f(wT)T0*| and (wta yt),($77y7-)
are not both of support for (A.2) is zero. *

This non-degeneracy property, together with the fact
that all the observations of support attain the same



value, entails that the number of distinct values in
{lye — f(x)T0%|, t =1,..., M}, which is the number of
distinct minimax ¢-th layer IPMs that can be obtained,
is equal to M — g with probability 1. When M = N, this
gives n (see the statement of Theorem 1) equal to N —gq.

Main derivations.

In this part of the proof, (6%, h*) denotes the solution
and optimal value of (3).

Fix a value of £ € {1,..., N — g}. Let E[p}] be the k-th
order moment of the reliability n,. The proof of The-
orem 1 is based on evaluating E[nf], for k = 1,2,...,
and then deducing the probability distribution F3,, of 1,
from the resulting moment problem.

By definition, 7, is the probability that, for fixed
(0*,h}), one more observation falls in the minimax
layer so that, by the independence of observations, nf
is the probability that & more observations fall in the
layer. Thus, letting (€n+1,YN+1);- - - (EN+k, UN+E) DE
k extra observations, 774;C can be written as

ny = P*{(xn41,Yn+1)s-- -, (® N4k, Yn4k) Such that
lys — f(@)T0*| <hj,t=N+1,...,N +k}.

Now, we compute the expectation of né? when 0*
and h* vary in dependence of the first NV random

observations (x1,y1),...,(xN,yn) that are used
to construct the layer. With the notation 2}, =
(wma ym)v (mm+1a merl)v RN (wna yn) and Z;Lz = R(erl) X

xR = RHD-(r=m+1) — domain for 27, it holds
that

E[n;] = /ZN ng dPY (A.8)

:/ Pk{zxﬂ“ such that |y, — f (@) 0% < by,
zy

t:N+1,...,N+k}dPN

= [[4 = indicator function of set A]

= I s dpF | dpN
/;{V [/;gif {lyt_f(mt)Tg |§hgvt=N+17---aN+k} ‘|

_ N+k
= /ZNH Liye—p@nreri<ng =1, N4k} P70
1

Now, let S = {t1,...,tn} be a generic subset of N in-
dexes from {1,2,...,N + k} and let S be the family of
all possible choices of S (S contains (N;k) elements).
Moreover, define S = {1,2,..., N+ k} - S.

Due to the i.i.d. nature of the observations, each group
of N observations has identical statistical properties as
any other group. Therefore, if we indicate by 0% and h§
the optimal solution and the optimal value to problem

. T
min max |y — f(x¢)” 0
R Yt f( t) )

and by hj g the (-th highest value in the set {|y; —
f(x)T0%], t € S}, we have that

N+k
/ZNM Liye—p@nres <nsi=n+1,.. vk} AP (A.9)

_ ) Ntk
_/ZW Uiy sonros s acs) BV, VS €S,

From (A.8) and (A.9) we obtain that

E[n;] (A.10)

1
- (N-i-k) Z /ZN+k ]I{lyt—f(wt)Tez,|§hzs,t65‘} d
N J Sesv“1

]P)N-Hs

1 N+k
- W /ZN+k Z ]I{Iyt—f(mt)T9§|§hz,s7tes} P '
N 1 Ses

The computation of E[n}] is now completed by showing
that the integrand in (A.10) is with probability 1 con-

stant and equal to (N+k7€(q+€)) so that

(N+k7€(q+é))

El)] = —x5— k=12,... (A.11)
(8)
For fixed observations (x1,y1),.-.,(EN+k, YN+k), the

quantity » gcs H{Iyt—f(mt)T%IShzsieg} counts the
number of choices of S such that the ¢-th layer con-
structed from the observations with indexes in S con-
tains all the remaining observations with indexes in S.
These choices of S are those such that (6%, %) is equal

to the solution and optimal value (0% s, h% 5) of the
problem with all N + k observations,
. T

— 0 A.12

min _max |y — f(w)" 6], (A.12)

and hj ¢ is equal to hj o o, which is defined as the (-

th highest value in the set {|y; — f(x:)" 05
1,..., N + k}. The event that (0%, hs) = (0% 5,5 35)
and hj ¢ = hj ¢ 5 happens if and only if S does not con-

tain any of the observations such that

U§|a t =

lye — F(@) 05051 = B suss (A.13)

i.e., the observations of support for (A.12), which are all
needed to determine (0% =, h§, 5), and the observations
strictly inside the minimax layer that are needed to de-

termine hz sug- Using Lemma 1 and Proposition 2, we

immediately conclude that with probability 1 (A.13) is
satisfied by ¢ 4 £ observations in S U S. Thus, the subset
of k indexes S has to be chosen from a set of N+k—(g+¢)



indexes, and the number of choices is (N+k7€(q+z)). Thus

I _(N+Fk—(qg+1)
Z {lye—f()T0; g|<h; s te5} = i
sSes

with probability 1, and (A.11) remains proven.

To conclude the proof, note now that E[n¥] can also be
written as fol z* dF,,(z), where F,, is the probability
distribution of 7,. Hence, (A.11) becomes

1 i (N+k7€(q+€))
A z ane(Z):W, k=

1,2,... (A.14)

The distribution function

Py, (2) = Hﬁfl (N) (1—2)' 2N

7
=0

(which gives dF, (2) = (¢+0)(, Y,

satisfies the infinite system of equations (A.14) and
the theorem statement is finally proved by noting that
(A.14) defines a so called moment problem that admits
a unique solution (see e.g. Corollary 1, §12.9, Chapter
I of [43]). O
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