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Abstract—There is a growing interest in Virtual Analog mod-

eling algorithms for musical audio processing designed in the

Wave Digital (WD) domain. Such algorithms typically employ

a discretization strategy based on the trapezoidal rule with

fixed sampling step, though this is not the only option. In fact,

alternative discretization strategies (possibly with an adaptive

sampling step) can be quite advantageous, particularly when

dealing with nonlinear systems characterized by stiff equations.

In this article, we propose a unified approach for modeling

capacitors and inductors in the WD domain using generic linear

multi-step discretization methods with variable time-step size,

and provide generalized adaptation conditions. We also show

that the proposed approach for implementing dynamic (energy-

storing) elements in the WD domain is particularly suitable to

be combined with a recently developed technique for efficiently

solving a class of circuits with multiple one-port nonlinearities,

called Scattering Iterative Method. Finally, as examples of ap-

plication, we develop WD models for a Van Der Pol oscillator

and a dynamic diode-based ring modulator, which use different

discretization methods.

Index Terms—Wave Digital Filters, Nonlinear Audio Circuits,

Virtual Analog Modeling, Reactances

I. INTRODUCTION

Wave Digital (WD) Filters [1], [2] have been extensively
used in the audio signal processing community both for
Virtual Analog modeling [3]–[9] and, combined with Digital
Waveguides [10], [11], for Sound Synthesis through physical
modeling [12]–[15]. WD structures have even been used for
designing spatial filters in beamforming applications based on
Differential Microphone Arrays [16]. It is only in the past
few years, however, that Virtual Analog modeling has truly
focused on the WD domain. Numerous articles, in fact, have
recently appeared in the literature, proposing WD realizations
of circuits containing linear and nonlinear elements such as
operational amplifiers [6], [17], [18], nonlinear transformers
[19], diodes [6], [20]–[23], vacuum tubes [24], [25] and
transistors [26]–[30], which were not initially addressed in
the original literature on WD Filters [1]. Dynamic circuits
with up to one nonlinear element can be implemented using
explicit (i.e. without delay-free loops) WD structures [2],
[31]. This is a considerable advantage of WD modeling
over Virtual Analog modeling methods [32]–[35] that work

A. Bernardini, P. Maffezzoni and A. Sarti are with the Diparti-
mento di Elettronica, Informazione e Bioingegneria (DEIB); Politecnico
di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy (e-mail: [al-
berto.bernardini,paolo.maffezzoni,augusto.sarti]@polimi.it).

in the Kirchhoff domain (of voltages and currents), as they
are typically characterized by sets of implicit equations and
involve iterative solvers. This benefit, however, does not apply
to circuits with multiple nonlinearities, as not all the delay-free
loops can be removed [36], therefore we cannot avoid implicit
equations. Even in these cases, however, working in the WD
domain has proven beneficial. For instance, in [7] a method is
introduced that allows to group all the nonlinear elements “at
the root” of the WD structure, thus enabling the nonlinear part
of the circuit to be separated from the linear one; then, the
multi-dimensional nonlinear system of equations describing
the nonlinear part is solved using the K-method with tabulation
[27], [37] or multi-dimensional Newton-Raphson (NR) solvers
[29]. Another iterative technique developed in [38] exploits
the contractivity property of a class of WDFs for solving
circuits with multiple nonlinearities making the wave signals
circulate in the WD structure up to convergence. In [38]
dynamic elements are accommodated introducing fictitious
delays and employing the multi-dimensional WDF formalism.
A different fixed-point method, known as Scattering Iterative
Method (SIM), is introduced in [39], [40] for the analysis
of large arrays of nonlinear photovoltaic units and later used
for implementing a diode-based audio ring modulator without
reactances [8]. The convergence analysis of SIM offered in [8],
[39], also discusses how to properly vary the free parameters
(port resistances) of the WD structure in order to speed up
convergence. SIM is able to solve circuits with an arbitrary
number Nnl of 2-terminal nonlinear elements using Nnl in-
dependent one-dimensional NR solvers instead of one Nnl-
dimensional NR solver. This implies several desirable features
that greatly differentiate SIM from techniques based on multi-
dimensional iterative solvers [29], [32]: greater robustness;
guaranteed convergence when working with monotonically
increasing i � v nonlinearities such as diodes [8]); greater
efficiency; and the possibility of solving the nonlinearities in a
parallel fashion [39]. For all these reasons, SIM turns out to be
particularly promising for Virtual Analog applications and it is
worth extending its applicability to a wider class of nonlinear
circuits. As SIM has been applied solely to circuits with no
reactances, in order for it to be palatable for Virtual Analog
modeling, it becomes important to extend its applicability to
dynamic nonlinear circuits.

Most WD implementations of dynamic circuits presented
in the literature use the trapezoidal discretization method with
fixed sampling step for approximating the continuous-time
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derivative that appears in the constitutive equations of dynamic
elements [1]. A good property of the trapezoidal method is
that it is A-stable [41]. In addition, while digital implementa-
tions of dynamic linear circuits based on the trapezoidal rule
generally result in implicit equations in the Kirchhoff domain
[42], their WD description can be made explicit, after applying
appropriate rules of adaptation [1].

Despite the excellent properties of the trapezoidal rule with
fixed sampling step, alternate discretization techniques are
often preferable. For example, the use of an adaptive sampling
step, which is quite common in simulation software such as
SPICE [42], [43], could significantly alleviate inaccuracies,
particularly in the proximity of sudden signal amplitude vari-
ations, and especially when dealing with stiff systems (e.g.
nonlinear relaxation oscillators); or could speed up simulations
in presence of smooth signal variations. As a matter of fact,
discretization methods other than the trapezoidal rule turn out
to be preferable in many situations [44]. For example, the
Backward Euler method can be fruitfully combined with the
trapezoidal rule for implementing circuits with switches or
for computing the first samples of simulations with uncertain
initial conditions. Also, the use of higher-order discretization
methods, such those based on the Backward Differentiation
Formulas (BDF) (also known as Gear formulas) [45], are often
opted for to achieve higher accuracy.

Although the idea of exploring different discretization meth-
ods in the WD domain is not new, there are surprisingly
very few publications that address this topic. Some extensions
of the traditional WD approach, which explore certain linear
multi-step discretization methods with fixed sampling step
are proposed in [46], [47], [48, pp. 33–47], and the use of
passive Runge-Kutta methods in the WD domain is discussed
in [49]–[52]. However, only a handful of publications [53],
[54] address the problem of managing discretization methods
with variable step-size in WD structures.

In this article, we propose an alternative approach to those
presented in [53] and [54] for modeling dynamic nonlinear
circuits in the WD domain using arbitrary Linear Multi-
Step Discretization Methods (LMSDMs) with adaptive step-
size as defined in [42]. The approach is based on digital
representations of dynamic elements (e.g., capacitors and
inductors) through companion models, i.e., Thévenin or Nor-
ton equivalent models, which vary according to the used
discretization method [42], [55]. Such representations facilitate
the derivation of optimal adaptation conditions for capacitors
and inductors at each sampling time. Moreover, Thévenin or
Norton equivalents allow us to treat dynamic elements as
time-varying resistive voltage or current sources, respectively.
This fact makes the proposed modeling approach particularly
suitable to be used in conjunction with SIM [8] for solving
dynamic circuits with multiple one-port nonlinearities, without
the need of designing fictitious delays and resorting to the
multi-dimensional WDF formalism as done in [38].

The article is organized as follows. Section II provides
a background on the modeling of connection networks and
memoryless one-ports in WD structures. Section III presents
general WD models of capacitors and inductors based on
LMSDMs with variable step-size, along with their properties.

In Section IV the general WD models in Section III are
applied to specific LMSDMs. Section V discusses the WD
implementation of a class of nonlinear circuits employing
the WD models presented in Section III. In particular, an
extension of the applicability of SIM to dynamic circuits with
multiple one-port nonlinearities is presented. In Section VI,
WD implementations of a linear filter, a nonlinear Van Der Pol
oscillator and a nonlinear ring modulator employing different
LMSDMs are presented. Section VII concludes this article.

II. BACKGROUND ON WAVE DIGITAL STRUCTURES

In the WD domain, the topology and the elements of
the reference circuit are typically modeled separately, using
input/output blocks characterized by scattering relations. The
derived blocks are then connected together through port con-
nections and the WD structure is derived. In this Section, we
briefly review how to compute the scattering matrices repre-
senting arbitrary reciprocal connection networks, i.e., topologi-
cal interconnections possibly incorporating ideal transformers,
in the WD domain [8], [39], [56], [57]. The reader who might
be interested in the WD modeling of connection networks
embedding both reciprocal and non-reciprocal linear elements,
e.g., controlled sources, nullors or gyrators, is referred to [58].
In the following, we also briefly discuss the WD modeling of
memoryless linear and nonlinear one-ports [1], [2].

A. Modeling Connection Networks

A N -port reciprocal connection network is characterized by
the following pair of equations

v = QTvt , j = BT jl , (1)

where the superscript T indicates matrix/vector transposition,
v = [v

1

, . . . , vN ]

T is the column vector of all port voltages,
j = [j

1

, . . . , jN ]

T is the column vector of all port currents,
vt is a column vector of size q, 1  q < N , collecting
independent port voltages, jl is a column vector of size p,
p = N � q, collecting independent port currents. Matrices Q
and B are generalizations of the fundamental cut-set matrix
and fundamental loop matrix, respectively, as explained in
[8], [56], [57], and they satisfy the orthogonality property
BQT

= 0, where 0 is a zero matrix of proper size. According
to (1), each port voltage in v is expressed as a linear combina-
tion of the q independent port voltages collected in vt, while
each port current in j is expressed as a linear combination of
the p independent port currents collected in jl [57].

The implementation of the connection network in the WD
domain is a scattering junction characterized by a scattering
matrix, which in turn can be expressed as a function of Q or
B. In order to define this scattering matrix, let us first consider
the following port-wise definition of wave variables introduced
by Fettweis [1]

aJ = v + Zj , bJ = v � Zj , (2)

where aJ = [aJ1, . . . , aJN]
T is the vector of incident waves

(entering the WD junction), bJ = [bJ1, . . . , bJ1]
T is the vector
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of reflected waves (exiting the WD junction), while the non-
zero entries of the diagonal matrix Z = diag[Z

1

, . . . , ZN ] are
free parameters called port resistances.

Wave variables defined in (2) are usually referred to as
voltage waves, since their unit of measure is volt. Despite the
definition in (2) is the most widespread, alternative definitions
of waves, characterized by different units of measure [48],
[57]–[59] and more than one free parameter per port [36],
[57] have been discussed in the literature.

Incident and reflected waves are linked by the scattering
relation

bJ = SaJ , (3)

where S is a N ⇥N scattering matrix. As shown in [8], [39],
[56], [57], S can be computed using one of the following two
expressions

S = 2QT
�
QZ�1QT

��1

QZ�1 � I , (4)

S = I� 2ZBT
�
BZBT

��1

B , (5)

where I is the N ⇥ N identity matrix. Looking at equations
(4) and (5), we notice that one of the two equations might be
computationally less expensive to use, depending on whether
the number of independent port voltages q is larger or smaller
than the number of independent port currents p. In fact, as
the sizes of the matrices Q and B are q ⇥ N and p ⇥ N ,
respectively, eq. (4) involves the inversion of a q ⇥ q matrix,
while eq. (5) involves the inversion of a p⇥ p matrix.

B. Modeling One-port Memoryless Circuit Elements
The mapping between the WD variables of a one-port

memoryless circuit element is derived by considering its
constitutive equation in the Kirchhoff domain, which describes
the relation between its port voltage v and its port current i,
and then by applying the transformation

v = (a+ b) /2 , i = (a� b) / (2Z) , (6)

where a is the incident voltage wave (input), b is the reflected
voltage wave (output), and Z is the port resistance [1]. The
following two useful hybrid relations can be easily derived
from (6)

i = (a� v) /Z , (7)

b = 2v � a . (8)

Here are two examples of interest: the WD implementation of
linear resistive voltage sources and that of nonlinear diodes.

1) Resistive voltage sources and linear resistors: The con-
stitutive equation of a resistive voltage source is v = Vg+Rgi,
where Vg is the generator and Rg is its series resistance. The
corresponding wave mapping, derived according to (6), is [1]

b =
Rg � Z

Rg + Z
a+

2Z

Rg + Z
Vg . (9)

If the free parameter Z is set to Rg, the resistive voltage source
is said to be adapted, as the instantaneous dependency between
a and b is eliminated, and the wave mapping becomes simply
b = Vg. Notice that, setting Vg = 0, (9) reduces to the wave
mapping of an adapted resistor with resistance Rg.

2) Diodes: Let us consider the extended Shockley diode
model presented in [8] and characterized by the nonlinear
implicit equation

f (v, i) = Is

✓
exp

✓
v �Rsi

⌘Vt

◆
� 1

◆
+

v �Rsi

Rp
� i = 0 (10)

where Is is the saturation current, ⌘ is the ideality factor, Vt is
the thermal voltage, while Rs and Rp are the series resistance
and the shunt resistance of the p-n junction, respectively.
As (10) is a transcendental equation, the derivation of a
wave mapping is not straightforward. A closed-form scattering
relation involving the Lambert function can be found using
the approach described in [28]. Another possible efficient
approach, which uses a one-dimensional Newton-Raphson
(NR) solver, is explained in [8] and reported hereafter. If we
substitute (7) in (10) we obtain

h (v) = Is

✓
e

v(Z+Rs)�aRs
⌘VtZ � 1

◆
+

v (Z +Rp +Rs)� a (Rp +Rs)

ZRp

and its derivative h0
(v) with respect to v,

h
0
(v) =

Is (Z +Rs)

⌘VtZ
e

v(Z+Rs)�aRs
⌘VtZ

+

Z +Rp +Rs

ZRp
.

Given a, the nonlinear equation h (v) = 0 is iteratively solved
for v by applying the NR update equation

v(◆) = v(◆�1) � h(v(◆�1)

)

h0
(v(◆�1)

)

, (11)

where the superscript between brackets is the iteration index
and ◆ � 1. Once the convergence condition |v(◆) � v(◆�1)| <
✏NR is met, ✏NR being a small tolerance (e.g. ✏NR = 10

�10),
the solver stops and the port voltage is set to v = v(◆), so that
the reflected wave b can be computed using (8). As the diode
is nonlinear, unlike the resistive voltage source, it cannot be
adapted, i.e. the instantaneous dependency between a and b
cannot be eliminated [2].

III. GENERAL WD MODELS OF DYNAMIC ELEMENTS
BASED ON LMSDMS

In this Section we show how to derive WD models of
dynamic elements based on general LMSDMs with variable
step-size [42]. The derivation is based on companion models
[42], [55], also known as associated discrete circuit models
[60], for dynamic elements, which are Thévenin or Norton
equivalents whose parameters change at every sample. The
Thévenin equivalent model is a resistive voltage source char-
acterized by the following equation in the discrete-time domain

v [k] = Re[k]i [k] + Ve[k] (12)

where the index k � 1 in square brackets refers to the kth
sample, v[k] and i[k] are the discrete-time port signals, Ve[k]
is the generator and Re[k] is the series resistance. The Norton
equivalent model, instead, is a current source with parallel
resistor characterized by

i [k] = Ge [k] v [k] + Ie [k] (13)

where Ie[k] is the current generator, Ge[k] is the Norton
conductance. Thévenin and Norton equivalent models that
refer to the same element are related by

Ge[k] = 1/Re[k] , Ie[k] = �Ge[k]Ve[k] . (14)
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Graphical representations of Thévenin and Norton equivalent
models are shown in Fig. 1(a) and in Fig. 1(b), respectively.
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Fig. 1. Companion models of capacitors and inductors in the discrete-time
domain. Fig. 1(a): Thévenin equivalent model. Fig. 1(b): Norton equivalent
model.

In the discrete-time domain, the transformation of WD port
variables to Kirchhoff port variables, already defined in (6),
can be rewritten as

v [k] =
a[k] + b[k]

2

, i[k] =
a[k]� b[k]

2Z[k]
, (15)

where a[k] and b[k] are the discrete-time wave variables
and Z[k] is the port resistance depending on k. The inverse
transformation of (15) is given by

a[k] = v[k] + Z[k]i[k] , b[k] = v[k]� Z[k]i[k] . (16)

Similarly to what done in Subsection II-B, substituting (15)
in (12) we get the wave mapping of the Thévenin equivalent

b [k] =
Re [k]� Z[k]

Re [k] + Z[k]
a[k] +

2Z[k]

Re [k] + Z[k]
Ve[k] . (17)

In case of adaptation we can write

b[k] = Ve[k] , if Z[k] = Re[k] . (18)

Similarly, by substituting (15) in (12) we obtain the wave
mapping of the Norton equivalent

b [k] =
1� Z[k]Ge[k]

1 + Z[k]Ge[k]
a[k]� 2Z[k]

1 + Z[k]Ge[k]
Ie[k] (19)

In case of adaptation, eq. (19) simplifies to

b[k] = �Ie[k]/Ge[k] , if Z[k] = 1/Ge[k] . (20)

In the rest of this Section, we show how general WD models
of capacitors and inductors based on a LMSDM can be derived
by simply expressing the Thévenin equivalent parameters Ve[k]
and Re[k], or the Norton equivalent parameters Ie[k] and
Ge[k], as functions of the past values of port signals, the
coefficients of the discretization method, the variable step-size
and the capacitance/inductance. It follows that WD realizations
of capacitors and inductors based on a LMSDM can be
obtained simply by implementing in the WD domain time-
varying resistive voltage or current sources as those shown
in Fig. 1; i.e., applying the scattering relations (17) or (19),
respectively. In case of adaptation, the simplified scattering
relations (18) or (20) can be directly used.

A. Capacitors

The constitutive equation of a capacitor of capacitance C
in the continuous-time domain is

i(t) = C
dv(t)

dt
(21)

where v(t) and i(t) are the continuous-time port signals, and
t is the time variable in seconds. After applying a general
LMSDM of order M with variable step-size [42], [60], the
discrete-time version of (21) becomes

v[k] =
MX

m=1

µm[k]v[k �m] +

h[k]

C

MX

m=0

⌘m[k]i[k �m] (22)

where µ
1

[k], . . . , µM [k] and ⌘
0

[k], ⌘
1

[k], . . . , ⌘M [k] are real
coefficients, whose design depends on the chosen LMSDM.
h[k] is the variable step-size, which is defined as

h[k] = tk � tk�1

(23)

where tk is the current sampling time and tk�1

is the previous
one. Notice that, as h[k] is assumed to be variable, we could
have h[k] 6= h[k � 1] for each k.

Finding the Thévenin equivalent (12) of the discrete-time
capacitor model (22) yields

Re[k] = ⌘
0

[k]
h[k]

C
, (24)

Ve[k] =
MX

m=1

⌘m[k]
h[k]

C
i[k �m] + µm[k]v[k �m] . (25)

The wave mapping of a WD capacitor can now be obtained
by just substituting (24) and (25) in (17), or directly in (18), if
the scattering relation of an adapted WD capacitor is needed.

Similarly, by equating (22) and (13) the following closed-
form expressions of the Norton equivalent parameters are
derived

Ge [k] =
C

⌘
0

[k]h[k]
, (26)

Ie[k] =
�1

⌘
0

[k]

 
MX

m=1

µm[k]
C

h[k]
v[k �m] + ⌘m[k]i[k �m]

!
.

(27)
In this case, the wave mapping of a WD capacitor is obtained
by just substituting (26) and (27) in (19), or directly in (20), if
the scattering relation of an adapted WD capacitor is needed.

B. Inductors

The constitutive equation of an inductor with inductance L
in the continuous-time domain is

v(t) = L
di(t)

dt
. (28)

After applying a general LMSDM of order M with variable
step-size [42], [60], the discrete-time version of (28) becomes

i[k] =
MX

m=1

µm[k]i[k�m] +

h[k]

L

MX

m=0

⌘m[k]v[k�m] , (29)
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where µ
1

[k], . . . , µM [k] and ⌘
0

[k], ⌘
1

[k], . . . , ⌘M [k] are the
same real coefficients appearing in eq. (22) and the variable
step-size h[k] is defined as in eq. (23).

Equating (29) and (13) the following closed-form expres-
sions of the Thévenin equivalent parameters are obtained

Re [k] =
L

⌘
0

[k]h [k]
, (30)

Ve [k] =
�1

⌘
0

[k]

 
MX

m=1

µm[k]
L

h [k]
i [k �m] + ⌘m[k]v [k �m]

!
.

(31)
The wave mapping of a WD inductor is obtained substituting
(30) and (31) in (17), or directly in (18), if the scattering
relation of an adapted WD inductor is needed.

Similarly, by equating (29) and (13) the following closed-
form expressions of the Norton equivalent parameters are
obtained

Ge [k] = ⌘
0

[k]
h [k]

L
, (32)

Ie [k] =
MX

m=1

⌘m[k]
h[k]

L
v[k �m] + µm[k]i[k �m] . (33)

The wave mapping of a WD inductor is obtained by substitut-
ing (32) and (33) in (19), or directly in (20), if the scattering
relation of an adapted WD inductor is needed.

C. On the possibility of performing adaptation

General adaptation conditions for WD models of reactances
based on LMSDMs are provided in (18) and (20). The
applicability of such adaptation conditions, however, depends
on the LMSDM that we are dealing with. The following two
rules state when and how adaptation conditions can be set.

Rule I. If ⌘
0

[k] 6= 0, capacitors or inductors can be
represented by Thévenin equivalents with non-zero series
resistances at each sampling step; therefore, a WD realization
can always be derived in which there is not an instantaneous
dependency between the incident wave and the reflected wave,
provided that adaptation is performed, according to eq. (18)
or eq. (20).

Rule II. If ⌘
0

[k] = 0, capacitors do not admit a Norton
representation (see eq. (26) and eq. (27)), while they admit
a representation based on a Thévenin equivalent with zero
series resistance, i.e., an ideal voltage source (see eq. (24) and
eq. (25)); dually, inductors admit only a representation based
on a Norton equivalent with zero parallel admittance, i.e., an
ideal current source (see eq. (32) and eq. (33)). Therefore,
when ⌘

0

[k] = 0, adaptation cannot be performed in either
cases (capacitor or inductors).

It is worth noticing that the aforementioned rules are in line
with the considerations drawn in the doctoral dissertation by
Werner [48, pp. 33–47], where it is shown that capacitors and
inductors can be adapted only if implicit discretization meth-
ods are used; while, when explicit discretization methods, like
Forward Euler, are chosen, adaptation cannot be performed.

IV. WD MODELS OF DYNAMIC ELEMENTS BASED ON
SPECIFIC LMSDMS

A. LMSDMs with Fixed Step-Size

Table I presents a characterization of discrete models of
capacitors and inductors based on some LMSDMs with fixed
step-size, used for implementing dynamic circuit networks
[42], showing their weighting coefficients. For each indicated
LMSDM, all the weighting coefficients ⌘m[k] and µm[k] not
shown in Table I are assumed to be equal to 0. As the time-step
size in Table I is assumed to be fixed, the coefficient values
are fixed as well. The last column of Table I indicates whether
WD models of capacitors and inductors based on a specific
LMSDM can be adapted, eliminating the instantaneous de-
pendency between the incident wave and the reflected wave.
Quite naturally, the most interesting LMSDMs in our context
are those that lead to WD models where adaptation can be
performed. In the following, we focus on some WD models
of the sort, considering the more general scenario in which
the step-size is assumed to be variable.

B. Trapezoidal Method

The non-zero coefficients ⌘
0

[k], ⌘
1

[k] and µ
1

[k] of the
trapezoidal method in the variable step-size scenario are the
same as reported in Table I and used in the fixed step-size
case [42]. It follows that the adaptation condition for a WD
capacitor is

Z[k] =
h [k]

2C
. (34)

Hence, substituting (25) in (18) and then expressing Kirchhoff
variables in terms of wave variables according to (15), the
scattering relation becomes

b[k] =
a[k � 1]

2

✓
1 +

h[k]

h[k � 1]

◆
+

b[k � 1]

2

✓
1� h[k]

h[k � 1]

◆
.

(35)
The adaptation condition for a WD inductor, instead, is

Z[k] =
2L

h[k]
. (36)

Hence, substituting (31) in (18) and then expressing Kirchhoff
variables in terms of wave variables according to (15), the
scattering relation becomes

b[k] =
a[k � 1]

�2

✓
1 +

h[k � 1]

h[k]

◆
+

b[k � 1]

�2

✓
1� h[k � 1]

h[k]

◆
.

(37)
When h[k � 1] = h[k], scattering relations (35) and (37)

reduce to the ones employed in traditional WD filters [1].

C. Backward Euler Method

The non-zero coefficients ⌘
0

[k] and µ
1

[k] of the Backward
Euler (BE) method in the variable step-size scenario are the
same reported in Table I and used in the fixed step-size
case [42]. It follows that the adaptation condition for a WD
capacitor is

Z[k] =
h[k]

C
, (38)
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TABLE I
CHARACTERIZATION OF WD MODELS OF CAPACITORS AND INDUCTORS BASED ON LMSDMS WITH FIXED STEP-SIZE

Method Coefficients Adaptation possible (yes/no)

⌘0[k] ⌘1[k] ⌘2[k] ⌘3[k] µ1[k] µ2[k] µ3[k] µ4[k]
Backward Euler 1 0 0 0 1 0 0 0 yes
Trapezoidal 1/2 1/2 0 0 1 0 0 0 yes
Adams-Moulton 2 5/12 2/3 -1/12 0 1 0 0 0 yes
Adams-Moulton 3 3/8 19/24 -5/24 1/24 1 0 0 0 yes
BDF 2 2/3 0 0 0 4/3 -1/3 0 0 yes
BDF 3 6/11 0 0 0 18/11 -9/11 2/11 0 yes
BDF 4 12/25 0 0 0 48/25 -36/25 16/25 -3/25 yes
Forward Euler 0 1 0 0 1 0 0 0 no
Adams-Bashforth 2 0 1 0 0 3/2 -1/2 0 0 no
Adams-Bashforth 3 0 1 0 0 23/12 -4/3 5/12 0 no
Adams-Bashforth 4 0 1 0 0 55/24 -59/24 37/24 -3/8 no

and, according to (18) and (25), the scattering relation becomes

b[k] =
a[k � 1] + b[k � 1]

2

. (39)

The adaptation condition for a WD inductor, instead, is

Z[k] =
L

h[k]
, (40)

and, according to (18) and (31), the scattering relation becomes

b[k] =
h[k � 1]

2h[k]
(b[k � 1]� a[k � 1]) . (41)

D. Higher-Order Backward Differentiation Formulas

BDF methods of order M > 1, in the variable step-size
scenario, are characterized by non-fixed coefficients depending
on the actual step-sizes, hence the coefficients provided in
Table I are not appropriate in this case [42]. In this Subsection,
we provide general WD models of adapted capacitors and
inductors based on BDF methods. Then, we derive closed-
form expressions for computing the coefficients needed in
BDF 2, BDF 3 and BDF 4, when the step-size is assumed
to be variable.

Applying a BDF of order M and setting the adaptation
condition Z[k] = ⌘

0

[k]h[k]/C, the scattering relation of a
WD capacitor becomes

b[k] =
MX

m=1

µm[k]

2

(a[k �m] + b[k �m]) (42)

Similarly, setting the adaptation condition Z[k] =

L/ (⌘
0

[k]h [k]), the scattering relation of a WD inductor,
becomes

b[k] =
MX

m=1

µm[k]⌘
0

[k �m]h [k �m]

2⌘
0

[k]h [k]
(b[k �m]� a[k �m]) .

(43)
The coefficients of a BDF of order M are computed as

⌘
0

[k] =
�1

u
0

[k]
, µm[k] = ⌘

0

[k]um[k] with 1  m  M

(44)

where, in accordance with the procedure presented in [42], the
parameters um[k], with 0  m  M , are given by
2

66664

u0[k]
u1[k]
u2[k]

...
uM [k]

3

77775
=

2

666664

1 0 0 . . . 0
1 1 1 . . . 1
1 ⌧2[k] (⌧2[k])

2 . . . (⌧2[k])
M

...
...

...
. . .

...
1 ⌧M [k] (⌧M [k])2 . . . (⌧M [k])M

3

777775

�1 2

66664

0
1
0
...
0

3

77775
,

(45)
and the further parameters ⌧j [k] are defined as

⌧j [k] =
h[k] +

Pj�1

m=1

h[k �m]

h[k]
, with 1 < j  M . (46)

Here follow closed-form expressions of the coefficients in the
cases M = 2, M = 3 and M = 4. It is worth saying that
such closed-form expressions for BDF 3 and BDF 4 are not
available in [42].

1) Coefficients for BDF 2:

⌘
0

[k] =
⌧
2

[k]

⌧
2

[k] + 1

,

µ
1

[k] = ⌘
0

[k]
⌧
2

[k]

⌧
2

[k]� 1

, µ
2

[k] = ⌘
0

[k]
1

⌧
2

[k](1� ⌧
2

[k])
.

2) Coefficients for BDF 3:

⌘
0

[k] =
⌧
2

[k]⌧
3

[k]

⌧
2

[k] + ⌧
3

[k] + ⌧
2

[k]⌧
3

[k]
,

µ
1

[k] = ⌘
0

[k]
⌧
2

[k]⌧
3

[k]

(⌧
2

[k]� 1)(⌧
3

[k]� 1)

,

µ
2

[k] = ⌘
0

[k]
⌧
3

[k]

⌧
2

[k](⌧
2

[k]� 1)(⌧
2

[k]� ⌧
3

[k])
,

µ
3

[k] = ⌘
0

[k]
⌧
2

[k]

⌧
3

[k](1� ⌧
3

[k])(⌧
2

[k]� ⌧
3

[k])
.

3) Coefficients for BDF 4:

⌘
0

[k] =
⌧
2

[k]⌧
3

[k]⌧
4

[k]

⌧
2

[k]⌧
3

[k] + ⌧
2

[k]⌧
4

[k] + ⌧
3

[k]⌧
4

[k] + ⌧
2

[k]⌧
3

[k]⌧
4

[k]
,

µ
1

[k] = ⌘
0

[k]
⌧
2

[k]⌧
3

[k]⌧
4

[k]

(⌧
2

[k]� 1) (⌧
3

[k]� 1)(⌧
4

[k]� 1)

,

µ
2

[k] = ⌘
0

[k]
⌧
3

[k]⌧
4

[k]

⌧
2

[k](⌧
3

[k]� ⌧
2

[k])(⌧
2

[k]� ⌧
4

[k])(⌧
2

[k]� 1)

,
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µ
3

[k] = ⌘
0

[k]
⌧
2

[k]⌧
4

[k]

⌧
3

[k](⌧
2

[k]� ⌧
3

[k])(⌧
3

[k]� ⌧
4

[k])(⌧
3

[k]� 1)

,

µ
4

[k] = ⌘
0

[k]
⌧
2

[k]⌧
3

[k]

⌧
4

[k](⌧
4

[k]� ⌧
2

[k])(⌧
3

[k]� ⌧
4

[k])(⌧
4

[k]� 1)

.

E. Automatic Step-Size Variation
Different strategies can be used for automatically adapt-

ing the time-step size during the digital emulation of an
audio circuit. The design of algorithms for the automatic
change of the step-size strongly depends on the accuracy
and efficiency requirements of the reference application. As
a detailed discussion on the optimization criteria for step-size
variation is beyond the scope of this article, here we simply
mention that, algorithms that eventually change the step-size
h[k+1] at each sampling step k+1 with respect to h[k], are
usually based on the estimation of the Local Truncation Error
(LTE) at each port connected to a dynamic element [43]. For
instance, the LTE en[k] associated to the BE discretization
formula for a capacitor with capacitance C at port n is
en[k] ⇡ h2

[k]v00n[k]/2, where v00n[k] is the second order time
derivative of the voltage across the capacitor evaluated at
the time instant corresponding to the kth sample [43], and
it can be approximated as ên[k] = wn[k](in[k] � in[k � 1])

with wn = h[k]/(2C). However, more advanced prediction
algorithms could be employed for estimating the LTEs, which
depend on the used LMSDM; see, e.g., [60] and [43] for
a discussion on these aspects. Depending on the magnitude
of the estimated LTEs, one might decide to: increase the
step-size, i.e., set h[k + 1] = ginch[k], with ginc > 1, if
the estimated LTEs are sufficiently low; leave the step-size
unchanged, i.e., set h[k+1] = h[k]; reduce the step-size, i.e.,
set h[k + 1] = gredh[k], with 0 < gred < 1; or even repeat
the computation of in[k] with a reduced time-step h[k], if the
estimated LTEs are too large.

V. WD IMPLEMENTATION OF NONLINEAR
DYNAMIC CIRCUITS

In this Section, we discuss strategies for implementing
nonlinear dynamic circuits in the WD domain. We focus our
attention to circuits with one-port nonlinearities. We first revise
a common efficient strategy for implementing WD structures
with one nonlinear one-port, known since the publication of
[2], in which all global delay-free loops are eliminated. We
then show how, in the light of the results presented in the
previous two Sections, the applicability of SIM [8], [39] can
be extended to dynamic circuits with multiple nonlinear one-
ports.

A. One Nonlinearity Case
Let us consider a WD multi-port junction describing the

connection network of a circuit with one nonlinear element and
a number of memoryless or dynamic linear elements. We also
consider the scattering matrix characterizing the connection
network, defined as in Section II. The free parameter (port
resistance) of the junction port facing the nonlinear element
is set in such a way that the corresponding diagonal entry

of the scattering matrix becomes zero. This ensures that the
junction port is reflection free, which means the instantaneous
dependence between the incident wave and the reflected wave
at that port is eliminated [2]. We assume that all the linear
elements are adapted, according to the constraints provided in
the previous Sections. Then, the WD elements are virtually
connected to the WD junction by first forcing the reflected
waves from the junction to be equal to the incident waves
to the elements and vice-versa and then setting the port
resistances of the junction to be equal to the port resistances
of the WD elements, in a port-wise fashion [1]. Under these
assumptions all the global delay-free loops due to the in-
terconnections of circuit elements are eliminated, as already
explained in [2] and, more recently, in [36]. It follows that,
if look-up tables [3] or, more conveniently, canonical piece-
wise linear representations of functions [23] are used for
computing the nonlinear wave mapping, the reference circuit
is implemented in a fully explicit fashion. Alternatively, one-
dimensional NR solvers can be used for solving the potentially
implicit constitutive equation of the nonlinear element in
the WD domain, without necessarily loosing robustness and
efficiency, as explained in Subsection II-B.

As an example, Fig. 2(b) shows a WD structure correspond-
ing to the oscillator with one nonlinear element in Fig. 2(a).
We notice that port 1 of the WD junction (a 4-port parallel
adaptor) is adapted, along with all the linear elements of the
WD structure.

i
1

G L CG
nl

�

+

V
out

1

(a)

a1 b1

a3b3

a2

b2

b4

a4

C

R L

1

(b)

Fig. 2. Van Der Pol oscillator circuit in Fig. 2(a) and corresponding WD
structure in Fig. 2(b).

B. Multiple Nonlinearities Case: Scattering Iterative Method
As discussed in [36] and references therein, the presence of

more than one nonlinear element in a WD structure results in
unavoidable delay-free loops, i.e., a set of implicit equations
involving port variables of different nonlinear elements that
make the digital structure not computable without resorting
to iterative solvers. In [8], [39] a relaxation method, called
SIM, which efficiently solves circuits with multiple one-port
nonlinearities in the WD domain is presented. However, the
circuits considered in [8], [39] do not contain dynamic ele-
ments. Here we show how the approach for modeling inductors
and capacitors presented in Section III and Section IV allows
to easily handle dynamic nonlinear circuits using SIM.

Let us assume, without loss of generality, that the number
of nonlinear elements is Nnl < N and that they are connected
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to the first Nnl ports of the WD junction. Let us collect waves
incident to and reflected from the elements in the two vectors
a[k] = [a

1

[k], . . . , aN [k]]T and b[k] = [b
1

[k], . . . , bN [k]]T ,
respectively, where the argument k in square brackets indicates
signals at kth sampling step. The connection of the elements
to the junction implies that the vector of port voltages v of the
elements is the same defined in Subsection II-A, while the vec-
tor of port currents of the elements i[k] = [i

1

[k], . . . , iN [k]]T

satisfies i[k] = �j[k]. It follows that a[k] = bJ[k] and
b[k] = aJ[k]. SIM is applied at each sampling step k and
it requires to perform the following four stages.

1) Initialization: each free parameter Zn[k], with 1  n 
N , is set as close as possible to the slope of the tangent line
passing through the actual operating point on the i� v curve
of the nth one-port, i.e., the series resistance of its Thévenin
equivalent.
According to the considerations in Section III, both mem-
oryless and dynamic linear elements can be described by
Thévenin (or Norton) equivalents whose parameters are in-
dependent of the coordinates of the actual operating point.
It follows that in those cases free parameters can be set in
an optimal fashion, i.e. Zn[k] = Ren[k], where Ren[k] is the
Thévenin resistance of the linear element connected to the nth
port of the junction, with Nnl < n  N .
Dealing with nonlinear elements, instead, the exact Thévenin
equivalent parameters are not easy to derive in this stage,
because they depend on the coordinates of the actual operating
point. In fact, assuming each nonlinearity is characterized
by a nonlinear equation fn (vn, in) = 0, mathematically, the
Thévenin series resistance would be given by

Ren[k] = � @fn (vn[k], in[k]) /@in
@fn (vn[k], in[k]) /@vn

, 1  n  Nnl . (47)

However, the coordinates of the actual operating point, vn[k]
and in[k], are unknown. Therefore, the best we can do is to
perform a prediction of the desired slope Ren[k], based on its
values at previous sampling steps.
In the light of this, an effective initialization is performed
setting

Z[k] = diag [Re1[k � 1], . . . , ReNnl [k � 1],
ReNnl+1

[k], . . . , ReN [k]] ,

where Z[k] is the diagonal matrix of free parameters (port
resistances). Vectors of port voltages and incident waves are

set to initial guesses a(0)[k] =

h
a(0)
1

[k], . . . , a(0)N [k]
iT

and

v(0)

[k] =
h
v(0)
1

[k], . . . , v(0)N [k]
iT

, given by

a(0)[k] = [a
1

[k � 1], . . . , aN [k � 1]]

T ,
v(0)

[k] = 1

2

[2v
1

[k � 1], . . . , 2vNnl [k � 1],

aNnl+1

[k � 1] + VeNnl+1

[k], . . . , aN [k � 1] + VeN [k]]T ,

where Ven[k] with Nnl < n  N are the Thévenin voltage
sources of linear elements.

2) Local Scattering Stage: the reflected wave from each
memoryless or dynamic linear element is given by bn[k] =
Ven[k] with Nnl < n  N , independently of the values
of incident wave. Reflected waves from nonlinear elements,
instead, depend on the incident waves. It follows that the

vector of reflected waves b(�)
[k] at iteration � � 1 of SIM,

where the superscript in round brackets indicates the iteration
index, is given by

b(�)
[k] =

h
b(�)
1

[k], . . . , b(�)Nnl
[k], VeNnl+1

[k], . . . , VeN [k]
iT

(48)
where, in turn,

b(�)n [k] = 2v(�)n [k]� a(��1)

n [k] , with 1  n  Nnl . (49)

The way of computing v(�)n [k] depends on the actual consid-
ered nonlinear element. For instance, if a diode characterized
by the extended Shockley diode model is considered, the one-
dimensional NR solver described in Subsection II-B can be
used with initial guess v(��1)

n [k].

3) Global Scattering Stage: given b(�)
=

h
b(�)
1

, . . . , b(�)N

iT
,

the vector of incident waves to the elements at iteration �,
a(�) =

h
a(�)
1

, . . . , a(�)N

iT
, is given by

a(�)[k] = S[k]b(�)
[k] (50)

where S[k] indicates the scattering matrix computed accord-
ing to equations provided in Subsection II-A and using the
diagonal matrix of free parameters Z[k].

4) Convergence Check: if the following convergence condi-
tion is met

���a(�)[k]� a(��1)

[k]
���
2

< ✏SIM (51)

where ✏SIM is a small tolerance, e.g. ✏SIM = 10

�6, the
output port variables of SIM at sampling step k are set
as: a[k] = a(�)[k], b[k] = b(�)

[k] and v[k] = v(�)
[k].

Conversely, if condition (51) is not satisfied the iteration
index � is incremented by one such that the local scattering
stage and the global scattering stage are performed again.
The local scattering stage, the global scattering stage and the
convergence check are repeated up to convergence.

Discussion on Convergence: according to the theorem pre-
sented in [39] and restated in [8], convergence of SIM
applied to a memory-less circuit with nonlinear one-ports,
such as diodes with a constitutive equation like (10), is
guaranteed when the connection network is reciprocal, the
i�v characteristic of each element is monotonically increasing
and robust one-dimensional solvers are used in the local
scattering stage to compute reflected waves from the WD
one-port nonlinear elements. In this paper we consider more
general consequences of the theorem in [39] on the analysis
of nonlinear circuits with reactances. It turns out that if a
discrete-time model based on LMSDM of a capacitor or an
inductor can be represented as a Thévenin equivalent with
positive series resistance, i.e., ⌘

0

[k] > 0, the corresponding
i � v characteristic at each time step k is monotonically
increasing. Therefore, SIM converges when applied to circuits
characterized by a reciprocal connection network, nonlinear
memoryless one-ports with monotonically increasing i � v
characteristics and linear reactive elements discretized using
LMSDMs with ⌘

0

[k] > 0. It is worth noticing that, in practice,
convergence can be achieved even when SIM is applied to
nonlinear circuits for which convergence is not ensured by a
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theoretical analysis. As a matter of fact, convergence of other
mainstream iterative solvers applied to nonlinear circuits, like
multivariate NR methods, is not theoretically guaranteed in
general.

VI. EXAMPLES OF APPLICATION

A. A Linear Filter
As a first example of application of the proposed approach

for modeling dynamic elements, let us consider the simple
first-order filter in Fig. 3(a) and its WD realization [1] in
Fig. 3(b). The analysis of a linear filter like the one in Fig. 3
allows us to compare the behavior of WD models of the
capacitor based on different LMSDMs with an “exact” ground
truth.

+�V
in

R
in

R
out

�

+

V
out

C

1

(a)

R
out

+�

V
in

R
in

C

1

(b)

Fig. 3. Linear filter circuit in Fig. 3(a) and corresponding WD structure in
Fig. 3(b).

In fact, we can express the time evolution of the voltage
Vout across the resistor Rout in closed-form. Assuming that the
voltage across the capacitor at t = 0 is zero, we have that

Vout(t) = Vin
Rout

Rtot
e�t/(RtotC) , (52)

where Vin is a constant and Rtot = Rin +Rout. We set Vin = 5

V, Rin = 12 ⌦, Rout = 3 ⌦ and C = 100 µF.
In a first experiment, the capacitor is implemented using

three alternative discretization techniques: the traditional trape-
zoidal method, i.e., scattering relation (35) and adaptation
condition (34), the BE method, i.e., scattering relation (39)
and adaptation condition (38), and a combination of BE and
trapezoidal in which BE is used to compute the first sample,
while trapezoidal is used for the following samples. A fixed
step-size h[k] = 1/Fs sec with Fs = 8 kHz is employed.
The errors with respect to the ground truth computed using
(52) are shown in Fig. 4; the red line with asterisks refers
to trapezoidal, the blue line with crosses refers to BE, while
the green line with circles refers to the above combination.
Despite trapezoidal is in general more accurate than BE, the
error of the former at first samples is higher because the
first sample is computed relying on a bad approximation of
the derivative of the voltage across the capacitor at sampling
time tk�1

. As shown in Fig. 4, a good strategy to cope
with this problem is to use the BE method for computing
the first sample and then switch to the trapezoidal method.
In order to properly perform the switching between BE and
trapezoidal maintaining adaptation, scattering relation (35) and
adaptation condition (34) are used at the first sampling step,
while scattering relation (39) and adaptation condition (38) are
used for the following steps.

0 1 2 3 4 5 6 7 8
10-3

0

0.01

0.02

0.03

0.04

Fig. 4. WD implementations of the linear filter; comparison between three
discretization methods with fixed step-size. The three lines represent the errors
of the signals Vout w.r.t. the ground truth, referred to the implementations in
which the trapezoidal method, the BE method and a combination of the two
(i.e., BE for the first sample and then trapezoidal) are used.
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Fig. 5. WD implementation of the linear filter using a combination of BE and
trapezoidal methods. A comparison between the fixed and the variable step-
size cases is presented. The two lines represent the errors of the signals Vout
w.r.t. the ground truth. The green line with circles refers to the fixed step-size
case; the number of circles, i.e., 311, is the number of samples. The black line
with asterisks refers to the variable step-size case; the number of asterisks,
i.e., 54, is the number of samples. In both cases the MSE is 1.6⇥ 10�7.

In a second experiment, we implement a new version of
the above combination of BE and trapezoidal methods based
on a variable step-size. We perform an ad hoc optimization
of the step-sizes in order to match the mean squared error
(MSE) of the fixed sampling step implementation considered
in the previous experiment, i.e., 1.6 ⇥ 10

�7. We obtain an
implementation with variable step-size employing 54 samples
versus the 311 samples used in the fixed step-size case to
simulate the same transient from t = 0 seconds to t = 0.039
seconds. This result demonstrates that the simulation of the
transient can be performed almost six times faster using a
variable step-size, while preserving the MSE of the fixed step-
size case. Fig. 5 shows the evolution in time of the error; the
kth green circle indicates the error referred to the kth sample in
the fixed step-size case, while the kth black asterisk indicates
the error referred to the kth sample in the variable step-size
case. Notice that in the variable step-size case asterisks are
dense at the beginning of the transient and increasingly sparse
as time t increases, since the signal Vout varies less and less.

Finally, we performed Kirchhoff domain discrete-time sim-
ulations [42] of the simple circuit in Fig. 3(a), based on the
same LMSDMs discussed in this Subsection, and we verified
that the results are identical (up to numerical precision) to
those obtained with the presented WD implementations.
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B. Van Der Pol Oscillator
In this Subsection, we show how a variable step-size can be

useful to improve the WD realization of a relaxation oscillator,
like the Van Der Pol oscillator [61] in Fig. 2(a), preventing
possible artifacts.

The circuit parameters are R = 1/G = 260 ⌦, L = 5.1
mH and C = 1.442 µF. The nonlinear conductor Gnl is
characterized by

f(v, i) = i+ ↵v � �v3 = 0 ,

where ↵ and � are two scalar coefficients. We set ↵ = 0.2648
and � = 0.000976.

The WD structure corresponding to the nonlinear circuit in
Fig. 2(a) is represented in Fig. 2(b). First, a WD implementa-
tion of the oscillator employing the trapezoidal method with
fixed step-size is validated, verifying that it matches with a cor-
responding Kirchhoff implementation based on nodal analysis
and a NR solver. These two implementations are performed
with an extremely high sampling frequency, i.e., FGT = 1024

kHz, in order to obtain a reliable ground truth. Then, other
WD implementations with fixed sampling rate Fs = 96 kHz
and variable step-size are developed. The variable step-size is
adapted according to the considerations about the estimated
LTE discussed in Subsection IV-E. As a constraint in the
process of adaptation of the step-size we impose that the
average number of samples per period of the periodic output
signal Vout matches the fixed step-size case, i.e., about 225

samples per period. Fig. 6(a) shows three versions of the Vout
signal; the green line with circles refers to the ground truth, the
blue line with circles refers to the WD implementation based
on fixed sampling rate, Fs = 96 kHz, while the red line with
asterisks refers to the WD implementation based on variable
step-size. A portion of Fig. 6(a) is zoomed in Fig. 6(b), which
clearly shows an artifact due to the abrupt change of signal
amplitude and a consequent high LTE, characterizing the fixed
step-size curve. Such an artifact, instead, is highly attenuated
when the adaptive step-size is used, because samples with high
estimated LTE are discarded and recomputed after reducing
the step-size. We deduce that it is possible to obtain a WD
implementation of the oscillator with variable step-size which
employs the same average number of samples per period of
the fixed step-size implementation (Fs = 96 kHz), but does
not suffer from the same artifacts due to discretization errors.

C. Dynamic Diode-based Ring Modulator
The dynamic digital model of the audio ring modulator

circuit presented in [62], [63] is reported in Fig. 7. A WD
implementation based on SIM of a similar circuit without
inductors and capacitors is described in [8]. In this Subsection,
we show that SIM can also be applied to the circuit in Fig. 7
containing dynamic elements and multiple nonlinear diodes,
according to the considerations discussed in Subsection V-B.
As in [8], the four diodes are assumed to be characterized by
the nonlinear constitutive equation (10). We set the parameters
of the diode model as Is = 10

�9 nA, ⌘ = 2.19, Vt = 26 mV,
Rs = 1 m⌦ and Rp = 100 k⌦. The turn ratios of the ideal
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Fig. 6. WD implementations of the Van Der Pol oscillator; three lines indicate
different versions of the output signal Vout (shifted in time for improving
visibility). Two trapezoidal methods with fixed and variable step-size are
compared in Fig. 6(a). The green line with circles indicates the ground truth.
The blue line with circles refers to the variable step-size case. The red line
with asterisks refers to the fixed step-size case. In both variable and fixed
step-size cases the average number of samples per period is 225. Fig. 6(b)
shows a zoomed detail of Fig. 6(a).

transformers are ✓/µ = �/µ = ⇠/� = ⌧/� = 1/2, where ✓,
�, µ, ⇠, ⌧ and � are the numbers of turns in each winding.
The other parameters of the circuit are LA = LB = 0.8 H,
CA = CB = Cd = 1 nF, Rd = 50 ⌦, Rin = 80 ⌦, Rc = 1 ⌦,
Rout = 600 ⌦. In the following, we will assume that the input
voltage signal and the carrier voltage signal are two sinusoids
Vin(t) = sin(2⇡fint) and Vc(t) = sin(2⇡fct) with fundamental
frequencies fin = 150 Hz and fc = 50 Hz, respectively,
although other sinusoids with different parameters have been
successfully tested. The output signal Vout is the voltage across
the resistor Rout. The WD structure corresponding to the circuit
in Fig. 7 is shown in Fig. 8. The 13-port WD junction in
Fig. 8 is characterized by a scattering matrix S which can be
computed using equation (4) and setting Q = [F, I], where I
is the 4⇥ 4 identity matrix and matrix F is defined as

F =

2

664

0.5 0.5 �0.5 �0.5 1 0 1 0 0

1 �1 1 �1 0 0 0 0 0

�0.5 0.5 0.5 �0.5 0 1 0 1 0

1 �1 1 �1 0 0 0 0 1

3

775 .

In a first implementation, WD models of capacitors and induc-
tors employ the traditional trapezoidal discretization method
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Fig. 7. Dynamic ring modulator circuit.
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Fig. 9. WD implementation based on SIM employing trapezoidal discretiza-
tion method with fixed step-size vs LTspice implementation.

with fixed step-size and the sampling frequency is Fs = 41

kHz. Fig. 9 shows the high matching between the output signal
Vout obtained by the WD implementation based on SIM and the
same signal obtained by a LTspice software implementation.

In order to test whether a LMSDM of higher order could
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Fig. 10. Comparison between WD implementations of the ring modulator
based on SIM employing trapezoidal method and BDF 3, both with fixed
step-size. The two curves represent the errors of Vout signals w.r.t. the ground
truth. The red line with asterisks refers to the trapezoidal method. The blue
line with circles refers to BDF 3.

provide better results in terms of accuracy, we performed a
comparison between the already tested WD implementation
employing the trapezoidal method and another WD imple-
mentation employing BDF 3, i.e., scattering relations (42)
and (43) with M = 3. In both implementations a fixed step-
size is used and the sampling frequency is Fs = 41 kHz.
A ground truth is obtained linearly interpolating the output
samples of a WD implementation employing the trapezoidal
method and sampling frequency FGT = 512 kHz. Two errors
are computed subtracting the ground truth to the output signals
Vout of the compared WD implementations. These two errors
are plotted in Fig. 10; the red line with asterisks indicates the
error obtained with the trapezoidal method, while the blue line
with circles indicates the error obtained with BDF 3. Fig. 10
shows that the error is generally smaller in amplitude when
BDF 3 is used. In particular, the MSE referred to the 0.05
seconds of simulation in the trapezoidal case is 1.34⇥ 10

�10,
while in the BDF 3 case it is 7.28⇥ 10

�11.
A WD implementation of the dynamic ring modulator

circuit using BDF 3 with variable step-size is tested in the last
experiment. An initial step-size hs = 1/(2Fs) with Fs = 41

kHz is set. The step-size is then gradually increased up to five
times with respect to the initial value as shown in Fig. 11(a).
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The obtained Vout signal is represented by the black line with
circles shown in Fig. 11(b) along with the ground truth (green
line) also used in the previous experiment. The corresponding
error, computed subtracting the ground truth to the output
signal Vout of the WD implementation based on BDF 3 with
variable step-size, is shown in Fig. 11(c). Let us now make a
comparison between the Vout signal in the variable step-size
case and the same signal in the fixed step-size case presented
in the previous experiment. As far as the MSE with respect
to the ground truth in the first 0.05 seconds of the simulation
is concerned, we get 5.48 ⇥ 10

�11 in the variable step-size
case versus the already computed MSE in the fixed step-size
case, i.e, 7.28⇥ 10

�11. Therefore, we get a comparable MSE
in the two cases, while reducing the number of samples in
the variable step-size case. In fact, the number of samples
employed for the first 0.05 seconds of the simulation is 1286

samples in the variable step-size case, versus 2048 in the fixed
step-size case.

VII. DISCUSSION, CONCLUSIONS AND FUTURE WORK

In this article, we presented general WD models of capaci-
tors and inductors based on LMSDMs with variable step-size
along with their general adaptation conditions. We showed that
the use of LMSDMs alternative to the trapezoidal method with
fixed step-size could be advantageous in various situations.
The results that we presented pave the way towards the mod-
eling of nonlinear WD structures characterized by adaptive dis-
cretization methods that change automatically according to the
properties of the processed signals. In this regard, it is impor-
tant to mention the fact that, when dealing with discretization
methods based on variable step-size, some operations on the
input and output signals of the WD structure are required for
making the implementation compatible with traditional digital
audio processing tools based on fixed sampling step. In fact,
an interpolation of the samples of the input signals should
be performed, so that an eventually non-uniform resampling
operation can be executed. Similarly, the non-uniformly spaced
samples of the output signals should be interpolated, so that a
resampling operation at a fixed rate can be performed.

Moreover, in this article, we showed how the WD fixed-
point method SIM, that we recently developed for efficiently
implementing circuits with multiple one-port nonlinearities,
can be extended to accommodate dynamic nonlinear circuits
using the proposed general WD models of dynamic elements.
SIM, therefore, proves promising for Virtual Analog modeling
of increasingly complex circuits. Future research will be
devoted to the application of SIM to dynamic active circuits
with multiple multi-port nonlinearities. Recent developments
in the convergence analysis of nonlinear delay-free loop filter
networks [63], [64], in fact, could help us find new theoretical
tools for studying the convergence of SIM applied to a broader
class of circuits than the one considered in [8], [39] and in
this article.

More generally, we showed how capacitors and inductors
can be implemented like time-varying resistive voltage (or
current) sources in the WD domain. It follows that the pro-
posed WD models of dynamic elements can be readily used in
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Fig. 11. WD implementation of the ring modulator based on SIM employing
BDF 3 with variable step-size. Fig. 11(a) shows the variation in time of the
step-size h[k]. Fig. 11(b) shows Vout signals; the green line refers to the
ground truth, while the black line with circles refers to the WD implementation
employing BDF 3 with variable step-size. Fig. 11(c) shows the error of Vout
signal w.r.t. the ground truth.
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conjunction with existing methods alternative to SIM for the
WD implementation of circuits with multiple nonlinearities
[27], [29], [38].

The proposed approach for the WD modeling of dynamic
elements could also be applied for generalizing the WD
models of time-varying reactances discussed in [65] to a larger
class of discretization methods.

Despite voltage waves considered in this article are the most
widespread in the literature on WDFs, WD structures based
on alternative types of waves, such as those characterized by
different units of measure [48], [57]–[59] or two free parame-
ters per port instead of one [36], [57], have recently proved to
possess peculiar interesting properties. WD models of dynamic
elements based on LMSDMs and generalized definitions of
waves, including the most used as particular cases, can be
straightforwardly derived combining the modeling approach
used in recent publications [48], [57], [58], [65] to the results
presented in this manuscript.

Finally, a systematic study on the accuracy and stability
properties of specific LMSDMs with variable step-size in WD
structures is postponed to future research.

REFERENCES

[1] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.

[2] K. Meerkötter and R. Scholz, “Digital simulation of nonlinear circuits
by wave digital filter principles,” in IEEE Int. Symp. Circuits Syst., May
8–11 1989, pp. 720–723.

[3] A. Sarti and G. De Sanctis, “Systematic methods for the implementation
of nonlinear wave-digital structures,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 56, pp. 460–472, Feb. 2009.

[4] G. De Sanctis and A. Sarti, “Virtual analog modeling in the wave-digital
domain,” IEEE Trans. Audio, Speech, Language Process., vol. 18, pp.
715–727, May 2010.

[5] J. Pakarinen and M. Karjalainen, “Enhanced wave digital triode model
for real-time tube amplifier emulation,” IEEE Trans. Audio, Speech,
Language Process., vol. 18, pp. 738–746, May 2010.

[6] R. C. D. Paiva, S. D’Angelo, J. Pakarinen, and V. Välimäki, “Emulation
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