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Abstract 

The objective of this work is the development of a fault diagnostic system for a shaker blower used in on-board 

aeronautical systems. Features extracted from condition monitoring signals and selected by the ELastic NET 

(ELNET) algorithm, which combines 𝑙1-penalty with the squared 𝑙2-penalty on model parameters, are used as 

inputs of a Multinomial Logistic regression (MLR) model. For validation, the developed approach is applied to 

experimental data acquired on a shaker blower system (as representative of aeronautical on-board systems) and 

on three additional experimental datasets of literature. The satisfactory diagnostic performances obtained show the 

potential of the method for developing sound diagnostic classifiers from a very large set of features, even when only 

few training data are available. 

Keywords: Fault Diagnostics, Shaker blower, Aerospace industry, ELastic NET (ELNET), Discrete 

Fourier Transform (DFT), Multinomial Logistic Regression (MLR). 

NOMENCLATURE 

ELNET: ELastic NET 

MLR: Multinomial Logistic Regression 

PHM: Prognostics and Health Management 

SMOS: Smart On-Board Systems 

CIRA: Italian Aerospace Research Centre 

ECS: Empirical Classification System 

DFT: Discrete Fourier Transform 

LASSO: Least Absolute Shrinkage Selection Operator 

CM: Condition Monitoring 

FCV: Fold Cross Validation 

𝐹: number of extracted features 

𝑁: number of available training examples 



𝐶: number of equipment type of defects 

𝑆: number of sensors  

𝑀: number of training units 

𝑓𝑠: sampling rate of sensor 𝑠 

𝑓: sampling rate common to all 𝑆 sensors 

𝑥𝑠
𝑚(𝜏):  𝜏𝑡ℎ sample recorded from the 𝑠𝑡ℎ sensor on the 𝑚𝑡ℎ training unit 

𝑇𝑠
𝑚: time of the last recorded sample from the 𝑠𝑡ℎ sensor on the 𝑚𝑡ℎ training unit 

𝑇𝑚: time of the last recorded sample common to all 𝑆 sensors on the 𝑚𝑡ℎ training unit 

𝒙𝑠
𝑚: vector in ℝ𝑇𝑚

containing all 𝑇𝑚 samples from the 𝑠𝑡ℎ sensor on the 𝑚𝑡ℎ training unit 

𝐿: number of samples in a time window 

𝑁𝑚: number of time windows extracted from signal recorded from sensor 𝑠 on the 𝑚𝑡ℎ training unit 

⌊∙⌋: floor functiom 

𝒙𝑚
𝑖𝑚 : 𝑖𝑚

𝑡ℎ training example obtained from windowing the signals recorded from the 𝑚𝑡ℎ training unit 

𝒙𝑠
𝑖𝑚 :  𝑖𝑚

𝑡ℎ time window of length 𝐿 extracted from signal recorded from sensor 𝑠 on the 𝑚𝑡ℎ training unit 

𝐷: training data 

𝒙𝑖: 𝑖𝑡ℎ training examples 

𝑦𝑖 : class of the 𝑖𝑡ℎ training example 

𝐶: number of different classes 

𝑦𝑡𝑒𝑠𝑡:  class of a new test example 

𝒙𝑡𝑒𝑠𝑡:  test example 

𝒙𝑠
𝑡𝑒𝑠𝑡: signal of length 𝐿 recorded from sensor 𝑠 on the test example 

𝒙𝑠
𝑖 : signal of length 𝐿 recorded from sensor 𝑠 on the 𝑖𝑡ℎ training example 

𝑋𝑠
𝑖[𝑘]: 𝑘𝑡ℎ DFT coefficient 

𝑍𝑠,𝑘
𝑖 : absolute value of 𝑋𝑠

𝑖[𝑘] 

𝐿̃: number of different harmonics extracted from a real signal of length 𝐿 

𝑓𝑘: 𝑘𝑡ℎ frequency 

Δ𝑓𝑎𝑙𝑙: frequency resolution 

𝒛𝑖: vector of DFT amplitudes extracted from the 𝑖𝑡ℎ training example 

𝒁𝑠
𝑖 : vector of DFT amplitudes resulting by applying DFT to signal recorded from sensor 𝑠 on the 𝑖𝑡ℎ training example 

𝐷̃: training data after performing feature extraction 

𝛽0,𝑐: bias term entering in the definition of the probability of being in class 𝑐 

𝜷𝑐: vector of model parameter of size 𝐹 entering in definition of the probability of being in class 𝑐 

𝑟𝑖𝑐 : binary variable equal to 1 if the 𝑖𝑡ℎ training example belongs to class 𝑐, 0 otherwise 

𝜔𝑖: weight for the 𝑖𝑡ℎ training example 

𝑁𝑦𝑖
: number of training examples of ground truth class 𝑦𝑖  



𝛼: free parameter that determines the importance of the 𝑙1-norm penalty and 𝑙2-norm penalty 

𝑃1: LASSO penalty 

𝑃2: ridge penalty 

𝑡: regularization parameter 

∥∙∥1: 𝑙1- norm of a vector  

∥∙∥2: 𝑙2- norm of a vector 

𝜆: regularization parameter  

𝒛𝑡𝑒𝑠𝑡:  vector of DFT amplitudes extracted from the test example 

𝑦̂𝑡𝑒𝑠𝑡:  predicted class of test example 𝒛𝑡𝑒𝑠𝑡 

𝛼𝑎: 𝑎𝑡ℎ candidate value for free parameter 𝛼 

𝐴: number of candidate values for free parameter 𝛼 

Λ: number of candidate values for regularization parameter 𝜆 

𝜆𝑚𝑖𝑛: smallest value considered for regularization parameter 𝜆 

𝜆𝑚𝑎𝑥 : largest value considered for regularization parameter 𝜆 

𝜖: ration between 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛 

𝐺: number of folds 

𝐷𝑔: 𝑔𝑡ℎ fold 

𝐼𝑔: index set of examples belonging to the 𝑔𝑡ℎ fold 

𝜆𝑢: 𝑢𝑡ℎ candidate value for regularization parameter 𝜆𝑢 

CVDg(λu): cross-validated deviance computed on the 𝑔𝑡ℎ fold setting 𝜆 = 𝜆𝑢 

MCVD(𝜆𝑢): mean cross-validated deviance setting 𝜆 = 𝜆𝑢 

𝛼𝑠𝑒𝑙: selected value of free parameter 𝛼 

𝜆𝑠𝑒𝑙: selected value of regularization parameter 𝜆 

 

1. INTRODUCTION 

Predictive maintenance is expected to reduce aircraft maintenance costs up to 30-40%, while 

increasing their availability up to 35%, with savings up to 700 million Euros per year in Europe [1], 

[2]. These bright expectations justify the increasing interest of the aerospace industry in Prognostics 

and Health Management (PHM) for on-board systems. In particular, the Italian PRO.R.A. program 

(PROgramma nazionale di Ricerche Aerospaziali) financed the SMOS (Smart On-Board Systems) 

project at the Italian Aerospace Research Centre (CIRA), which has among its goals the development 

of effective PHM technologies for on-board systems of aeronautical and aerospace vehicles.  

This work is positioned at the early stages of the SMOS project, with the goal of investigating novel 

PHM approaches through the application to representative case studies. To do this, a blower used by 



CIRA for environmental tests (i.e., an electromagnetic TIRA shaker) has been considered as first case 

study and an ad-hoc dataset has been built through experimental measurements, which serves as 

testbench to develop a fault diagnostic system for classifying the types of defects in blower 

components. 

Generally speaking, fault diagnostics of industrial equipment is based on the development of an 

Empirical Classification System (ECS) [3]-[11] trained on condition monitoring signals to classify 

the types of defects. 

With respect to diagnostics of rotating engines, such as the blowers and other aerospace capital 

systems, the current industrial practice generally uses Discrete Fourier Transform (DFT) to represent 

in the frequency domain the radial and axial vibration measurements provided by piezoresistive 

accelerometers, generally mounted on the bearings and/or on the stator casing (e.g., [12]-[13]). Other 

basis expansion methods such as discrete wavelet transform [14], Hilbert-Huang transform [15] are 

considered to this aim, although they are less frequently available than DFT in commercial software 

tools for vibration analysis. 

The application of DFT to raw vibration signals, which are typically sampled at high sampling rate 

(e.g., in the magnitude order of kHz up to MHz), provides a very large set of amplitudes at different 

frequencies, which will be referred to as extracted features. Since many of them are irrelevant for 

fault diagnostics and can even negatively affect the ECS performance, DFT amplitude spectra 

undergo a feature selection step [16]-[19], which aims at finding the smallest subset of the extracted 

features yielding the largest classification accuracy.  

In general, feature selection methods can be classified into three categories: filter, wrapper and 

embedding methods [18], [19]. Filter methods are used before the construction of the classification 

algorithm and rely on a numerical evaluation function, which estimates the expected classification 

performance of every extracted feature. Then, irrelevant and/or redundant features are discarded, 

whereas those with the largest expected performances are encoded in the classification model [18]. 

In wrapper approaches, the classification algorithm is used to map the possible subsets of extracted 

features onto a performance function including classification accuracy [17], [18]. The subset 

maximising this objective function is finally selected. Embedding methods directly learn the optimal 

subset of features during the training of the classification model itself. This is typically achieved by 

minimizing a loss function for classification, with a proper penalization/regularization term [18], [19].  

The main disadvantage of filter methods lies in that they are generally less performing than wrapper 

and embedding methods [18], [19], as filters do not account for the effects of the selected feature 



subset on the performance of the classification algorithm. Wrapper methods, however, are 

computationally less efficient than filters, since they require training a large number of classifiers. 

This becomes unfeasible for high dimensional classification problems (e.g., hundreds of features) 

[18], [19], in which wrapper methods can also lead to overfitting and high variance in the estimates 

of the ECS parameters [20]. Embedding methods provide a good compromise solution between filter 

and wrapper methods: they are less computationally intensive and less prone to overfitting than 

wrapper methods but, contrarily to filter methods, they interact with the classification model.  

Among the available embedding feature selection methods ([18], [19]), the Least Absolute Shrinkage 

Selection Operator (LASSO [20]-[22]) has been used in a few applications related to condition 

monitoring. For example, a LASSO binary logistic regression model is developed in [23] to identify 

the influencing factors of outages in smart grids, i.e., covariates such as daily precipitation, minimum 

and maximum temperatures. In [24], a One-Vs-All (OVA) system of LASSO binary logistic 

regression models has been developed for diagnosing bearing faults. The main limitations of the 

LASSO in fault diagnostics applications are related to the degradation of its performances when a) 

there are many highly correlated features among those extracted from the signals and b) the number 

of extracted features, 𝐹, is much larger than that of available training examples 𝑁. With respect to a), 

it has been shown that if there is a group of variables among which pairwise correlations are very 

high, then the LASSO tends to select only one feature of the group [20]-[22]. With respect to b), when 

the number of extracted features, 𝐹, is much larger than that of available training examples 𝑁, the 

LASSO selects at most 𝑁 features before it saturates [20]-[22]. This is a relevant issue for those fault 

diagnostics applications where few training data are available (e.g., safety-critical and high-values 

components of aerospace, nuclear and oil and gas industries characterized by very high reliability and 

unique or new designed components [25]). In these cases, the LASSO is not able to select the subset 

of relevant features maximizing the performance of the diagnostic ECS if its cardinality is larger than 

𝑁. 

For these reasons, in this work we resort to an embedding feature selection approach based on the 

ELastic NET (ELNET) regularization combined with a Multinomial Logistic Regression (MLR) 

classifier [20], [26]. The ELNET has been introduced in [26] to overcome the LASSO limitations 

discussed above and it has been proven to outperform the LASSO in terms of prediction accuracy on 

real case studies [20]-[22]. The ELNET combines the 𝑙1-penalty of the LASSO with a squared 𝑙2 

penalty (also known as ridge penalty); this latter shrinks the coefficients of correlated features towards 

each other contrarily to the LASSO penalty which picks one of them and discard the others [26]. 



To the Authors’ best knowledge, this is the first time that the ELNET-MLR embedding method is 

used for fault diagnostics, where the following characteristics makes it a breakthrough enhancement: 

• The ELNET-MLR allows extracting a very large set of features while not requiring large 

computational times to train the classifier. This is fundamental in industrial applications where 

the available knowledge of the degradation and failure behaviour of the equipment under 

investigation is scarce and, thus, a widespread search within the extracted features is necessary 

to identify the relevant information for fault diagnostics.  

• The results provided are easily understandable. This has a twofold justification: i) the ELNET-

MLR is capable of drastically reducing the number of features; ii) the MLR classifier is linear, 

which allows directly interpreting the importance of a feature in the identification of a given 

defect type. 

• The method can be used when few data are available, as the ELNET-MLR is less affected by 

overfitting than wrapper methods and does not suffer from the limitations of the LASSO. 

• Although the focus of this work is on DFT basis expansion, the ELNET-MLR can be naturally 

extended to accommodate the use of other signal representations such as discrete wavelet 

transform and its variants [14], Hilbert-Huang transform [15], etc. 

To be confident on the potential of the proposed approach for aerospace applications, the ELNET-

MLR is validated also on three benchmark case studies concerning diagnostics on motor house 

bearings and gearboxes. Upon additional validation, the diagnostic methodologies developed for the 

shaker blower will be exploited to improve maintenance on other on-board systems of aerospace 

vehicles. 

The remainder of the paper is organized as follows. Section 2 states the problem and describes the 

proposed diagnostic scheme. Section 3 provides details on the ELNET-MLR. Section 4 details the 

tuning of the parameters of the algorithms. In Section 5, we describe our approach to model 

assessment. The proposed methodology is validated on three different case studies of the literature in 

Section 6. In Section 7, the proposed method is applied to experimental data of a blower operated at 

CIRA plant. In Section 8, the methodology limitations and its possible developments are discussed. 

Finally, conclusions are drawn in Section 9. 

2. PROBLEM STATEMENT  

The problem of diagnosing the type of defect of an industrial equipment among 𝐶 different possible 

types of defects is framed as a 𝐶-classes classification problem.  We consider a component equipped 



with 𝑆 sensors collecting Condition Monitoring (CM) signals and we assume to have data recorded 

from 𝑀 different components (training units) similar to that currently monitored.  

Although in industrial applications each sensor is typically characterized by its own sampling rate 

𝑓𝑠, 𝑠 = 1, … , 𝑆, we assume for clarity of the notation that 𝑓𝑠 = 𝑓 for all 𝑆 sensors.  

Let 𝑥𝑠
𝑚(𝜏), 𝜏 = 0, … , 𝑇𝑠

𝑚, be the 𝜏𝑡ℎ sample recorded from the 𝑠𝑡ℎ sensor installed on the 𝑚𝑡ℎ training 

unit, where 𝑇𝑠
𝑚 denotes the index of the last recorded sample. For sake of clarity we also assume that 

𝑇𝑠
𝑚 = 𝑇𝑚 for all 𝑆 sensors. 

Every signal 𝒙𝑠
𝑚 ∈ ℝ𝑇𝑚

 is partitioned into windows containing 𝐿 samples. This way, we obtain 𝑁𝑚 =

⌊𝑇𝑚/𝐿⌋ training windows from the CM signal recorded from sensor 𝑠 on component 𝑚, 𝑠 = 1, … , 𝑆, 

𝑚 = 1, … , 𝑀.  

Then, we can lump together the signals belonging to the same window from all the 𝑆 sensors of a 

component 𝒙𝑚
𝑖𝑚 = {𝒙1

𝑖𝑚 , … , 𝒙𝑠
𝑖𝑚 , … , 𝒙𝑆

𝑖𝑚},  𝑖𝑚 = {1, … , 𝑁𝑚}, where 𝒙𝑠
𝑖𝑚 = [𝑥𝑠

𝑖𝑚[0], … , 𝑥𝑠
𝑖𝑚[𝐿 − 1]] =

[𝑥𝑠
𝑚[(𝑖𝑚 − 1) ⋅ 𝐿], … , 𝑥𝑠

𝑚[(𝑖𝑚 − 1) ⋅ 𝐿 + 𝐿 − 1]] ∈ ℝ𝐿 , 𝑠 = 1, … , 𝑆, 𝑖𝑚 = 1, … , 𝑁𝑚.  

Finally, all the 𝑁 = ∑ 𝑁𝑚𝑀
𝑚=1  training examples are appended to form a unique training set of 𝑁 

input-output pairs 𝐷 = {𝒙𝑖, 𝑦𝑖}
𝑖=1,..𝑁

 where the input of the i-th example is 

𝒙𝑖 = 𝒙𝑚
𝑖𝑚 , 𝑚 = min{𝑗|∑ 𝑁𝑘 ≥ 𝑖, 𝑗 ≤ 𝑀

𝑗
𝑘=1 } 

𝑖𝑚 = {𝑖 − ∑ 𝑁𝑘

𝑚−1

𝑘=1

𝑚 > 1

𝑖 otherwise

 

(1)    

whereas the output 𝑦𝑖 ∈ {1, … , 𝐶} is the corresponding example class (i.e., a label of the type of 

defect). The final objective is the prediction of the class 𝑦𝑡𝑒𝑠𝑡 of a new test example 𝒙𝑡𝑒𝑠𝑡 =

{𝒙1
𝑡𝑒𝑠𝑡, … , 𝒙𝑠

𝑡𝑒𝑠𝑡, … , 𝒙𝑆
𝑡𝑒𝑠𝑡}, 𝒙𝑠

𝑡𝑒𝑠𝑡 ∈ ℝ𝐿 , 𝑠 = 1, … , 𝐿, using the last 𝐿 measurements collected from the 

test equipment. 

3. PROPOSED METHODOLOGY  

The first step in the development of the proposed diagnostic classifier is the extraction of relevant 

features from the raw signals 𝒙𝑠
𝑖 . To this aim, according to the current industrial practice, we apply 

the Discrete Fourier Transform (DFT) to each signal 𝒙𝑠
𝑖 , resulting in the following signal frequency-

domain representation 



𝑋𝑠
𝑖[𝑘] =

1

𝐿𝑠
∑ 𝑥𝑠

𝑖[𝑡]𝑒−
2𝜋𝑗𝑡𝑘

𝐿

𝐿−1

𝑡=0

   𝑘 = 0, … , 𝐿 − 1 (2)    

Then, we consider the DFT amplitudes as candidate features to be given in input to the diagnostic 

classifier 

𝑍𝑠,𝑘
𝑖 = |𝑋𝑠

𝑖[𝑘]| = √Re(𝑋𝑠
𝑖[𝑘])

2
+ Im(𝑋𝑠

𝑖[𝑘])
2

   𝑘 = 0, … , 𝐿 − 1 (3)    

where Re(⋅) and Im(⋅) denote the real and imaginary part of their complex number argument, 

respectively. Since the observed signals are real, i.e., 𝑥𝑠
𝑖[𝑡] ∈ ℝ, then 𝑍𝑠,𝑘

𝑖 = 𝑍𝑠,𝐿−𝑘
𝑖 , whereby the DFT 

amplitude features 𝑍𝑠,𝑘
𝑖 , 𝑘 = 0, … , 𝐿̃ =

𝐿

2
− 1, are considered, only. Notice that 𝑍𝑠,𝑘

𝑖  is the amplitude 

corresponding to frequency 𝑓𝑘 = 𝑘 ∙ Δ𝑓𝑎𝑙𝑙 , where Δ𝑓𝑎𝑙𝑙 = 𝑓𝑎𝑙𝑙/(2𝐿̃). 

The matrix of signals 𝒙𝑖, is therefore, transformed into a 𝐹 = 𝑆 ∙ 𝐿̃-dimensional vector of DFT 

amplitude features 𝒛𝑖 = [𝒁1
𝑖 ⋯ 𝒁𝑠

𝑖 ⋯ 𝒁𝑆
𝑖 ], obtained by sequentially appending the 𝐿̃ -dimensional 

vectors 𝒁𝑠
𝑖 = [𝑍𝑠,0

𝑖 , … , 𝑍𝑠,𝐿̃−1
𝑖 ]. Notice that in many industrial applications 𝐹 ≫ 𝑁, which entails that 

the number of training examples, 𝑁, is too small for an accurate estimate of the parameters of a 

classifier with in input all the extracted features. Further, it is known that many irrelevant features 

unnecessarily increase the complexity of the classification problem and can degrade the classification 

performance [7], [17]. Thus, the development of the diagnostic classifier is generally preceded by 

feature selection. To this aim, the ELNET shrinkage method is here combined with MLR. Figure 1 

pictorially shows the proposed DFT and the ELNET-MLR based diagnostic system. 

 

Figure 1. The proposed diagnostic system. 

3.1 Elastic net multinomial logistic regression  

In this Subsection, we briefly introduce the ELNET-MLR classification model. The interested reader 

is referred to [20]-[22] and [26] for further details. 



Consider the training set  𝐷̃ = {𝒛𝑖, 𝑦𝑖}
𝑖=1,…,𝑁

. The probability that observation 𝒛𝑖 corresponds to class 

𝑐 ∈ {1, … , 𝐶} is modelled as  

ℙ(𝑦𝑖 = 𝑐|𝒛𝑖) =
exp(𝛽0,𝑐 + 𝜷𝑐

𝑇𝒛𝑖)

∑ exp(𝛽0,𝑝 + 𝜷𝑝
𝑇𝒛𝑖)𝐶

𝑝=1

 (4) 

where 𝛽0,𝑐 and 𝜷𝑐 = [𝛽𝑐,1, … , 𝛽𝑐,𝐹] ∈ ℝ𝐹 , 𝑐 = 1, … , 𝐶,  are unknown model parameters, whereas the 

denominator is for normalization. Notice that the overall number of parameters to be estimated is 𝐶 +

𝐶 ∙ 𝐹. The negative log-likelihood of the training data reads [20], [22], 

𝑙 ({𝛽0,𝑐 , 𝜷𝑐}
𝑐=1

𝐶
) = −

1

𝑁
∑ 𝜔𝑖 [∑ 𝑟𝑖𝑐 ⋅ (𝛽0,𝑐 + 𝜷𝑐

𝑇𝒛𝑖) − log

𝐶

𝑐=1

{∑ exp(𝛽0,𝑐 + 𝜷𝑐
𝑇𝒛𝑖)

𝐶

𝑐=1

}]

𝑁

𝑖=1

 (5) 

where 𝑟𝑖𝑐 is equal to 1 if 𝑦𝑖 = 𝑐 and 0 otherwise, and a weight 𝜔𝑖 is associated to each example to account 

for an unbalanced training set (i.e., the number of training examples per class can be very different 

among different classes). In this work, we have resorted to a cost sensitive approach based on class 

weight balancing, where different weights are assigned to examples of different classes [27]. These 

have been set as ([27], [28]) 

𝜔𝑖 =
𝑁

𝐶𝑁𝑦𝑖

 (6) 

where 𝑁𝑦𝑖
 denotes the number of training examples of ground truth class 𝑦𝑖 ∈ {1, … , 𝐶}. Notice that 

the 𝑖𝑡ℎ training example is given a weight inversely proportional to the number of instances belonging 

to its class and that ∑ 𝜔𝑖 = 𝑁𝑁
𝑖=1 . The parameters of the ELNET-MLR model [20], [22] are estimated 

by solving the following convex problem 

minimize
{𝛽0,𝑐,𝜷𝑐}

𝑐=1

𝐶
   

𝑙 ({{𝛽0,𝑐, 𝜷𝑐}
𝑐=1

𝐶
})

subject to 𝛼𝑃1(({𝜷𝑐}𝑐=1
𝐶 )) + (1 − 𝛼)𝑃2(({𝜷𝑐}𝑐=1

𝐶 )) ≤ 𝑡 

 (7) 

where 𝑃1(⋅) and 𝑃2(⋅) denote the LASSO and the ridge penalties  

𝑃1(({𝜷𝑐}𝑐=1
𝐶 )) = ∑ ‖𝜷𝑐‖1

𝐶
𝑐=1

‖𝜷𝑐‖1 = ∑ |𝛽𝑐,𝑒|𝐹
𝑒=1  

 (8) 

𝑃2(({𝜷𝑐}𝑐=1
𝐶 )) = ∑ ‖𝜷𝑐‖2

2𝐶
𝑐=1

‖𝜷𝑐‖2
2 = ∑ |𝛽𝑐,𝑒|

2𝐹
𝑒=1  

 (9) 



𝑡 > 0 is a free parameter that determines the amount of regularization and the parameter 𝛼 ∈ [0,1] is 

a free parameter that determines the importance of the 𝑙1-norm penalty 𝑃1 (LASSO penalty) and 𝑙2-

norm penalty 𝑃2 (ridge penalty). 

By Lagrangian duality, there is a one-to-one correspondence between the constrained optimization 

problem in Eq. (7) and its Lagrangian form [20], [22]: 

minimize
{𝛽0,𝑐,𝜷𝑐}

𝑐=1

𝐶
   

𝑙 ({{𝛽0,𝑐, 𝜷𝑐}
𝑐=1

𝐶
}) + 𝜆 [𝛼𝑃1(({𝜷𝑐}𝑐=1

𝐶 )) + (1 − 𝛼)𝑃2(({𝜷𝑐}𝑐=1
𝐶 ))] (10) 

where 𝜆 > 0 is a user-specified regularization parameter: the smaller the value of 𝜆, the larger the 

level of regularization imposed [20], [22]. From Eq. (10), the penalty applied to a single coefficient 

𝜃𝑐,𝑒 (without considering the regularization term 𝜆 > 0) is  

𝛼|𝛽𝑐,𝑒| + (1 − 𝛼)𝛽𝑐,𝑒
2  (11) 

so that when 𝛼 = 1, it reduces to the 𝑙1-norm or LASSO penalty, whereas when 𝛼 = 0, it reduces to 

the squared 𝑙2-norm or ridge penalty. A geometrical interpretation of the ELNET penalty is provided 

in [20], [22]. To solve the regularization problem in Eq. (10), an efficient cyclical coordinate descent 

algorithm can be employed (see [20], [22], for further details). 

Finally, the class (i.e., the type of defect) of a new test example 𝒛𝑡𝑒𝑠𝑡 is predicted as  

𝑦̂𝑡𝑒𝑠𝑡 = argmax 
𝑐=1,..,𝐶   

exp(𝛽0,𝑐̂ + 𝜷𝑐
𝑇̂𝒛𝑡𝑒𝑠𝑡)

∑ exp(𝛽0,𝑝̂ + 𝜷𝑝
𝑇̂𝒛𝑡𝑒𝑠𝑡)𝐶

𝑝=1

 (12) 

where {𝛽0,𝑐̂, 𝜷𝑐̂}
𝑐=1

𝐶
are the parameter estimates resulting from the minimization of the convex 

program in Eq. (10). 

 

4.   HYPERPARAMETER TUNING  

The ELNET-MLR model encodes two hyperparameters, which must be properly tuned: 

• the regularization parameter 𝜆 > 0 used in Eq. (10); 

• the weights 𝛼 ∈ [0,1] used in Eq (10).  

For robust hyperparameter setting, we first consider a sequence 𝛼𝑎, 𝑎 = 1 … , 𝐴 of increasing values 

of 𝛼. For every 𝛼𝑎, we numerically solve Eq. (10) for a sequence of Λ values 𝜆𝑢, uniformly spaced 

on the log-scale in the interval [𝜆𝑚𝑖𝑛,𝜆𝑚𝑎𝑥] [20], [22],  where the value 𝜆𝑚𝑎𝑥 is set to be the largest 



value for which the estimated vectors 𝜷𝒄
𝝀𝒎𝒂𝒙̂ = 𝟎, 𝑐 = 1, . . , 𝐶, (i.e., such that the optimal solution is 

the all-zeroes vector) and 𝜆𝑚𝑖𝑛 = 𝜖𝜆𝑚𝑎𝑥, 𝜖 ∈ (0,1) [20], [22]. Then, we randomly partition the 

training set in 𝐺 roughly equal-sized folds 𝐷𝑔, 𝑔 = 1, … , 𝐺, with  𝐷̃ = ⋃ 𝐷𝑔
𝐺
𝑔=1 . Let 𝐼𝑔 be the index 

set of examples belonging to the 𝑔𝑡ℎ fold, i.e., 𝐼𝑔 = {𝑖: (𝒙𝑖, 𝑦𝑖) ∈ 𝐷𝑔}; we compute for each value of 

𝜆𝑢 the Cross-Validated Deviance (CVD) 

CVD𝑔(𝜆𝑢) = −2 ∑ log 𝑝̂

𝑖∈𝐼𝑔

(𝑦𝑖) (13) 

when fitting the model using the remaining 𝐺 − 1 folds. In Eq. (13), 𝑝̂(𝑦𝑖) is the estimated probability 

of example 𝑖 ∈ 𝐼𝑔 being assigned to its ground truth class 𝑦𝑖. This step is repeated for 𝑔 = 1, … , 𝐺 

and the Mean Cross-Validated Deviance (MCVD) is computed [18], [20]: 

MCVD(𝜆𝑢) =
1

𝐺
∑ CVD𝑔(𝜆𝑢)

𝐺

𝑔=1

 (14) 

Then, we select the pair (𝛼𝑠𝑒𝑙, 𝜆𝑠𝑒𝑙) such that 

 (𝛼𝑠𝑒𝑙, 𝜆𝑠𝑒𝑙) = argmin
𝑢=1,..,Λ

𝑎=1,…,𝐴 

 MCVD(𝜆𝑢) 
(15) 

 

5.   MODEL ASSESSMENT  

To assess the classification performance of the proposed method, we consider test data different from 

those used to develop the ELNET-MLR model and set the optimal hyperparameter𝑠  (𝛼𝑠𝑒𝑙, 𝜆𝑠𝑒𝑙) in a 

twice-nested cross validation procedure. The outer loop is used to compute the performance metrics, 

whereas the inner loop is used to set the optimal hyperparameters (𝛼𝑠𝑒𝑙, 𝜆𝑠𝑒𝑙). The performance 

metrics considered are i) the mean classification accuracy (i.e., the mean percentage of examples 

correctly classified over the different test folds); ii) its standard deviation; iii) the minimum 

classification accuracy over the different test folds.  

The twice-nested cross validation procedure has been applied in three different settings: 

• Setting 1 (S1): we randomly partition the available data into 5 folds; then, the outer loop is used 

to compute the overall classification accuracy (i.e., the ratio between the number of test examples 

correctly classified and the total number of test examples), whereas the inner loop is used to set 

the regularization hyperparameter (see Section 4). This is shown in Figure 2. At each iteration, 



the training set contains the 80% all the available data. This is the setting typically used in the 

literature [20]. 

• Setting 2 (S2): we randomly partition the available data into 5 folds, containing approximatively 

20% of all the available data each. Each single fold is used to train the classifier, which is tested 

on the remaining 4 folds (see Figure 3). In the inner loop, each training fold is further partitioned 

into 5 folds to set the regularization parameter (see Section 4). 

• Setting 3 (S3): we randomly partition the available data into 20 folds, containing approximately 

5% of all the available data each. Each single fold is used to train the classifier, which is tested 

on the remaining 19 folds (see Figure 3). In the inner loop, each training fold is further partitioned 

into 5 folds to set the regularization parameter (see Section 4). 

Notice that in each setting the random sampling has been performed so that each (both inner and 

outer) fold approximately preserves the ratio among the number of examples in different classes  

We explicitly highlight that differently from setting S1, where one fold is left out for testing, in 

settings S2 and S3 only one fold is used to train the classification model. Settings S2 and S3 are 

introduced to estimate the expected generalization error in the stressing case, where few data are 

available for model training.  

 

 

Figure 2: Twice nested 5- Fold Cross Validation (FCV): the inner loop is used to select the best regularization 

parameter 𝝀, the outer loop is used to estimate classification accuracy (setting S1). 



 

Figure 3: Twice-nested FCV, with single fold used for training on the outer loop (settings S2 and S3). 

 

6. VALIDATION CASE STUDIES 

The proposed ELNET-MLR diagnostic method has been verified with respect to data extracted from 

three benchmarks, before its application to the experimental data acquired on the CIRA blower. In all 

case studies, CM signals have been partitioned into non-overlapping windows of length 𝐿 (whose 

value depends on the case study), then, DFT have been performed on each window resorting to Fast 

Fourier Transform (FFT) algorithm. This way,  𝐿̃ amplitude DFT amplitude features have been 

extracted from each signal window. Further, the extracted features have been scaled to have zero 

mean and unit variance (with respect to the training set). In cases where the sampling frequency 

changes among the different CM signals referring to the same physical quantity a down-sampling 

preprocessing step has been performed. 

The setting of hyperparameters (𝛼, 𝜆), have been performed according to the procedure of Section 4 

with 𝛼 ∈ {0.15,0.25,0.50, 0.75,0.95,1}, and 𝜆 assuming Λ = 100 different values 𝜆𝑢 uniformly 

spaced on log-scale starting from 𝜆𝑚𝑎𝑥, which  has been computed as discussed in [20], [22], to 

𝜆𝑚𝑖𝑛 = 𝜖𝜆𝑚𝑎𝑥 with 𝜖 = 10−3.  

All computations have been performed using an Intel Core i7-7770 CPU at 3.60 GHz processor with 

8 GB RAM in MATLAB 2017b environment. 

6.1. Bearing fault diagnostics: Case Western Reserve University bearing dataset 

The Case Western Reserve University (CWRU) bearing dataset [29] contains vibrational signals 

collected during experimental tests on an engine with defective bearings. The test stand consists of a 

2 hp motor, a torque transducer/encoder, a dynamometer, and control electronics. The test bearings 

support the motor shaft. Single point faults were introduced to the test bearings using electro-



discharge machining at four different motor speeds (1730, 1750, 1772, 1797 Round per Minute 

(RPM)). Table 1 reports the 𝐶 = 14 types of considered defects. Although the dataset contains data 

collected with defects on both single-point drive end and fan end, we have only considered drive end 

bearing defects, as this allows comparing the proposed method with a larger number of works of 

literature. Vibration data were collected by 𝑆 = 2 accelerometers, attached to the housing through 

magnetic bases. Accelerometers were placed at the 12 o’clock position on the drive end and fan end 

of the motor housing. Vibration signals were collected using a 16 channel DAT recorder at sampling 

frequency 12 KHz.  

Bearing condition Fault Diameter Label/Class Number of 

Examples 

Normal - 1 474 

Inner Race Fault 7 2 476 

Inner Race Fault 14 3 474 

Inner Race Fault 21 4 475 

Balls Fault 7 5 487 

Balls Fault 14 6 474 

Balls Fault 21 7 472 

Outer race fault located at 6 o’ clock (directly in the load zone) 7 8 474 

Outer race fault located at 6 o’ clock (directly in the load zone) 14 9 473 

Outer race fault located at 6 o’ clock (directly in the load zone) 21 10 475 

Outer race fault located at 3 o’clock (orthogonal to the load zone) 7 11 475 

Outer race fault located at 3 o’clock (orthogonal to the load zone) 21 12 475 

Outer race fault located at 12 o’clock 7 13 474 

Outer race fault located at 12 o’clock 21 14 476 

 

Table 1: Label assigned to each bearing condition. 

6.1.1 Feature Extraction 

Each vibration signal is segmented using a fixed time window of approximately 0.086 seconds, which 

contains 𝐿 = 210=1024 samples. Table 1, last column, reports the number of examples obtained for 

each class. The total number of available examples (𝒙𝑖, 𝑦𝑖) is 6654. From each time window, 𝐿̃ =

512, 𝑠 = 1, … ,2, DFT amplitude features have been extracted. Since these features are extracted from 

the signals measured by 𝑆 = 2 different accelerometers, the total number of features extracted is 𝐹 =

1024. Figure 4 shows the features (amplitude spectrum) extracted from an example in normal 

condition. 

The number of MLR parameters to be estimated is (𝐹 + 1) × 𝐶 = (1024 + 1) × 14 = 14350. This 

is larger than the number of training examples, which are 80% (S1 cross validation setting), 20% (S2 



cross validation setting) and 5% (S3 cross validation setting) of the available data (i.e., roughly, 

0.80*6654 ≈ 5323 (S1), 0.20*6654 ≈ 1330 (S2) and 0.05*6654 ≈ 332 (S3), respectively). 

 

Figure 4: Extracted features from an example in normal condition (top, amplitude spectrum from drive end 

sensor; down, amplitude spectrum from fan end sensor) 

6.1.2 Results 

Table 2 compares the performance of the proposed method in settings S1, S2 and S3 (last three rows) 

with those obtained by other recent methods of the literature, which use supervised approaches with 

percentage of examples to train the classifier ranging in 20-75% of the total available set. 

From Table 2, we can conclude that: 

• Methods [30]-[32] build the ECS based on feature extraction and, then, feature dimensional 

reduction and/or feature selection. Comparing the results, we can see that the ELNET-MLR 

outperforms these methods, even when only 5% of the available data is used for classification 

model training. 

• In [33]-[35], feature extraction feeds a Deep Neural Networks (DNN) architecture for building 

the ECS. In particular, [33]-[34] use DFT amplitude spectrum as in the present paper. The 

ELNET-MLR performs better than [33]-[34] even if we use only the 5% of the available data 

for classification model training.  

• The methods in [36]-[37] do not require any feature extraction step; they aim at directly 

learning a good data representation from vibration signals. ELNET-MLR yields significantly 



better performance than [36] and, particularly, than [37], where only 4 classes (instead of 14) 

are considered.  

• The good performances of the ELNET-MLR in setting S3 highlight that this method is 

particularly suitable when few data are available. On the contrary, the effective training of 

deep architectures in the same setting is a very difficult task. 

• Work Method Considered classes Training 

examples 

(%) 

Test accuracy 

(%) 

 

[30] 

Wavelet Kernel Local Fisher 

Discriminant Analysis (WKFDA) 

1-2-3-4-5-6-7-8-9-10 40 98.80 

[31] Bi-spectrum based features 

combined with Support Vector 

Machines (SVM) 

Normal, Inner Race Fault, Balls 

Fault, Outer Race fault at 3 o’ 

clock (directly in the load zone) 

(i.e., classes 2-3-4, 5-6-7 and 8-9-

10 are considered as a unique 

class) 

50 96.98 

[32] Time, frequency, time-frequency 

domain features followed by Fisher 

Discriminant Analysis dimensional 

reduction and fuzzy ARTMAP 

neural network. 

1-2-3-4-6-9 50 99.07 

[33] Deep Neural Networks fed by DFT 

amplitude spectrum 

1-2-3-4-5-6-7-8-9-10 50 99.68 ± 0.22 

[34] Deep Output Kernel Learning 

(DOKL) machines fed by DFT 

amplitude spectrum 

2-3-4-5-6-7-8-9 70 99.63 

[35] Hierarchical Deep Belief Networks 

fed by Wavelet Packet Transform 

(WPT) features. 

1-2-3-4-5-6-7-8-9-10 50 99.03 

[36] 

 

Ensemble deep autoencoder 1-2-3-4-5-6-7-8-9-10-11-12 75 97.12 ± 0.11 

[37] Hierarchical Extreme Learning 

Machines (HELM) 

Normal, Inner Race Fault, Balls 

Fault, Outer Race fault at 3 o’ 

clock (directly in the load zone) 

(i.e., classes 2-3-4, 5-6-7 and 8-9-

10 are considered as a unique 

class) 

10 92.34 

Proposed 

Method 

(S1) 

ELNET-MLR fed by DFT 

amplitude features 

1-2-3-4-5-6-7-8-9-10-11-12-13-

14 

80 Mean:100.00 ±𝟎. 𝟎𝟎 

Minimum: 100.00 

Proposed 

Method 

(S2) 

ELNET-MLR fed by DFT 

amplitude features 

1-2-3-4-5-6-7-8-9-10-11-12-13-

14 

20 Mean: 99.98±𝟎. 𝟎𝟏 

Minimum: 99.96 

Proposed 

Method 

(S3) 

ELNET-MLR fed by DFT 

amplitude features 

1-2-3-4-5-6-7-8-9-10-11-12-13-

14 

5 Mean: 99.80±𝟎. 𝟏𝟖 

Minimum: 99.12 

 

Table 2.  Overall classification accuracy of different methods which use a supervised approach. 

6.2. Bearing fault diagnostics II: the MFPT bearing dataset 

The MFPT bearing dataset [38] contains  vibration signals gathered from 𝐶 = 3 different bearing 

defect types from which 𝑁 =913 examples are extracted. Data of bearing in normal conditions were 

collected for six seconds at a sampling rate of 97656 Hz, with 270 lbs of load. Seven inner race faults 

vibrational data were collected for three seconds at sampling frequency of 48848 Hz, with varying 

loads 0, 50, 100, 140, 200, 250 and 300 lbs. Three outer race faults vibrational data were collected 



for six seconds at sampling rate of 97656 Hz and seven additional outer race faults vibrational data 

were collected for three seconds at sampling rate of 48848 Hz with loads 25, 50, 100, 150, 200, 250, 

and 300 lbs [38]. The data recorded at sampling frequency of 97656 Hz are down-sampled by a factor 

of 2 to match data recorded at 48848 Hz. Table 3 reports the number of available examples for each 

class of defect. 

Bearing condition Label/Class Number of 

Examples 

Normal 1 213 

Inner Race Fault 2 245 

Outer Race Fault 3 458 

 

Table 3: Label assigned to each bearing condition. 

6.2.1 Feature Extraction 

Each vibration signal is partitioned using a fixed time window of approximately 0.042 seconds, which 

contains 𝐿 = 212 = 4096 samples. Table 3, last column, reports the number of examples obtained 

from each class. The total number is 1016. From each time window, 𝐹 = 𝐿̃ = 2048 DFT amplitude 

features have been extracted. Figure 5 shows the extracted features (amplitude spectrum) from 

examples belonging to classes 1, 2 and 3. 

 



Figure 5: Extracted features from an example in class 1 (top), 2 (middle) and 3 (bottom). 

The number of MLR parameters to be estimated is (2048 + 1) × 3 = 6147. This is larger than the 

number of training examples, which are 80% (S1), 20% (S2) and 5% (S3) of the available data (i.e., 

roughly, 812, 203 and 50, respectively). 

6.2.2. Results 

Table 4 compares the performance of the proposed method in settings S1, S2 and S3 (last three rows) 

with those of the works available in the literature. 

Work Method 
Training 

examples (%) 

Test accuracy 

(%) 

[39] Convolution Neural Network (CNN) fed by Continuous Wavelet 
Transform (CWT) scalogram 

Not declared 99.90 

[40] Convolutional Neural Network Not declared 98.18 

Proposed 
Method 

 

ELNET-MLR fed by DFT amplitude features 80 Mean: 𝟏𝟎𝟎. 𝟎𝟎 ± 𝟎. 𝟎𝟎 

Minimum: 𝟏𝟎𝟎. 𝟎𝟎 

Proposed 

Method 
 

ELNET-MLR fed by DFT amplitude features 20 Mean: 𝟏𝟎𝟎. 𝟎𝟎 ± 𝟎. 𝟎𝟎 

Minimum: 𝟏𝟎𝟎. 𝟎𝟎 

Proposed 

Method 
 

ELNET-MLR fed by DFT amplitude features 5 Mean: 𝟗𝟗. 𝟎𝟕 ± 𝟏. 𝟐𝟏 

Minimum: 95. 𝟕𝟒 

 

Table 4.  Overall classification accuracy of different recent methods which uses a supervised approach. 

From Table 4, we can conclude that: 

• when comparing the proposed method with [39], which is a supervised approach requiring a 

feature extraction step followed by the training of Convolutional Neural Network (CNN), our 

method performs slightly better if at least the 20% of the available data is used for 

classification model training. Notice that in [39] features are extracted from the Continuous 

Wavelet Transform (CWT) scalogram derived from vibrational signal. The considerations 

above about the simplicity and clarity of feature extraction in the ELNET apply to this case, 

as well. 

• when comparing the proposed ELNET-MLR method with [40], which does not require any 

feature extraction step, our method provides superior performance.  

Finally, notice that the classification accuracy is still very large when the percentage of the training 

size is 5% of the available data which corresponds to only roughly 50 examples available for training.  

6.3. Gear-Box fault diagnostics 

We consider the radial vibration signals provided in [41], which were acquired from a gearbox setup 

(see Figure 6) in three different gear conditions (Table 5): healthy, one chipped tooth, and three worn 



teeth in helical gears. Table 5 reports the assigned labels to the gear box conditions. Acceleration 

signals were recorded for a duration of 10 seconds for each of the three gear box conditions, at 

sampling rate 10 KHz. 

 

Figure 6: Schematic of the setup of the tested gear-box used in [37] (Image taken therein). 

 

Gear-box condition Label Number of 

examples 

Normal 1 97 

One chipped tooth 2 97 

Three worn teeth in helical gears. 3 97 

 

Table 5: Label assigned to each gear-box condition. 

6.3.1 Feature Extraction 

Each vibration signal has been partitioned using a fixed time window of 0.1024 s, which corresponds 

to time windows of 210 samples. Table 5, last column, reports the number of examples obtained for 

each class. The total number is 291. From each time window, 𝐹 = 𝐿̃ = 512 DFT amplitude features 

are extracted. Figure 7 shows the extracted features (amplitude spectrum) from an example belonging 

to classes 1, 2 and 3. 

The number of MLR parameters to be estimated is (512 + 1) × 3 = 1539. This is larger than the 

number of training examples, which are 80% (S1), 20% (S2) and 5% (S3) of the available data (i.e., 

roughly, 232, 58 and 15, respectively). 



 

Figure 7: Extracted features from an example in class 1 (top), 2 (middle) and 3 (bottom). 

6.3.2 Results 

To the best of our knowledge, this case study has been used to validate the proposed diagnostic system 

only in [41]. The results therein are compared with those of the proposed method in Table 6.  

Work Method Training 
examples (%) 

Test accuracy 
(%) 

 
[41] 

Local Gaussian correlation of wavelet 
coefficients and linear Support Vector 

Machines (SVM) 

37.50 99.78 

Proposed Method ELNET-MLR fed by DFT amplitude 
features 

80 Mean:𝟏𝟎𝟎. 𝟎𝟎 ± 𝟎. 𝟎𝟎 

Minimum: 𝟏𝟎𝟎. 𝟎𝟎 

Proposed Method ELNET-MLR fed by DFT amplitude 

features 

20 Mean: 𝟏𝟎𝟎. 𝟎𝟎 ± 𝟎. 𝟎𝟎 

Minimum: 𝟏𝟎𝟎. 𝟎𝟎 

Proposed Method ELNET-MLR fed by DFT amplitude 
features 

5 Mean: 𝟗𝟗. 𝟗𝟏 ± 𝟎. 𝟑𝟐 

Minimum: 98. 𝟖𝟓 

 

Table 6. Overall classification accuracy of different methods which use a supervised approach. 

From Table 6, we can conclude that the ELNET-MLR provides slightly better performance than [41] 

also in setting S3. One additional main advantage of the proposed method with respect to [41] is that 

after turning to the frequency domain, no further hand-crafted feature extraction step is required. On 

the contrary, in [41] an ad-hoc method based on local Gaussian correlation is developed to extract 

relevant features from the CWT scalograms. 



6.4.   Discussion about the results of the ECS based on ELNET-MLR  

Results in Sections 6.1-6.3 show that the proposed ELNET-MLR based ECS fed by DFT amplitude 

features provides very accurate classification predictions. Further, the method has proven to be 

capable of drastically reducing the number of features: Tables 7, 8 and 9 report the average numbers 

of features selected for setting S1 in the three case studies. These are much smaller than the 

corresponding numbers of parameters to be estimated (Table 10). Finally, computational times are 

very encouraging (Table 10). These results motivate the use of the proposed ECS for the problem of 

diagnosing on-board aeronautical systems faults.  

Class 𝒄 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of nonzero 

entries 

of {𝛽0,𝑐, 𝛽𝑐}
𝑐=1

𝐶
 

(maximum = 1025)  

4.60 

(0.90) 

13.80 

(2.70) 

13.00 

(1.22) 

15.20 

(2.16) 

22.00 

(3.16) 

15.60 

(3.43) 

25.40 

(3.28) 

26.60 

(3.64) 

22.00 

(1.41) 

24.40 

(2.08) 

12.80 

(0.83) 

14.80 

(1.92) 

18.80 

(1.92) 

17.60 

(2.5) 

 

Table 7: Mean number of nonzero entries of parameter vector {𝛽𝟎,𝒄, 𝜷𝑐}, 𝒄 = 𝟏, … , 𝑪, and its standard deviation 

over the 5 CV folds in setting S1 for the case study discussed in Subsection 6.1 (CWRU bearing dataset [26]). 

Class 𝒄 1 2 3 

Number of nonzero entries 

of {𝛽0,𝑐, 𝛽𝑐}
𝑐=1

𝐶
 

(maximum = 2049) 

41.00 

(4.35) 

31.00 

(4.31) 

37.80 

(3.76) 

 

Table 8: Mean number of nonzero entries of parameter vector {𝛽𝟎,𝒄, 𝜷𝑐}, 𝒄 = 𝟏, … , 𝟑, and its standard deviation 

over the 5 CV folds in setting S1 for the case study discussed in Subsection 6.2 (MFPT bearing dataset [34]). 

Class 𝒄 1 2 3 

Number of nonzero entries 

of {𝛽0,𝑐, 𝛽𝑐}
𝑐=1

𝐶
 

(maximum = 513) 

7.80 

(1.64) 

8.20 

(1.10) 
5.60 

(0.54) 

 

Table 9: Mean number of nonzero entries of parameter vector {𝛽𝟎,𝒄, 𝜷𝑐}, 𝒄 = 𝟏, … , 𝟑, and its standard deviation 

over the 5 CV folds in setting S1 for case study discussed in Subsection 6.3 (gear-box dataset [36]). 

Case Study Number of parameters to 

be estimated 

Mean computational time 

(seconds) 

CWRU bearing dataset [29] 

(Subsection 6.1) 

14350 847.9 s 

MFPT bearing dataset [38] 

(Subsection 6.2) 

6147 28.3 s 

Gear-box dataset [41] 

(Subsection 6.3) 

1539 2.44 s 

 

Table 10: Mean computational time for model training over the 5 CV folds in setting S1. 



7. SHAKER-BLOWER FAULT DIAGNOSTICS 

In this Section, ELNET-MLR is applied to the signal dataset gathered through a test campaign 

performed at CIRA, where vibrational signals were acquired from a TIRA shaker blower. In this 

Section, ELNET-MLR is applied to the signal dataset gathered through a test campaign performed at 

CIRA, where vibrational signals were acquired from a TIRA shaker blower. The main performance 

characteristics of the radial high-pressure blower used for performing test experiment are reported in 

Table 11. 

Volumetric flow rate 

[m³/min] 
32 

Total pressure difference 

[Pa] 

16000 

Voltage 

[V] 

400Δ 

Frequency 

[Hz] 

105 

Current consumption 

[A] 

25 

Motor rating 

[kW] 

11 

Number of revolutions 

[min−1  ] 

6200 

Blower speed 

[min−1  ] 

6200 

Weight 

[kg] 

92 

 

Table 11. Main characteristics of the radial high-pressure blower. 

More details on the blower geometry and dimensions can be found in [42]. 

In the experimental setting, the shaker was suspended by a flexible link to a crane, to avoid the 

influence of the dynamic response of the supporting structure. The shaker was connected to the engine 

by a flexible stinger attached to the case with a structural glue (Figure 8). 



 

Figure 8: Experimental test setup. 

Vibration load due to damages was injected by means of an electro-mechanical shaker applied to the 

case engine. We have experimentally reproduced 𝐶 = 3 different types of defects (varying the defect 

type magnitudes): 

• Stator field asymmetry: this type of defect is due to defects in both motor stator and rotor. 

They are mainly associated with eccentric rotor positioning, winding asymmetry, short 

circuits in the winding. They give rise to vibrations at a frequency of twice the electrical 

network frequency 𝑓𝑒 = 50 Hz [43]. 

 

• Defect of the bearing outer ring: this type of defect leads to vibration features at specific 

frequencies, which depend on the bearing geometry and rotation speed. If we indicate by 𝑓𝑟 

the shaft rotation frequency, 𝑅𝑙 the number of rolling bodies, 𝑣 the diameter of the rolling 

elements, 𝑉 the diameter of the average circumference of the rolling bearing and 𝛾 the 

contact angle of the rolling element with the guides, the main frequency generated by the 

rolling bearing defect reads: 

𝑓𝑣𝑜 =
𝑅𝑙

2
𝑓𝑟(1 −

𝑣

𝑉
cos(𝛾)) (14) 

An approximate formula is typically preferred to Eq. (14), which takes into account the effect 

of ball crawling [43]: 

𝑓𝑣𝑜 = 0.4 ∙ 𝑅𝑙 ∙ 𝑓𝑟 =
0.4 ∙ 𝑅𝑙

60
(RPM) (15) 

• Defect of the bearing inner ring: in this case, the characteristic frequency is [43] 

 



𝑓𝑣𝑖 =
𝑅𝑙

2
𝑓𝑟 (1 +

𝑣

𝑉
cos(𝛾)). (16) 

Also in this case, an approximated formula can be used [43] 

𝑓𝑣𝑖 = 0.6 ∙ 𝑅𝑙 ∙ 𝑓𝑟 =
0.6 ∙ 𝑅𝑙

60
(RPM) (17) 

Since the ball bearings support the rotor, any defect in the bearings will produce a radial displacement 

between rotor and stator. This movement generates stator currents at predictable frequencies [43] 

𝑓𝑝 = |𝑓𝑒 ± 𝑞𝑓𝑣| (18) 

where 𝑓𝑣= 𝑓𝑣𝑜 for defects on the outer ring and 𝑓𝑣=𝑓𝑣𝑖 for defects on the inner ring, whereas 𝑓𝑒 is the 

electrical network frequency and 𝑞 is an integer number.  

Signals used to feed the electrodynamic shaker are characterized by the spectral content described 

above. Further, varying magnitudes of defect types have been experimentally simulated. Figures 9, 

10 and 11 show examples of the excitation signals used for injecting the three types of defects used 

to develop the experimental dataset. 

 

Figure 9: Shaker blower input signal: stator field asymmetry. 

 

 



 

Figure 10: Shaker blower input signal: bearing outer ring defect. 

 

Figure 11: Shaker blower input signal: bearing inner ring defect. 

Stator field asymmetry has been simulated through a pure tone at 100 Hz. Bearing outer and inner 

ring defects have been simulated each one as a superposition of four harmonics. The harmonic content 

of the bearing outer ring defect signal (𝑓𝑣𝑜= 546Hz) is 496 Hz, 596Hz, 1042Hz and 1142Hz, with 

relative amplitudes 1, 0.1, 0.4 and 0.06. The harmonic content of the bearing inner ring defect signal 

(𝑓𝑣𝑖  = 819Hz) is 769Hz, 869Hz, 1588Hz and 1688Hz, with relative amplitudes 1, 0.1, 0.4 and 0.06. 

To simulate the damage growth over time, the amplitudes of the three signals have been varied in 

seven steps between about 0.05 V and 0.7 V 

The test instrumentation used to drive the shaker and acquire the accelerometers signals was 

Siemens/LMS Scadas III front-end, equipped with a generation module and multiple acquisition 

modules.  

The generated and acquired signals were sampled at frequency 12.8 kHz and measured during the 

normal running condition of the blower. Eleven tests were performed. In every test, a signal of about 

140s fed the shaker, which contains seven replicas of 5s window for each of the three damages. 

Between the replicas, there was a 1s of zero signal to switch between faults and fault levels.  



Figure 12 shows the input signal for the shaker, whereas Figure 13 shows a typical signal acquired 

by the accelerometers. 

 

Figure 12: Time history of the driven signal 

 

Figure 13: Typical acceleration signal. 

Table 12 reports the labels assigned to the blower conditions and the number of experimentally 

generated examples. 

Shaker-blower condition Label Number of 

examples 

Asymmetry of the stator magnetic field 1 77 

Defect of the bearing outer ring 2 77 

Defect of the bearing inner ring 3 77 

 

Table 12: Label assigned to each shaker blower condition. 

The vibration measurements were performed by three tri-axial accelerometers PCB type 356A16, 

with a sensitivity of about 100 mV/g (Figure 14). Accelerometers 𝐸1, 𝐸2 and 𝐸3 were positioned at 

the connection between the electrical motor and the ground, on the input power case (the same place 

where the electrodynamical shaker applies its force), and on the pump cover, respectively. In this 



setting, 𝑆 = 9 acceleration signals have been acquired, i.e., 3 acceleration signals on the 𝑥, 𝑦 and 𝑧 

directions from each of the three sensors. 

 

 

Figure 14: Acceleration transducers location and excitation device (close to E2). 

7.1 Feature Extraction 

Each vibration signal is partitioned using a fixed time window of approximately 0.64 seconds, which 

corresponds to time windows of 214 samples. Table 13 reports the number of examples obtained for 

each class. 

From each time window, 𝐿𝑠̃ = 8192, 𝑠 = 1, … ,9, DFT amplitude features are extracted from 𝑆 =

9 vibrational signals. Then, the total number of features extracted is 𝐹 = 73728. Figure 15 shows the 

extracted features (amplitude spectrum) from sensor 𝑠 = 1 on an example belonging to classes 1, 2 

and 3. 

 

Figure 15: Extracted features from sensor 1 from an example in class 1 (top), 2 (middle) and 3 (bottom). 



Class 1 2 3 

Number of Examples 77 77 77 

 

Table 13: Number of available examples for each class 

7.2 Results 

The performance of the proposed method is evaluated through a twice-nested 5- FCV (i.e, setting 

S1). Table 14 reports the mean percentage classification accuracy and its standard deviation, whereas 

Table 15 reports the mean confusion matrix over the 5 cross-fold-validation, which is a 3𝑥3 matrix 

whose entry (𝑐, 𝑐̃), 𝑐, 𝑐̃ = 1, … ,3, represents the percentage of times that an example being in class 𝑐 

is labelled as 𝑐̃. 

Classification accuracy (%) 

95.25 (0.18) 

 

Table 14: Classification accuracy. 

 

 Predicted class 

Ground 

truth 

class 

 1 2 3 

1 94.75 2.58 2.67 

2 2.58 97.42 0.00 

3 6.42 0.00 93.58 

Table 15: Mean confusion matrix over 5 cross-fold validation. 

From Table 15, we can conclude that: 

• examples whose ground truth class is 1 are correctly classified 94.75% of times. When the 

ECS misclassifies an example of class 1, this is assigned to class 2 in 2.58% of times or 3 in 

2.67% of times; 

• examples whose ground truth class is 2 are correctly classified 97.42% of times. When the 

ECS misclassifies an example of class 2, this is assigned to class 1 in 2.58% of the cases; 

• examples whose ground truth class is 3 are correctly classified 93.58% of times. When the 

ECS misclassifies an example of class 3, this is assigned to class 1 in 6.42% of the cases. 

Table 16 reports the mean number of selected features and corresponding standard deviations for each 

class: the proposed approach allows drastically reducing the feature set.  



The mean computational time needed to train the ELNET-MLR is 305 seconds, which is a reasonable 

computational time if we consider that (73728 + 1) ∙ 3 =  221187 parameters needed to be 

estimated. 

Class 𝒄 1 2 3 

Number of nonzero entries 

of {𝛽0,𝑐, 𝜷𝑐}
𝑐=1

𝐶
 

(maximum = 73729) 

67.00 

 
(5.95) 

30.60 

 
(3.36) 

28.80 

 

(4.08) 

 

Table 16: Mean number and its standard deviation of nonzero entries of {𝛽0,𝑐, 𝜷𝑐}
𝑐=1

𝐶
. 

8.   DISCUSSION AND OUTLOOKS 

In this work, we developed a diagnostic classification system, which benefits from the 

computationally lean and effective feature selection provided by ELNET. This is a very relevant 

result, since no cumbersome direct development and identification of hand-crafted features from 

frequency domain signal representation is required after moving to the frequency domain. Moreover, 

the proposed classification scheme is based on a linear combination of the extracted DFT amplitude 

features (see Eq. (4)); although this allows easily interpreting the selected features, nonetheless it can 

be a limitation in terms of classification accuracy in some applications. One possible solution is to 

resort to nonlinear models such as deep learning models which allow learning relevant data 

representation for the classification task directly from the data, without requiring any prior 

knowledge.  

To conclude, it seems fair to say that when the direct use of DFT amplitude features do not provide 

good results, we can use deep architectures to try to achieve better performance. From this, it emerges 

that although the ELNET-MLR has very good performance, we cannot conclude that it should be 

always preferred to other methods. 

Finally, we have not considered that aerospace equipment typically works in changing operational 

conditions. This challenges the feature extraction and selection steps. This topic will be investigated 

in future research work. 

9.   CONCLUSIONS 

In this work, we have developed a novel diagnostic ECS based ELNET-MLR method for identifying 

the type of defect of shaker blower used in the aerospace industry, which is based on the extraction 

of DFT amplitude features. The proposed solution allows selecting in reasonable computational time 

a limited number of features from a very large set of possible alternatives. The proposed approach 

has shown to provide state-of-the-art classification performance when applied to three case studies of 



literature. In particular, the proposed approach has proven to be also useful when few training data 

are available. This situation is typical of high reliability and unique or new designed industrial 

equipment, for which condition monitoring data up to the occurrence of a failure may be not available. 
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