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Abstract
Weak measurements and the theory of weak values have a very deep meaning 
in quantum mechanics, and new phenomena associated with them has 
recently been observed experimentally. This theory has also directly led to 
the notion of superoscillating sequences of functions. In this paper we 
consider Cauchy problems with superoscillatory initial conditions (in 
particular, the Cauchy problem for the Schrödinger equation and some of its 
variations), and we give conditions under which the superoscillations persist 
in time. Our work is based on results from the theory of formal solutions to 
Cauchy problems and on the study of the specific growth of superoscillatory 
sequences, when regarded as functions of a complex variable. There are two 
main aims of this paper: one is to explain the mathematical tools that are 
necessary to study superoscillations, also repeating a few results that we have 
already proved in other papers in order to clarify the strategy. The second aim 
is to show that our technique applies to a large class of problems, showing 
under which conditions the superoscillatory phenomenon persists. Finally, we 
point out that our strategy can be applied also to non-constant coefficients 
differential equations as the quantum harmonic oscillator.

Keywords: superoscillations, evolution problem, Schrodinger equation PACS 
numbers: 42.25.Fx, 06.35.Ge, 42.30.Kq, 02.30.Mv

1. Introduction

Quantum physicists have discovered and experimentally demonstrated a very interesting 
phenomenon which they called superoscillations, see [1, 9, 10, 13–16]. In a series of recent
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papers the authors have started the study of superoscillations from the mathematical point of 
view, see [2–7] and the forthcoming monograph [8].

The aim of this paper is to show how the use of general techniques from the theory of 
formal solutions to Cauchy problems, combined with ideas from the theory of convolution 
operators in spaces of holomorphic functions with growth conditions, allows for the study of 
the evolution of superoscillatory data when taken as initial values for Cauchy problems for a 
very large class of linear constant coefficients differential equations.

Let us begin by recalling the identity

Fn(x, a) =
(

cos
( x

n

)
+ ia sin

( x

n

))n
=

n∑
k=0

Ck(n, a) ei(1−2k/n)x (1)

for a ∈ R, a > 1, x ∈ R where

Ck(n, a) =
(

n

k

)(
1 + a

2

)n−k (
1 − a

2

)k

, (2)

where
(n

k

)
denotes the binomial coefficients. The sequence {Fn(x, a)} is said to be

superoscillating because while its addends have frequencies |1 − 2k/n| � 1, for n ∈ N, 
k = 0, 1, . . . , n, one can show that on every compact set in R, the sequence {Fn(x, a)} 
converges uniformly to F(x, a) = eiax, whose frequency a can be arbitrarily large (for the 
proof see [3]).

A general question we address in this paper is the following. Establish the conditions that 
we need to put on a differential polynomial P(D), in order for the solution to the Cauchy 
problem

P(D)ψ (x, t) = 0, ψ x( , 0) = ϕn(x)

to be superoscillating whenever ϕn is superoscillating.
The main example that guides this discussion is the case in which we consider the Cauchy 

problem for the Schrödinger equation in the case of a free particle:

i
∂ψ(x, t)

∂t
= −∂2ψ(x, t)

∂x2
, ψ(x, 0) = Fn(x, a). (3)

In [5] we have shown that the solution ψn(x, t), is given by

ψn(x, t) =
n∑

k=0

Ck(n, a) ei(1−2k/n)x e−it(1−2k/n)2
, (4)

and that we have

lim
n→∞ ψn(x, t) = eiax−ia2t,

uniformly on the compact sets of R2. In other words, the solution to the Cauchy problem for 
the Schrödinger equation with a superoscillating initial datum is still superoscillating.

The crucial point in the previous discussion is the fact that the solution (4) of the Cauchy 
problem (3) can be written as:

ψn(x, t) =
∞∑

m=0

(it)m

m!

d2m

dx2m
Fn(x, a)

for every x ∈ R and t ∈ R. To study the superoscillatory phenomenon, when n becomes
arbitrarily large, we have to show that the operator

U

(
d

dx
, t

)
:=

∞∑
m=0

(it)m

m!

d2m

dx2m



acts continuously on a class of functions that contains Fn(x) so that we can write

lim
n→∞U

(
d

dx
, t

)
Fn(x, a) = U

(
d

dx
, t

)
lim

n→∞ Fn(x, a) = U

(
d

dx
, t

)
F(x, a).

Thus, one can state the problem more in general. Before that, we start by giving the definition
of superoscillating sequence.

Definition 1.1. Given the continuous function f represented by the convergent series
f (x) = ∑∞

j=0 d j eia jx, where d j ∈ C and a j ∈ R, we say that the sequence

Sn(x) =
n∑

j=0

Cj(n) eik j (n)x

is superoscillating ( f -superoscillating when we want to make the limit explicit) if there exists
an index J such that sup j |k j(n)| < aJ and the sequence Sn converges uniformly to f on some
compact set of R.

Problem 1.2. Identify a significant class of operators U ( d
dx , t), including the Schrödinger

operator, which acts continuously on a space of functions that contains superoscillating
functions.

A strictly related problem arises if we notice that, in the previous computations, the
function

Yn(t, a) =
n∑

k=0

Ck(n, a) e−it(1−2k/n)2
,

converges uniformly to

Y (t, a) = e−ia2t ,

for all t ∈ [−T, T ], where T is any real positive number. Thus, it is reasonable to ask whether 
one can solve the following problem.

Problem 1.3. Let Ck (n, a) be as in (2), and let a ∈ R, t  ∈ [−T, T ] where T is any real 
positive number. Identify a class of analytic functions G such that the sequence

Yn(t, a) =
n∑

k=0

Ck(n, a) eitG(−i(1−2k/n))

is superoscillating.

Remark 1.4. Both problems 1.2 and 1.3 can be rigorously solved by studying the Fourier 
multipliers associated with the symbol of the operator

U

(
d

dx
, t

)
:=

∞∑
m=0

am(t)
dm

dxm
,

that is

Û (ζ , t) :=
∞∑

m=0

am(t)ζ m

in suitable spaces of holomorphic functions with growth conditions.



The philosophy of our approach is the following. We begin by considering a Cauchy
problem with superoscillatory initial conditions. We then use standard methods from the theory
of formal solutions to Cauchy problems (see section 2) to construct a convergent solution to
the problem itself. To do so, we will need to use the specific growth of superoscillating
sequences, when regarded as functions of a complex variable. Then, we need to show that the
resulting solution maintains a superoscillatory behavior. To this end, we will construct suitable
convolution operators on the space of holomorphic functions to which the solutions belong
(see section 3), and we will show that it is possible to take the limit of the solutions thus
showing that the superoscillatory behavior remains for all times. We will see that the growth
conditions that are necessary for this last limiting process are somewhat more restrictive than
those that are necessary for the convergence of the formal solutions. Our result is in accordance
with [16] in which the authors showed that the persistence time is proportional to n, for any
fixed, large n. In section 4 we use this scheme to study the solutions of some Cauchy problems
associated with some differential equations of special type, like a generalized Schrödinger
type equation, the heat equation, and a class of equations of non-Kowalevskaya type. Finally,
in section 5, we deal with the case of convolution equations.

2. Formal solutions of Cauchy problems

The theory of formal solutions of Cauchy problems for linear constant coefficients partial
differential equations goes back to the early work of Kowalevskaya who considered, in [21],
the characteristic Cauchy problem for the complex heat equation:

∂

∂t
u(z, t) = ∂2

∂z2
u(z, t), u(z, 0) = ϕ(z),

where t and z are complex variables and ϕ is holomorphic in a neighborhood of the origin.
She proved, in particular, that the unique formal solution

u(z, t) =
∞∑

m=0

tm

m!

d2m

dz2m
ϕ(z)

converges if and only if ϕ(z) is an entire function of exponential order at most 2, i.e. there are
positive constants A, B such that

|ϕ(z)| � A exp(B|z|2).
Since then, the question of how to construct formal solutions to generalizations of the heat
equation, and how to ensure their convergence, has been taken up by many mathematicians,
and without pretense of completeness, we will now consider the case, see [11, 19, 23], in
which one studies the Cauchy problem associated with the differential equation

∂rν

∂trν
u(z, t) =

ν∑
j=1

a j
∂r(ν− j)

∂tr(ν− j)

∂ jp

∂z jp
u(z, t) (5)

where r, p, ν ∈ N, 1 � r < p, ν � 1, a j ∈ C and with initial conditions

∂�

∂t�
u(z, 0) = 0, � = 0, . . . , rν − 2,

∂rν−1

∂trν−1
u(z, 0) = ϕ(z). (6)

Differential equation (5) can be rewritten as (see [19]):

P

(
∂

∂z
,

∂

∂t

)
=

μ∏
j=1

P
� j

j ,



where

Pj = Pj

(
∂

∂z
,

∂

∂t

)
= ∂r

∂tr
− α j

∂ p

∂zp
,

� j, μ are suitable natural numbers, and α j ∈ C are the distinct roots of the characteristic
equation

λν −
ν∑

j=1

a jλ
ν− j = 0. (7)

In [19] it is shown that:

Theorem 2.1. The formal solution to the Cauchy problem (5) with initial conditions (6) is
given by

ũ(z, t) =
∑

m�rν−1

um(tz)
tm

m!
=

∑
m�0

urm+rν−1(tz)
trm+rν−1

(rm + rν − 1)!
,

where

urm+rν−1(z) = A(m)
dpm

dzpm
ϕ(z), m � 0

and A(m) can be computed by solving a suitable difference equation.

Remark 2.2. It turns out that the coefficients A(m) are of the form

A(m) =
μ∑

j=1

αm
j

� j∑
k=1

c jkmk−1, m � 0,

where � j, μ, α j are as above, see again [19] for the details.

Remark 2.3. Theorem 2.1 and remark 2.2 yield that the formal solution to the Cauchy problem
(5) with initial conditions (6) is given by

ũ(z, t) =
∑
m�0

trm+rν−1 A(m)

(rm + rν − 1)!

dpm

dzpm
ϕ(z) := U

(
d

dz
, t

)
ϕ(z). (8)

Remark 2.4. We would like to point out that the use of complex numbers is not simply a
matter of elegance, but it is indeed necessary to completely justify the formal calculations
that are used. In particular, in the sections to follow, we will show how to make our formal
calculations rigorous.

To motivate the subsequent analysis we will now consider in detail the Cauchy problem
for the Schrödinger equation

i
∂ψ(x, t)

∂t
= −∂2ψ(x, t)

∂x2
, ψ(x, 0) = Fn(x, a).

The following result is easily established by using the Fourier transform.

Theorem 2.5. The time evolution of the spatial superoscillating function Fn(x, a), is given by

ψn(x, t) =
n∑

k=0

Ck(n, a) eix(1−2k/n) e−it(1−2k/n)2
.

The crucial fact in our approach is that ψn(x, t) can be written as described below (see 
theorem 3.1 in [5]):



Theorem 2.6. The function

ψn(x, t) =
n∑

k=0

Ck(n, a) eix(1−2k/n) e−it(1−2k/n)2
(9)

can be written as

ψn(x, t) =
∞∑

m=0

(it)m

m!

d2m

dx2m
Fn(x, a)

for every x ∈ R and t ∈ R.

The idea of the proof is to consider the expansion

e−it(1−2k/n)2 =
∞∑

m=0

[−it(1 − 2k/n)2]m

m!

and to observe that it can be written as

ψn(x, t) =
∞∑

m=0

(it)m

m!

n∑
k=0

Ck(n, a)
d2m

dx2m
eix(1−2k/n)

=
∞∑

m=0

(it)m

m!

d2m

dx2m

n∑
k=0

Ck(n, a) eix(1−2k/n)

=
∞∑

m=0

(it)m

m!

d2m

dx2m
Fn(x, a). (10)

This result is consistent with the discussion we had regarding the formal solutions to the
Cauchy problem.

The main problem is now to take the limit for n → +∞ of ψn(x, t). Let us take, formally,
the limit and recall that

Fn(x, a) → eiax,

so we obtain, see [5],

ψ(x, t) =
∞∑

m=0

(it)m

m!

d2m

dx2m
eiax = eiax−ia2t .

In order to fully justify these formal computations, see theorem 3.9, we will now study in some 
detail the properties of multipliers on spaces of holomorphic functions with growth conditions.

3. Spaces of holomorphic functions with growth

In this section we collect some well known definitions and results for infinite-order differential 
operators, as well as for convolution operators on spaces of holomorphic functions satisfying 
suitable growth conditions.

Infinite-order differential operators are a very special case of convolution equations, and 
we begin our discussion with them as a motivation.

Definition 3.1. An entire function F : C → C is said to be of infraexponential type if for any 
ε > 0 there exists Aε > 0 such that

|F(z)| � Aε exp(ε|z|).
We denote by Exp0(C) the space of entire functions of infraexponential type.



Remark 3.2. As it is well known, see [12, 20], an entire function of the form

g(ζ ) :=
∞∑

m=0

bmζ m

is of infraexponential type if and only if its coefficients satisfy the condition

lim
k→∞

k
√

|bk|k! = 0.

Functions of infraexponentialy type are very helpful in constructing the class of differential
operators of infinite order. Specifically, see [20], an operator of the form

g

(
d

dz

)
:=

∞∑
m=0

bm
dm

dzm

is an infinite-order differential operator, also called local operator, which acts continuously on
holomorphic functions in C if and only if

lim
k→∞

k
√

|bk|k! = 0.

It is natural to ask whether entire functions with growth faster than infraexponential can
still give rise to local operators. The answer is negative, but it can be shown that it is possible
to use such functions to define more general operators, called convolution operators. The
simplest such example is given by

g(ζ ) =
∞∑

m=0

1

m!
ζ m = eζ

which is the symbol of the unit translation operator and which is nothing but the convolution 
with the Dirac delta centered at z = −1.

In order to consider the general case, where functions of different growth are considered 
(such as they appear in section 2), one needs some more refined techniques, which we briefly 
sketch here, while referring the mathematically inclined reader to [18, 24] for a detailed 
description.

The key ingredient is the notion of analytically uniform space (AU-space), for which we 
give a simplified description. A topological vector space of (generalized) functions X is said 
to be an AU-space if its dual X ′ is isomorphic (via some version of the Fourier transform) to 
a space of entire functions with suitable growth at infinity. The main example that one should 
keep in mind is the case of X = H(Cn ) the space of entire functions on Cn. In this case X ′ is 
the space of analytic functionals, and its dual is the space

Exp(Cn ) = { f ∈ H(Cn ) : ∃A, B > 0 : | f (z)| � A exp(B|z|)}
of entire functions of exponential type: in this case the transform that realizes the isomorphism 
between the space of analytic functionals and the space of entire functions of exponential 
type is the Fourier–Borel transform. The general theory of AU-spaces now says that if we 
consider a continuous multiplicator on Exp(Cn ), i.e. a function F such that the product by 
F acts continuously on Exp(Cn ), then F can be interpreted as the symbol for a convolution 
operator on H(Cn ). Thus, for example, the function eζ which we have considered above, acts 
as a multiplier on Exp(Cn ), and therefore it is the symbol of a convolutor on the space of entire 
functions, as we saw earlier.

It is interesting to see what happens if we consider smaller subspaces of H, and we look 
at the resulting space of convolutors, which we expect to be a larger space than functions of 
exponential type. The spaces we are interested in are of two types: we will describe them both,



and will state the duality theorem that fully characterizes the symbols of the convolutors on
them. The ideas we are going to use were originally put forward in [24].

For any positive real number ρ, we define two spaces, each of which has growth of finite
order, but different type (see e.g. [22]).

Definition 3.3. The space

Aρ := { f ∈ H(C) : ∃A, B > 0 : | f (z)| � A exp(B|z|ρ )},
is said to be the space of functions of order ρ and finite type.

Correspondingly we have

Definition 3.4. The space

Aρ,0 := { f ∈ H(C) : ∀ ε > 0, ∃ Aε > 0 : | f (z)| � Aε exp(ε|z|ρ )},
is said to be the space of functions of order ρ and minimal type.

Note that with this notation, Exp(C) = A1 and Exp0(C) = A1,0.
The following theorem, see [24], makes the results in the previous section more precise.

Theorem 3.5. Let ρ be a real number such that, ρ > 1. Then there is a topological isomorphism
between the space Aρ and the dual of the space Aρ ′,0, where

1

ρ
+ 1

ρ ′ = 1.

Conversely, there is a topological isomorphism between the space Aρ,0 and the dual of the
space Aρ.

In other words, the elements of Aρ,0 can be viewed as symbols for convolutors acting
continuously on Aρ ′ and vice versa the elements of Aρ ′,0 can be viewed as symbols for
convolutors acting continuously on Aρ.

Remark 3.6. To illustrate how theorem 3.5 applies to our discussion, let us consider a
generalized Schrödinger equation, such as (11) in the sequel, in other words, let us consider
an operator of the form

∞∑
m=0

(it)m

m!

dmp

dxmp
.

The symbol of this operator belongs to Ap, thus by theorem 3.5 this operator acts continuously
on a class of functions with suitable growth conditions, namely Ap′,0 with 1/p + 1/p′ = 1, so
that it is possible to commute the series with the limit for n → ∞ when the initial datum for
a Cauchy problem belongs to Ap′,0.

The theory of AU-spaces is, however, more general than what we have described so far,
and we need to offer two more examples of the duality which we have described, and that will
play a fundamental role when we generalize our study to the case in which we are solving the
Cauchy problem for convolution equations of the special type

∂ψ(x, t)

∂t
= μx ∗ ψ(x, t),

where μx is a suitable convolutor in the variable x. Without unnecessary generality, we state 
here the two relevant propositions, which are described in detail in [24].



Proposition 3.7. Let �R = {ζ ∈ C | |ζ | < R}. If

X = Exp1(C) := { f ∈ H(C) : | f (z)| � A|z|ne|z| for some n}
then the Fourier–Borel transform establishes a topological isomorphism between X ′ and

FX ′ = { f ∈ H(�1) and f (n) are uniformly continuous for all n ∈ N}.

Proposition 3.8. Let R > 0 and let X be the space of entire functions of exponential type less
that R, i.e.

X = { f ∈ H(C) : ∃ε > 0 : | f (z)| � A e(R−ε)|z| for some A > 0}.
Then the space of its Fourier–Borel transform FX ′ is isomorphic to the space of functions
holomorphic in the disc �R.

We close this section by showing how these ideas can be used to justify the formal
calculations for the case of the Schrödinger equation that we carried out in section 2.

Theorem 3.9. Consider the Cauchy problem

i
∂ψ(x, t)

∂t
= −∂2ψ(x, t)

∂x2
, ψ(x, 0) = Fn(x, a).

Its solution

ψn(x, t) =
n∑

k=0

Ck(n, a) eix(1−2k/n) e−it(1−2k/n)2

converges, for n → ∞, and uniformly on compact sets, to ψ(x, t) = eiax−ia2t .

Proof. Indeed, we have seen that the solution

ψn(x, t) =
∞∑

m=0

(it)m

m!

d2m

dx2m
Fn(x, a)

is obtained by applying the convolutor
∑∞

m=0
(it)m

m!
d2m

dx2m to the superoscillating function Fn(x, a).

Since the convolutor has symbol etζ 2
, which is an element of A2, we see that the limit can be

taken inside the series as long as the initial condition is a function in A2,0. But the functions
Fn are finite sums of linear exponentials, and therefore they certainly belong to A2,0, which
concludes the proof.

4. Some classes of differential equations

In this section we solve the Cauchy problem with a given superoscillatory datum for a 
generalized Schrödinger equation, for the heat equation and, finally, and for some differential 
equations of non-Kowalevskaya type which are special cases of equation (5), also discussing 
the persistence of the superoscillatory behavior of the solutions.

4.1. Generalized Schrödinger equation

The previous discussion on the Schrödinger equation can be extended to the more general 
situation in which we replace the second order derivative in Schrödinger equation with the



derivative of order p. This case is important because it shows that a superoscillatory initial
datum persists in time for such a class of differential equations.

In what follows it is necessary to distinguish between the case p even and p odd.

Theorem 4.1.

(a) Consider, for p even, the Cauchy problem for the modified Schrödinger equation

i
∂ψ(x, t)

∂t
= −∂ pψ(x, t)

∂xp
, ψ(x, 0) = Fn(x, a). (11)

Then the solution ψn(x, t; p), is given by

ψn(x, t; p) =
n∑

k=0

Ck(n, a) eix(1−2k/n) eit(−i(1−2k/n))p
.

For all t ∈ [−T, T ], where T is any real positive number, we have

lim
n→∞ ψn(x, t; p) = eit(−ia)p

eiax,

for x ∈ K, where K is any compact set in R.
(b) Consider, for p odd, the Cauchy problem for the modified Schrödinger equation

∂ψ(x, t)

∂t
= ∂ pψ(x, t)

∂xp
, ψ(x, 0) = Fn(x, a). (12)

Then the solution ψn(x, t; p), is given by

ψn(x, t; p) =
n∑

k=0

Ck(n, a) ei(1−2k/n)x et(−i(1−2k/n))p
.

Moreover, for all t ∈ [−T, T ], where T is any real positive number, we have

lim
n→∞ ψn(x, t, p) = et(−ia)p

eiax,

for x ∈ K, where K is any compact set in R.

Proof. We give a sketch of the proof of point (a) and we refer the reader to [6] for the proof
of (b) and for all the details. Let us consider the Fourier and anti-Fourier transforms of two
functions ψ and g respectively:

F[ψ(x, t)] :=
∫

R

ψ(x, t) e−iλxdx, F−1[g(λ, t)] := 1

2π

∫
R

g(λ, t) eiλxdλ.

We set, for simplicity, F[ψ(x, t)] = ψ̂ (λ, t). We work in the space of the tempered
distributionsS ′(R) and use a standard Fourier transform argument to solve the Cauchy problem
(11). We have

i
dψ̂ (λ, t)

dt
= −(−iλ)p ψ̂ (λ, t)

and integrating we obtain

ψ̂ (λ, t) = C(λ) ei(−iλ)pt

where the arbitrary function C(λ) is determined by the initial condition

C(λ) = 2π

n∑
k=0

Ck(n, a)δ(λ − (1 − 2k/n)).



Thus we have

ψ̂n(λ, t; p) = 2π

n∑
k=0

Ck(n, a)δ(λ − (1 − 2k/n)) ei(−iλ)pt .

Taking now the inverse Fourier transform we obtain ψn(x, t).
To compute the limit limn→∞ ψn(x, t) we write:

eit(−i(1−2k/n))p =
∞∑

m=0

[it(−i(1 − 2k/n))p]m

m!
,

and, with some computations, we have

ψn(x, t; p) =
∞∑

m=0

(it)m

m!

n∑
k=0

Ck(n, a)
dmp

dxmp
eix(1−2k/n) =

∞∑
m=0

(it)m

m!

dmp

dxmp
Fn(x, a).

Passing to the limit as we did for the Schrödinger equation but replacing the spaces A2 and
A2,0 by Ap and Ap′,0 respectively, with 1

p + 1
p′ = 1, we obtain

ψ(x, t; p) = lim
n→∞ ψn(x, t; p) =

∞∑
m=0

(it)m

m!

dmp

dxmp
eiax.

Since

ψ(x, t) =
∞∑

m=0

(it)m

m!
(ia)mpeiax

we finally have

ψ(x, t; p) =
∞∑

m=0

((ia)pit)m

m!
eiax = eit(ia)p

eiax.

The following corollary of theorem 4.1 shows how to construct other classes of
superoscillating functions:

Corollary 4.2. Let a > 1, p even, and let T be a real positive number. Then, for all t ∈ [−T, T ],
the sequence

ϕn(t) =
n∑

k=0

Ck(n, a) eit(−i(1−2k/n))p

is eit(−ia)p
-superoscillating, i.e. we have

lim
n→∞ ϕn(t) = eit(−ia)p

.

4.2. Heat equation

We now consider, following the lines of the previous discussion, a Cauchy problem for the
heat equation:

∂

∂t
ψ(x, t) = ∂2

∂z2
ψ(x, t), ψ(x, 0) = Fn(x, a).

With techniques similar to those used to treat the Schrödinger equation, we deduce that the
formal solution to this problem is, see (8):

ψn(x, t) =
∑
m�0

tm

m!

d2m

dx2m
Fn(x, a).



Computations similar to those done in the proof of theorem 4.1, and noticing again that the
symbol of the operator belongs to A2, show that for all t ∈ [−T, T ], T > 0

lim
n→∞ ψn(x, t) = e−a2teiax,

thus the superoscillation is damped in time.

4.3. Differential equations of non-Kowalevskaya type

Let us now go back to the differential equation (5) whose formal solution is given in theorem
2.1, and let us study some special cases in which we can guarantee that, when we assign a
superoscillatory initial condition in the Cauchy problem (6) we have that the solution to (5) is
superoscillating. We consider the case ν = r = 1.

Theorem 4.3. The solution ψn(z, t) to the Cauchy problem⎧⎪⎨
⎪⎩

∂

∂t
ψ(x, t) = a1

∂ p

∂zp
ψ(x, t)

ψ(x, 0) = Fn(x, a)

(13)

is such that

ψ(x, t) = lim
n→+∞ ψn(x, t) = eta1(ia)p

eiax

and ψ(z, t) is superoscillating in time for:

(i) p even, and a1 purely imaginary or a1 = α + iβ and (ia)pα > 0, in which case
the superoscillation is amplified, or a1 = α + iβ and (ia)pα < 0, in which case the
superoscillation is damped.

(ii) p odd, and a1 real or a1 = α + iβ and i(ia)pβ > 0, in which case the superoscillation is
amplified, or a1 = α + iβ and i(ia)pβ < 0, in which case the superoscillation is damped.

Proof. To prove the result we regard the previous problem in the complex case and thus we
substitute x with a complex variable z. Then we know from theorem 2.1 that the formal solution
is

ψn(z, t) =
∑
m�0

tm A(m)

m!

dpm

dzpm
Fn(z, a)

where A(m) = am
1 since the characteristic equation is λ − a1 = 0. By taking the limit, see

theorem 3.5, we have

lim
n→+∞ ψn(z, t) =

∑
m�0

tm am
1

m!

dpm

dzpm
Fn(z, a)

=
∑
m�0

tm am
1

m!

dpm

dzpm
eiaz

=
∑
m�0

(a1t)mm!(ia)pmeiaz

= eta1(ia)p
eiaz.

Assume first that p is even. Then eta1(ia)p = e(−1)p/2ta1ap
, thus if a1 is purely imaginary the

superoscillation persists in time. If a1 = α + iβ then

eta1(ia)p = et(α+iβ)(ia)p = etα(ia)p
eitβ(ia)p

.



The factor etα(ia)p
is amplifying or damping the superoscillation according to the sign of α(ia)p.

If p is odd then eta1(ia)p = ei(−1)(p−1)/2ta1ap
, thus if a1 is real the superoscillation persists in

time. If a1 = α + iβ then

eta1(ia)p = et(α+iβ)(ia)p = etα(ia)p
eitβ(ia)p

.

The factor eitβ(ia)p
is amplifying or damping the superoscillation according to the sign of

iβ(ia)p.

In order to extend this result to a more general differential equation we consider the
symbol g(ζ , t) of the operator U ( d

dz , t):

g(ζ , t) =
∑
m�0

trm+rν−1 A(m)

(rm + rν − 1)!
ζ pm.

We have the following result:

Proposition 4.4. The order of the function

g(ζ , t) =
∑
m�0

trm+rν−1 A(m)

(rm + rν − 1)!
ζ pm

as holomorphic function in ζ is p/r. As a consequence, g(t, ζ ) turns out to be entire in ζ .

Proof. The order ρ of the function g can be computed using formula (1.05) in [22]: for an
entire functions of the form f (z) = ∑

m�0 cmzm the order is

ρ = m log m

log

∣∣∣∣ 1

cm

∣∣∣∣
.

In the case of the function g(ζ ) the formula gives, for t ∈ [−T, T ]:

ρ = limm→∞
pm log(pm)

log

(
(rm + rν − 1)!

|A(m)trm+rν−1|
) .

By applying the Stirling formula to the factorial, we can rewrite as follows:

ρ = limm→∞
pm(log(m) + log(p))

(rm + rν − 1) log(rm + rν − 1) − log(|A(m)||t|rm+rν−1)

= limm→∞
pm(log(m) + log(p))

rm(log(m) + log(r)) − log(|α|mmM ) − (rm + rν − 1) log(|t|)
= limm→∞

pm log(m)

rm log(m) − m log(|α|) − M log(m) − rm log(|t|) = p

r
.

The next result shows that our technique works also for differential equations which
contain also higher order derivatives with respect to time.

Theorem 4.5. The Cauchy problem associated with the differential equation

∂rν

∂trν
ψ(z, t) =

ν∑
j=1

a j
∂r(ν− j)

∂tr(ν− j)

∂ jp

∂z jp
ψ(z, t) (14)

where r, p, ν ∈ N, 1 � r < p, ν � 1, a j ∈ C and with initial conditions

∂�

∂t�
ψ(z, 0) = 0, � = 0, . . . , rν − 2,

∂rν−1

∂trν−1
ψ(z, 0) = Fn(z, a) (15)



has formal solution

ψn(z, t) =
∑

m�rν−1

um,n(tz)
tm

m!
=

∑
m�0

urm+rν−1,n(tz)
trm+rν−1

(rm + rν − 1)!
, (16)

where

urm+rν−1,n(z) = A(m)F (pm)
n (z, a), m � 0.

Moreover, this formal solution actually converges to a function ψ and it is possible to compute
its limit when n → ∞ to be the function

ψ(z, t) =
∑

m�rν−1

um(tz)
tm

m!
=

∑
m�0

urm+rν−1(tz)
trm+rν−1

(rm + rν − 1)!
,

where

urm+rν−1(z) = A(m)F (pm)(z, a), m � 0.

Proof. Indeed, we have seen that the solution ψn(x, t) given in (16) is obtained by applying
the convolutor

∞∑
m=0

trm+rν−1

(rm + rν − 1)!
A(m)

dpm

dxpm

to the superoscillating function Fn(x, a). Since the symbol of the convolutor has order p, see
proposition 4.4, and thus it belongs to Ap, we see that the limit can be taken inside the series
as long as the initial condition is a function in Ap′,0 and the statement follows. �

5. The case of convolution equations

We conclude this paper by considering a special kind of convolution equations in which the
convolutor acts only on the space variable, while the derivative with respect to t is of the first
order. This approach will allow us to answer in the largest possible sense problem 1.2, and
will give a very large class of superoscillating sequences.

Specifically, we will consider convolution equations of the form

∂ψ(x, t)

∂t
= μx ∗ ψ(x, t),

for some suitable convolutor μx that only acts on the variable x. There is a subtle point here, in
the sense that if we consider the function ψ to be an infinitely differentiable function in x, we
can only consider compactly supported distribution as convolutors μx. However, we know that
the functions on which we want to act are actually analytic on R and, what is more, they extend
to entire functions on all of C, because we know they are simply finite sums of exponentials.
For this reason, we can consider instead the convolution equation defined on entire functions
by

∂ψ(z, t)

∂t
= μz ∗ ψ(z, t),

and now we can interpret the symbol of μz as an entire function of suitable growth. Thus, let 
us consider a convolution equation as follows. Let {ap} be a sequence of complex numbers 
and consider the convolution equation formally defined by



i
∂ψ(z, t)

∂t
= −

∞∑
p=0

ap
∂ pψ(z, t)

∂zp
.

The operator on the right-hand side is clearly the infinite sum of the operators for which we
have already shown that the superoscillatory behavior of initial data persists. We then define
the operator:

Up(t) =
∞∑

m=0

(it)m

m!

dpm f

dzpm
,

where according to p ∈ N one might have to replace it by −it as we did in the case of the
generalized Schrödinger equation. Now we need to study the operator that formally can be
written as the infinite product of the operators Up, namely the new operator

U∞(t) =
+∞∏
p=0

(+∞∑
m=0

(itap)
m

m!

dpm

dzpm

)
=

∞∏
p=0

Up(apt).

This operator can actually be regarded as the operator associated with the multiplier given
by the function

Û∞(ζ , t) :=
∞∏

p=0

( ∞∑
m=0

(itap)
m

m!
ζ pm

)
,

which can be rewritten as

Û∞(ζ , t) =
∞∏

p=0

( ∞∑
m=0

1

m!
(itapζ

p)m

)

=
∞∏

p=0

exp(itapζ
p)

= exp

⎛
⎝it

∞∑
p=0

apζ
p

⎞
⎠ .

It is immediate to note that under suitable conditions on the sequence {ap}, the function
Û∞(ζ , t) is holomorphic in the open disc |ζ | < 1 as a function of ζ . This, for example, is true
if ap = 1, for all p, in which case Û∞(ζ , t) = exp( it

1−ζ
). As a consequence, and in view of

proposition 3.7, the operator U∞(t) acts continuously on the space Exp1(C). Moreover, every
function of the form

Yn(z, a) :=
n∑

j=0

Cj(n, a) eik j (n)z

with |k j(n)| � 1 belong to Exp1(C).
It is worthwhile to note that under stronger conditions on the sequence ap, one can show

that the function Û∞(ζ , t) can be rendered on a disc of arbitrary radius R. For example, if the
sequence {ap} defines an infinite-order differential operator, the function

∑∞
n=0 apζ

p is entire
and so is Û∞(ζ , t).

The preceding discussion leads to the following result.

Theorem 5.1. Let {ap} be a sequence of complex numbers such that the function
∞∑

p=0

apζ
p



is analytic in the disc |ζ | < R for some R > 0. Then the function

Û∞(ζ , t) = exp

⎛
⎝it

∞∑
p=0

apζ
p

⎞
⎠

is a continuous multiplier on the space of functions analytic in the disc |ζ | < R and the
associated operator

U∞(t) =
∞∏

p=0

( ∞∑
m=0

(itap)
m

m!

dpm

dzpm

)
=

∞∏
p=0

Up(apt)

acts continuously on the space of entire functions of exponential type less than R.

Proof. This is an immediate consequence of proposition 3.8 and the discussion in the previous
section.

We can now state our main result, originally proved in [6]:

Theorem 5.2. Let a ∈ R, a > 1. Consider a sequence of complex numbers {ap} such that:

(i) the function
∑∞

p=0 apζ
p is holomorphic in �a′ for a′ > a,

(ii) G(ia) is real and |G(ia)| � a.

Consider, in the space of entire functions of exponential type less than a′, the Cauchy
problem for the generalized Schrödinger equation

i
∂ψ(z, t)

∂t
= −G

(
d

dz

)
ψ(z, t), ψ(z, 0) = Fn(z), (17)

where

G

(
d

dz

)
=

∞∑
p=0

ap
dp

dzp
.

Then the solution ψn(z, t), is given by

ψn(z, t) =
n∑

k=0

Ck(n, a) e−iz(1−2k/n)eitG(−i(1−2k/n)).

Moreover, for all fixed t we have

lim
n→∞ ψn(z, t) = eitG(ia)eiaz,

and for z on the compact sets of C.

Proof. Here we just sketch the proof. More details are given in [6].
Some computations and the previous method based on the Fourier transform yield

ψn(z, t) =
n∑

k=0

Ck(n, a) e−iz(1−2k/n) eitG(−i(1−2k/n)).

We have

ψn(z, t) =
n∑

k=0

Ck(n, a) e−iz(1−2k/n) eit
∑∞

p=0 ap(−i(1−2k/n))p



which can be written as

ψn(z, t) =
n∑

k=0

Ck(n, a) e−iz(1−2k/n)

∞∏
p=0

eitap(−i(1−2k/n))p

=
n∑

k=0

Ck(n, a) e−iz(1−2k/n)

∞∏
p=0

∞∑
m=0

(itap)
m

m!
(−i(1 − 2k/n))mp

=
∞∏

p=0

∞∑
m=0

(itap)
m

m!

n∑
k=0

Ck(n, a)(i(1 − 2k/n))mp e−iz(1−2k/n)

and so we finally have

ψn(z, t) =
∞∏

p=0

∞∑
m=0

(itap)
m

m!

n∑
k=0

Ck(n, a)
dmp

dmp
e−iz(1−2k/n)

=
∞∏

p=0

∞∑
m=0

(itap)
m

m!

dmp

dmp

n∑
k=0

Ck(n, a) e−iz(1−2k/n)

=
∞∏

p=0

∞∑
m=0

(itap)
m

m!

dmp

dmp
Fn(z).

Under suitable conditions (see theorem 5.1), we can pass to the limit for n → ∞ thus obtaining

ψ(z, t) =
∞∏

p=0

∞∑
m=0

(itap)
m

m!

dmp

dmp
eiaz =

∞∏
p=0

∞∑
m=0

(itap(ia)p)m

m!
eiaz = eit

∑∞
p=0(ap(ia)p) eiaz,

and we have

lim
n→∞ ψn(z, t) = eitG(ia) eiaz.

To conclude, we note that if we set g(a) = G(ia), and we suitably choose the coefficients
ap of the series expressing G, we obtain a very large class of superoscillating functions.

6. A concluding remark

We point out that recently in the paper [17], the techniques described above have been applied
to study the evolution of a superoscillating initial data for the quantum harmonic oscillator.
The main result is the following:

Theorem 6.1. Let Fn(x) be the superoscillating sequence defined in (1). Then the solution of
the Cauchy problem

i
∂ψ(x, t)

∂t
= 1

2

(
− ∂2

∂x2
+ x2

)
ψ(t, x), ψ(0, x) = Fn(x, a) (18)

is given by

ψn(x, t) = (cos t)−1/2 e−(i/2)x2 tan t
n∑

k=0

Ck(n, a) eix(1−2k/n)/ cos t−(i/2)(1−2k/n)2 tan t . (19)

Moreover, if we set ψ(t, x) = limn→∞ ψn(x, t), then we have

ψ(x, t) = (cos t)−1/2 e−(i/2)(x2+a2) tan t+iax/ cos t . (20)

This result shows that these techniques may work also for differential equations with 
non-constant coefficients.
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