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Abstract. We give simple proofs that a weak solution u of the Navier–Stokes equations with H1 initial data remains strong
on the time interval [0, T ] if it satisfies the Prodi–Serrin type condition u ∈ Ls(0, T ;Lr,∞(Ω)) or if its Ls,∞(0, T ;Lr,∞(Ω))
norm is sufficiently small, where 3 < r ≤ ∞ and (3/r) + (2/s) = 1.
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1. Introduction

Let Ω ⊂ R
3 be either a bounded domain with smooth boundary ∂Ω or the whole space R

3, and let T > 0
be fixed but arbitrary. In Ω × (0, T ), we consider the dimensionless form of the Navier–Stokes equations
describing the flow of a homogeneous incompressible fluid

⎧
⎨

⎩

∂tu − νΔu + (u · ∇)u = −∇p

∇ · u = 0,

where u represents the velocity field, ν > 0 the kinematic viscosity, and p the pressure. The system is
supplemented with the no-slip boundary condition

u(x, t)|x∈∂Ω = 0.

Notation Let V be the space of divergence-free vector fields belonging to C∞
0 (Ω). We denote by L2

div(Ω)
and H1

0,div(Ω) the closures of V in the norms of L2(Ω) and H1
0(Ω), respectively. For p ∈ [1,∞], let ‖ · ‖p

be the standard norm in Lp(Ω). In addition, given p ∈ [1,∞) and a measurable set M ⊂ R
n, we denote

by Lp,∞(M) the space of weak-Lp functions on M , and we set

‖f‖p,∞ = sup
t>0

t
[
μ {τ ∈ [0, T ] : |f(τ)| > t} ] 1

p ,

where μ is the Lebesgue measure on M .
Introducing the Stokes operator A on L2

div(Ω)

Au = −PΔu with domain H1
0,div(Ω) ∩ H2(Ω),

where P is the orthogonal projection of L2(Ω) onto L2
div(Ω), the Navier–Stokes system takes the form

∂tu + νAu + P (u · ∇)u = 0. (NS)

After the works of Leray [5] and Hopf [4], it is well known that for any initial condition u(0) ∈ L2
div(Ω)

the Eq. (NS) has at least one weak solution u ∈ L∞(0, T ; L2
div(Ω)) ∩ L2(0, T ; H1

0 ,div(Ω)). At the same
time, whenever u(0) ∈ H1

0,div(Ω) there exists T� ∈ (0, ∞] such that (NS) admits a unique strong solution
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u ∈ L∞(0, T ;H1
0,div(Ω)) ∩ L2(0, T ;H2(Ω)) provided that T < T�. If T� < ∞ then the solution must blow

up in H1, i.e.

lim
t→T�

‖∇u(t)‖2 = ∞.

According to a result of Prodi [7] (see also Serrin [8]), the existence of a strong solution to (NS) on 
the whole interval [0, T ] is guaranteed if

u ∈ Ls(0, T ;Lr(Ω)),

where (r, s) is a Prodi–Serrin pair, that is, r ∈ (3,∞] and s ∈ [2,∞) satisfy
3
r

+
2
s

= 1.

The proof in [2] of a similar result when u ∈ L∞(0, T ;L3(R3)) is significantly more involved.
The aim of this note is to provide a short proof of the following two generalisations of the result for

r ∈ (3,∞] using weak Lebesgue spaces.

Theorem 1.1. Assume that u(0) ∈ H1
0,div(Ω) and that u is a weak solution to (NS) with this initial

condition that satisfies u ∈ Ls(0, T ;Lr,∞(Ω)) for some Prodi–Serrin pair (r, s). Then u remains strong
on [0, T ] and is therefore unique.

Theorem 1.2. For every Prodi–Serrin pair (r, s), there is a constant c > 0 depending only on r and Ω
such that if u(0) ∈ H1

0,div(Ω) and if u is a weak solution to (NS) with this initial condition that satisfies
the estimate

‖u‖Ls,∞(0,T ;Lr,∞(Ω)) � cν1− 1
s ,

then u remains strong on [0, T ] and is therefore unique.

Theorem 1.1 in the whole space Ω = R3 can be found in [1], whereas Theorem 1.2 is proved in [9] for  a 
small constant c > 0, although the value of this constant is not explicit. On the contrary, in our proof the 
value of c can be in principle explicitly calculated.

2. Proof of Theorem 1.1

First, we establish a suitable estimate for the nonlinear term appearing in the equation.

Lemma 2.1. Let u ∈ H1
0,div(Ω) ∩ H2(Ω) be given, and let (r, s) be a Prodi–Serrin pair. Then

‖(u · ∇)u‖2 � Cr‖u‖r,∞‖∇u‖ 2
s
2 ‖Au‖1− 2

s
2 .

Proof. Take ε ∈ (0, 1); its value will be chosen later. Applying the Hölder inequality, we easily deduce

‖(u · ∇)u‖2 � ‖u‖r+ε‖∇u‖ 2(r+ε)
r+ε−2

.

We need to estimate the two terms appearing on the right hand side. To this end, we make use of the 
interpolation inequality holding in weak-Lp spaces (see [3])

‖u‖r+ε �
(r + ε

ε

) 1
r+ε ‖u‖

r
r+ε
r,∞‖u‖

ε
r+ε∞ .

In particular, the constant is easily seen to be uniformly bounded for r > 3, for any fixed ε. We also
recall the following Gagliardo–Nirenberg type inequality, valid both on the whole space and on bounded
domains where a Poincaré type inequality is true:

‖∇u‖p � C‖u‖1−α
q ‖Aσu‖α

2 .

Here, the exponents satisfy the relations
1
p

=
1
3

+
(1

2
− 2σ

3

)
α +

1 − α

q
and

1
2σ

� α � 1.



Since ε < 1, the Gagliardo–Nirenberg inequality above reduces to

‖∇u‖ 2(r+ε)
r+ε−2

� Cr,ε‖u‖ ε
r
r+ε‖Aσu‖

r−ε
r

2 ,

where σ is given by

σ =
2r − 3ε + 6

4(r − ε)
.

We observe that σ > 1
2 . We now fix

ε < 2r − 6,

so that σ < 1. Finally, the L2-norm of fractional powers of the Stokes operator satisfies the interpolation
inequality

‖Aσu‖2 � C‖∇u‖2(1−σ)
2 ‖Au‖2σ−1

2 , ∀σ ∈ [
1
2 , 1

]
.

Using all the results recalled above, we can easily prove the statement of the Lemma by arguing as follows:

‖(u · ∇)u‖2 �‖u‖r+ε‖∇u‖ 2(r+ε)
r+ε−2

�Cr‖u‖
r+ε

r
r+ε‖A

2r−3ε+6
4(r−ε) u‖

r−ε
r

2

�Cr‖u‖r,∞‖u‖ ε
r∞‖∇u‖

(2r−ε−6)
2r

2 ‖Au‖
6−ε
2r

2 � Cr‖u‖r,∞‖∇u‖
r−3

r
2 ‖Au‖ 3

r
2 ,

where in the last line we exploited the Agmon-type inequality

‖u‖∞ � C‖∇u‖ 1
2
2 ‖Au‖ 1

2
2 .

Recalling the definition of (r, s), we are done.

This estimate on the nonlinear term leads to an energy estimate for (NS). 

Lemma 2.2. For every Prodi–Serrin pair (r, s), the inequality

d
dt

‖∇u‖2
2 � Crν

1−s‖u‖s
r,∞‖∇u‖2

2

holds while the solution remains strong.

Proof. While the solution remains strong it has sufficient regularity that we can multiply (NS) by Au. Then 
on account of Lemma 2.1 we have

1
2

d
dt

‖∇u‖2
2 + ν‖Au‖2

2 = −〈(u · ∇)u,Au〉

� ‖(u · ∇)u‖2‖Au‖2 � Cr‖u‖r,∞‖∇u‖ 2
s
2 ‖Au‖2− 2

s
2 .

By means of Young’s inequality we obtain

d
dt

‖∇u‖2
2 + ν‖Au‖2

2 � Crν
1−s‖u‖s

r,∞‖∇u‖2
2,

which yields the desired estimate.

To complete the proof of Theorem 1.1 we argue by contradiction. Suppose that the solution remains 
strong only on the interval [0, T ′) with T ′ < T . By virtue of Lemma 2.2, it follows from the classical 
Gronwall lemma that ‖∇u(t)‖2 remains bounded on [0, T ]. But if [0, T ′) is the maximal interval of existence 
for a strong solution then ‖∇u(t)‖2 → ∞  as t → T ′. It follows that the solution remains strong on [0, T ), 
and a further application of Lemma 2.2 and the Gronwall lemma guarantee that the solution
is strong on [0, T ].



3. Proof of Theorem 1.2

To prove Theorem 1.2 we will use a generalised Gronwall inequality of the following form.

Lemma 3.1. Let ϕ be a measurable positive function defined on the interval [0, T ]. Suppose that there 
exists an ε0 > 0 and a constant κ > 0 such that for all 0 < ε < ε0 and a.e. t ∈ [0, T ], ϕ satisfies the 
inequality

d
dt

ϕ � κλ1−εϕ1+2ε, (3.1)

where λ ∈ L1,∞(0, T ) with

κ‖λ‖1,∞ <
1
2
.

Then ϕ is bounded on [0, T ].

Proof. First we note that if κ‖λ‖1,∞ < 1
2 then

κ lim sup
ε→0

ε

T∫

0

λ1−ε(s) ds <
1
2
. (3.2)

Indeed, a straightforward computation yields

ε

T∫

0

λ1−ε(t) dt = ε(1 − ε)

∞∫

0

1
tε

μ {τ ∈ [0, T ] : λ(τ) > t} dt

� εT + ε(1 − ε)‖λ‖1,∞

∞∫

1

1
t1+ε

dt = εT + (1 − ε)‖λ‖1,∞,

from which (3.2) follows. Now choose δ > 0 such that

lim sup
ε→0

2κε

T∫

0

λ1−ε(s) ds < 1 − 3δ.

If we integrate (3.1) from 0 to t < T  then we obtain

−ϕ−2ε(t) + ϕ−2ε(0) ≤ 2κε

t∫

0

λ1−ε(s) ds ≤ 2κε

T∫

0

λ1−ε(s) ds.

Now we choose ε sufficiently small that

2κε

T∫

0

λ1−ε(s) ds < 1 − 2δ and ϕ−2ε(0) > 1 − δ

from which it follows that −ϕ−2ε(t) < −δ, i.e. ϕ(t) ≤ δ−1/2ε for all t < T .

Observe that the constant 1
2 appearing above is optimal. Indeed, setting T = κ = 1 for simplicity,

consider for t ∈ [0, 1] the family of inequalities
d
dt

ϕ � λ1−εϕ1+2ε,

where λ(t) = α(1 − t)−1 and ϕ(0) = 1. A straightforward computation gives ‖λ‖1,∞ = α. An integration
on (0, t) of the above differential inequality at fixed ε gives

ϕ2ε(t) � 1
1 + 2α1−ε(1 − t)ε − 2α1−ε

.



If α � 1
2 then no matter how small we take ε there is always a value of tε < 1 for which the denominator

in the right-hand side vanishes. Accordingly, ϕ(t) blows up before t = 1.
In order to apply Lemma 3.1 to the present setting, we adapt slightly the result of Lemma 2.2, as 

follows (cf. [6, Lemma 9.3]).

Lemma 3.2. For every Prodi–Serrin pair (r, s) and for any ε sufficiently small, while the solution u remains 
strong it satisfies the inequality

d
dt

‖∇u‖2
2 � Crν

1−s‖u‖s(1−ε)
r,∞ ‖∇u‖2(1+2ε)

2 .

Proof. This is an immediate consequence of Lemma 2.2 if we choose

rε =
3s + 3ε(4 − s)
s − 2 + ε(4 − s)

and sε = s + ε(4 − s).

In particular, a standard interpolation gives

‖u‖sε
rε,∞ � ‖u‖s(1−ε)

r,∞ ‖u‖4ε
6,∞ � Cε‖u‖s(1−ε)

r,∞ ‖∇u‖4ε
2 ,

from which we immediately deduce the claimed result. �
At this point, combining Lemmas 3.1 and 3.2, we readily obtain that the solution remains bounded

in H1
0,div(Ω) on [0, T ] provided that

Crν
1−s‖u‖s

Ls,∞(0,T ;Lr,∞(Ω)) < 
1
2 
.
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Fluid Mech. 13, 259–269 (2011)
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