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Abstract: In this paper we present models and optimization algorithms to rapidly compute
the fuel-optimal energy management strategies of a hybrid electric powertrain for a given
driving cycle. Specifically, we first identify a mixed-integer model of the system, including the
engine on/off signal. Thereafter, by carefully relaxing the fuel-optimal control problem to a
linear program, we devise an iterative algorithm to rapidly compute the minimum-fuel energy
management strategies. We validate our approach by comparing its solution with the globally
optimal one obtained solving the mixed-integer linear problem and demonstrate its effectiveness
by assessing the impact of different battery charge targets on the achievable fuel consumption.
Numerical results show that the proposed algorithm can assess fuel-optimal control strategies in
a few seconds, paving the way for extensive parameter studies and real-time implementations.
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1. INTRODUCTION

In order to reduce fuel consumption and pollutant emis-
sions, the automotive sector has been introducing hybrid
electric powertrains for passenger cars and trucks. The
topology of the propulsion system and the components’
sizing have a significant impact on the achievable per-
formance, as well as the energy management algorithms
coordinating the powertrain components [Guzzella and
Sciarretta, 2013].

In this paper, we will focus on the powertrain shown in
Fig. 1, consisting of an internal combustion engine and an
electric motor (EM) providing boosting and regenerative
braking. The engine is connected to an automated gearbox,
while the electric motor is coupled to the output shaft of
that gearbox with an additional gear set. The final drive
and the differential (FD) transmit the propulsive power to
the wheels. The fuel tank and the battery are the on-board
energy storages.

There exist several contributions on the synthesis of
high-level energy management strategies for hybrid elec-
tric vehicles (HEVs). In particular, causal feedback con-
trol schemes are mostly based on ECMS [Nüesch et al.,
2014a; Salazar et al., 2018], rule-based strategies [Hof-
man et al., 2007] or MPC [Johannesson et al., 2015;
Salazar et al., 2017a], whilst non-causal control strategies
have been computed using convex optimization [Nüesch
et al., 2014b; Ebbesen et al., 2018], Pontryagin’s minimum
principle [Guzzella and Sciarretta, 2013; Salazar et al.,
2017b] and dynamic programming [Elbert et al., 2013].
The latter approaches assess the optimal fuel consumption
over a given driving cycle and can therefore be used to
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benchmark causal controllers or investigate the impact
of different powertrain structures on the achievable per-
formance. While delivering very satisfying results, such
methodologies rely on optimization algorithms resulting
in computational times in the order of minutes to hours.

This paper presents a non-causal approach to rapidly
compute the fuel-optimal control strategies of a hybrid
electric powertrain for a given driving cycle, including the
engine on/off signal. We use an iterative algorithm that
enables us to assess the minimum-fuel operation in a few
seconds, allowing for extensive parameter studies to be
performed rapidly.

The structure of this paper is as follows: Section 2 presents
a piecewise affine model of the HEV shown in Fig. 1 and
formulates the minimum-fuel control problem as a mixed-
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Zürich, Switzerland ({maurosalazar,pduhr}@idsc.mavt.ethz.ch)

The first two authors contributed equally to this paper.

Abstract: In this paper we present models and optimization algorithms to rapidly compute
the fuel-optimal energy management strategies of a hybrid electric powertrain for a given
driving cycle. Specifically, we first identify a mixed-integer model of the system, including the
engine on/off signal. Thereafter, by carefully relaxing the fuel-optimal control problem to a
linear program, we devise an iterative algorithm to rapidly compute the minimum-fuel energy
management strategies. We validate our approach by comparing its solution with the globally
optimal one obtained solving the mixed-integer linear problem and demonstrate its effectiveness
by assessing the impact of different battery charge targets on the achievable fuel consumption.
Numerical results show that the proposed algorithm can assess fuel-optimal control strategies in
a few seconds, paving the way for extensive parameter studies and real-time implementations.

Keywords: Hybrid vehicles, energy management, supervisory control, mixed-integer optimal
control, convex optimization, linear programming.

1. INTRODUCTION

In order to reduce fuel consumption and pollutant emis-
sions, the automotive sector has been introducing hybrid
electric powertrains for passenger cars and trucks. The
topology of the propulsion system and the components’
sizing have a significant impact on the achievable per-
formance, as well as the energy management algorithms
coordinating the powertrain components [Guzzella and
Sciarretta, 2013].

In this paper, we will focus on the powertrain shown in
Fig. 1, consisting of an internal combustion engine and an
electric motor (EM) providing boosting and regenerative
braking. The engine is connected to an automated gearbox,
while the electric motor is coupled to the output shaft of
that gearbox with an additional gear set. The final drive
and the differential (FD) transmit the propulsive power to
the wheels. The fuel tank and the battery are the on-board
energy storages.

There exist several contributions on the synthesis of
high-level energy management strategies for hybrid elec-
tric vehicles (HEVs). In particular, causal feedback con-
trol schemes are mostly based on ECMS [Nüesch et al.,
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Zürich, Switzerland ({maurosalazar,pduhr}@idsc.mavt.ethz.ch)

The first two authors contributed equally to this paper.

Abstract: In this paper we present models and optimization algorithms to rapidly compute
the fuel-optimal energy management strategies of a hybrid electric powertrain for a given
driving cycle. Specifically, we first identify a mixed-integer model of the system, including the
engine on/off signal. Thereafter, by carefully relaxing the fuel-optimal control problem to a
linear program, we devise an iterative algorithm to rapidly compute the minimum-fuel energy
management strategies. We validate our approach by comparing its solution with the globally
optimal one obtained solving the mixed-integer linear problem and demonstrate its effectiveness
by assessing the impact of different battery charge targets on the achievable fuel consumption.
Numerical results show that the proposed algorithm can assess fuel-optimal control strategies in
a few seconds, paving the way for extensive parameter studies and real-time implementations.

Keywords: Hybrid vehicles, energy management, supervisory control, mixed-integer optimal
control, convex optimization, linear programming.

1. INTRODUCTION

In order to reduce fuel consumption and pollutant emis-
sions, the automotive sector has been introducing hybrid
electric powertrains for passenger cars and trucks. The
topology of the propulsion system and the components’
sizing have a significant impact on the achievable per-
formance, as well as the energy management algorithms
coordinating the powertrain components [Guzzella and
Sciarretta, 2013].

In this paper, we will focus on the powertrain shown in
Fig. 1, consisting of an internal combustion engine and an
electric motor (EM) providing boosting and regenerative
braking. The engine is connected to an automated gearbox,
while the electric motor is coupled to the output shaft of
that gearbox with an additional gear set. The final drive
and the differential (FD) transmit the propulsive power to
the wheels. The fuel tank and the battery are the on-board
energy storages.

There exist several contributions on the synthesis of
high-level energy management strategies for hybrid elec-
tric vehicles (HEVs). In particular, causal feedback con-
trol schemes are mostly based on ECMS [Nüesch et al.,
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benchmark causal controllers or investigate the impact
of different powertrain structures on the achievable per-
formance. While delivering very satisfying results, such
methodologies rely on optimization algorithms resulting
in computational times in the order of minutes to hours.

This paper presents a non-causal approach to rapidly
compute the fuel-optimal control strategies of a hybrid
electric powertrain for a given driving cycle, including the
engine on/off signal. We use an iterative algorithm that
enables us to assess the minimum-fuel operation in a few
seconds, allowing for extensive parameter studies to be
performed rapidly.

The structure of this paper is as follows: Section 2 presents
a piecewise affine model of the HEV shown in Fig. 1 and
formulates the minimum-fuel control problem as a mixed-
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of different powertrain structures on the achievable per-
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methodologies rely on optimization algorithms resulting
in computational times in the order of minutes to hours.

This paper presents a non-causal approach to rapidly
compute the fuel-optimal control strategies of a hybrid
electric powertrain for a given driving cycle, including the
engine on/off signal. We use an iterative algorithm that
enables us to assess the minimum-fuel operation in a few
seconds, allowing for extensive parameter studies to be
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in computational times in the order of minutes to hours.
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electric powertrain for a given driving cycle, including the
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enables us to assess the minimum-fuel operation in a few
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benchmark causal controllers or investigate the impact
of different powertrain structures on the achievable per-
formance. While delivering very satisfying results, such
methodologies rely on optimization algorithms resulting
in computational times in the order of minutes to hours.

This paper presents a non-causal approach to rapidly
compute the fuel-optimal control strategies of a hybrid
electric powertrain for a given driving cycle, including the
engine on/off signal. We use an iterative algorithm that
enables us to assess the minimum-fuel operation in a few
seconds, allowing for extensive parameter studies to be
performed rapidly.
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methodologies rely on optimization algorithms resulting
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This paper presents a non-causal approach to rapidly
compute the fuel-optimal control strategies of a hybrid
electric powertrain for a given driving cycle, including the
engine on/off signal. We use an iterative algorithm that
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integer linear program (MILP). In Section 3, we present se-
quential and bisection algorithms to rapidly solve the fuel-
optimal control problem as a sequence of linear programs
(LP) iterating on the engine on/off variable. Section 4
compares the results obtained with our approach to the
globally optimal solution of the MILP for a standard driv-
ing cycle and presents a parameter study on the impact
of the battery targets on the achievable fuel consumption.
Section 5 concludes the paper and provides future research
directions.

2. MODEL AND OPTIMAL CONTROL PROBLEM

In this section, we first identify a piecewise affine model
of the HEV and then formulate the fuel-optimal control
problem. Finally, we discretize the model and parse it as
a MILP. For reasons of confidentiality, all sensitive data
shown throughout this paper have been normalized.

2.1 Powertrain Model

We model the powertrain schematically drawn in Fig. 2
in the time domain and assume that the velocity and the
gearshift profiles of the driving cycle are known. Therefore,
the power request Preq(t) that has to be delivered at the
wheels as well as the engine and motor speeds ωe(t), ωm(t),
respectively, are exogenous variables. In the following
modeling equations, we drop the time dependency to ease
the notation.

The engine power Pe can be captured by a speed-
dependent Willans approximation [Guzzella and Onder,
2010] as a function of the fuel power Pf ≥ 0, the engine
efficiency e(ωe) and the drag power Pe,0(ωe) as

Pe =
(
e(ωe) · Pf − Pe,0(ωe)

)
· be , (1)

where be ∈ {0, 1} is the engine on/off decision variable
(0 corresponding to off, 1 to on). Thereby we assume the
clutch between the engine and the gearbox to be open
whenever the engine is off. Fig. 3 shows that this model
is in good agreement with the measurement data. The
maximum engine power is speed-dependent, i.e.,

Pe ≤ Pe,max(ωe) . (2)

Since Eq. (1) is non-convex, we rewrite it using the so-
called big-M formulation [Richards and How, 2005] as

Pe ≤ e(ωe) · Pf − Pe,0(ωe) + (1− be) ·M
Pe ≥ e(ωe) · Pf − Pe,0(ωe)− (1− be) ·M
Pe ≤ be ·M
Pe ≥ −be ·M ,

(3)

where M ≥ supPe
|Pe|. The engine power transmitted

through the gearbox Pe,gb is then modeled using the
gearbox efficiency ηgb,e as

Pe,gb =





1

ηgb,e
· Pe if Pe < 0

ηgb,e · Pe if Pe ≥ 0 .

(4)

Since 0 < ηgb,e ≤ 1 holds, we can relax Eq. (4) to a set of
convex inequality constraints as

Pe,gb ≤ 1

ηgb,e
· Pe

Pe,gb ≤ ηgb,e · Pe .
(5)

If the optimization criterion is chosen to minimize the
energy consumption, then the constraints (5) will be
active, holding with equality [Murgovski et al., 2015]. In
the following, we will apply this relaxation technique to
several other modeling equations. For the electric drive,
the conversion losses from electrical to mechanical power
and vice-versa are modeled by the piecewise affine relation

Pm,dc =



ηgm(ωm) · Pm if Pm < 0

1

ηmm(ωm)
· Pm if Pm ≥ 0 ,

(6)

with Pm,dc and Pm representing the electrical and mechan-
ical motor power, respectively, whilst the speed-dependent
efficiencies ηmm and ηgm (in motor and generator mode,
respectively) are subject to identification. Fig. 3 shows a
comparison of measurement data with the model identi-
fied. Since ηgm(ωm), η

m
m(ωm) ∈ (0, 1] holds for all ωm, we

also relax Eq. (6) to a set of linear inequality constraints:

Pm,dc ≥ ηgm(ωm) · Pm

Pm,dc ≥
1

ηmm(ωm)
· Pm .

(7)

The operating bounds of the electric motor are also speed-
dependent, i.e.,

Pm,min(ωm) ≤ Pm ≤ Pm,max(ωm) . (8)

By introducing the efficiency ηgb,m, the mechanical power
Pm,gb transmitted by the motor through the gear set is
given by

Pm,gb =




1

ηgb,m
· Pm if Pm < 0

ηgb,m · Pm if Pm ≥ 0 .

(9)

Again, 0 < ηgb,m ≤ 1 holds, and therefore we can also
relax Eq. (9) to inequality as

Pm,gb ≤ 1

ηgb,m
· Pm

Pm,gb ≤ ηgb,m · Pm .
(10)

The power at the terminals of the battery is given by

Pb = Pm,dc + Paux , (11)

where Paux models a constant auxiliary power flow. In-
troducing the loss coefficients ηcb and ηdb for charging and
discharging, respectively, and assuming a constant open
circuit voltage, the internal battery power Pi is modeled
by the piecewise affine relation

Pi =




ηcb · Pb if Pb < 0
1

ηdb
· Pb if Pb ≥ 0 .

(12)

The results of the fit are shown in Fig. 4, together with
the root mean square error. Because 1

ηd
b

≥ ηcb holds, we also

relax Eq. (12) to a set of linear inequality constraints:

Pi ≥ ηcb · Pb

Pi ≥
1

ηdb
· Pb .

(13)

The total power delivered by the powertrain through the
gearbox is given by

Pp = Pm,gb + Pe,gb . (14)
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Fig. 3. Comparison of the piecewise affine models for the
engine and the electric motor with measurement data
for two different speed levels.

We model the losses in the differential and the final drive
by introducing the efficiency ηfd as

Pp,fd =




1

ηfd
· Pp if Pp < 0

ηfd · Pp if Pp ≥ 0 .
(15)

Since we have ηfd ≤ 1, we can again relax to the following
set of inequality constraints:

Pp,fd ≤ 1

ηfd
· Pp

Pp,fd ≤ ηfd · Pp .
(16)

Finally, the exogenous power request has to be fulfilled by
satisfying the equality constraint

Preq = Pp,fd − Pbrk , (17)

where Pbrk ≥ 0 is the power dissipated in the hydraulic
brakes. Since we are not interested in the braking strategy,
we can reformulate Eq. (17) as

Preq ≤ Pp,fd . (18)

The only state variable of the powertrain is the battery
energy, which we model as an open integrator

d

dt
Eb(t) = −Pi(t) , (19)

where the minus sign is due to the fact that the battery
is discharged when Pi > 0. Finally, Eb must fulfill the
following path constraint:

Eb,min ≤ Eb ≤ Eb,max . (20)

2.2 Fuel-optimal Control Problem

We formulate the minimum-fuel control problem to assess
the optimal power-split and engine on/off strategies as
follows:

min

∫ T

0

Pf dt

s.t. (2), (3), (5), (7), (8), (10), (11),

(13), (14), (16), (18), (19), (20)

Eb(0) = Eb,0

Eb(T ) = Eb,target ,

(21)

Fig. 4. Piecewise affine model of the battery and compar-
ison to measurement data.

where Eb,0 and Eb,target are the initial and targeted final
battery states of energy, respectively.

2.3 Mixed-integer Linear Program Formulation

We discretize the powertrain model formulated above
using the explicit Euler scheme with a sampling time Ts
and a time horizon T . The derivative of a continuous-time
variable x(t) is thus approximated as

dx

dt
(t) ≈ x(t+ Ts)− x(t)

Ts
. (22)

Let N := ceil(T/Ts) be the discrete-time horizon. Further-
more, we define x[k] := x(k Ts), where k ∈ {0, . . . , N}. We
assume that the exogenous signals ωe[k], ωm[k] and Preq[k]
are known for all k ∈ {0, . . . , N − 1}.

The state variable is x = Eb ∈ RN , and the input variables
are u =

(
Pm, be

)
∈ RN−1 × {0, 1}N−1. The resulting fuel-

optimal optimization problem (21) becomes

min

N−1∑
k=0

Pf [k] · Ts , (23)

subject to the dynamics

Eb[k + 1] = Eb[k]− Pi[k] · Ts , (24)

the state constraints on the battery state-of-charge

Eb[0] = Eb,0

Eb[N ] = Eb,target

Eb,min ≤ Eb[k] ≤ Eb,max ,

(25)

the input constraints

be[k] ∈ {0, 1}
Pm[k] ∈

[
Pm,min(ωm[k]), Pm,max(ωm[k])

]
,

(26)

the system equality constraints

Pp[k] = Pm,gb[k] + Pe,gb[k], (27)

the system inequality constraints
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We model the losses in the differential and the final drive
by introducing the efficiency ηfd as

Pp,fd =




1

ηfd
· Pp if Pp < 0

ηfd · Pp if Pp ≥ 0 .
(15)

Since we have ηfd ≤ 1, we can again relax to the following
set of inequality constraints:

Pp,fd ≤ 1

ηfd
· Pp

Pp,fd ≤ ηfd · Pp .
(16)

Finally, the exogenous power request has to be fulfilled by
satisfying the equality constraint

Preq = Pp,fd − Pbrk , (17)

where Pbrk ≥ 0 is the power dissipated in the hydraulic
brakes. Since we are not interested in the braking strategy,
we can reformulate Eq. (17) as

Preq ≤ Pp,fd . (18)

The only state variable of the powertrain is the battery
energy, which we model as an open integrator

d

dt
Eb(t) = −Pi(t) , (19)

where the minus sign is due to the fact that the battery
is discharged when Pi > 0. Finally, Eb must fulfill the
following path constraint:

Eb,min ≤ Eb ≤ Eb,max . (20)

2.2 Fuel-optimal Control Problem

We formulate the minimum-fuel control problem to assess
the optimal power-split and engine on/off strategies as
follows:

min

∫ T

0

Pf dt

s.t. (2), (3), (5), (7), (8), (10), (11),

(13), (14), (16), (18), (19), (20)

Eb(0) = Eb,0

Eb(T ) = Eb,target ,

(21)

Fig. 4. Piecewise affine model of the battery and compar-
ison to measurement data.

where Eb,0 and Eb,target are the initial and targeted final
battery states of energy, respectively.

2.3 Mixed-integer Linear Program Formulation

We discretize the powertrain model formulated above
using the explicit Euler scheme with a sampling time Ts
and a time horizon T . The derivative of a continuous-time
variable x(t) is thus approximated as

dx

dt
(t) ≈ x(t+ Ts)− x(t)

Ts
. (22)

Let N := ceil(T/Ts) be the discrete-time horizon. Further-
more, we define x[k] := x(k Ts), where k ∈ {0, . . . , N}. We
assume that the exogenous signals ωe[k], ωm[k] and Preq[k]
are known for all k ∈ {0, . . . , N − 1}.

The state variable is x = Eb ∈ RN , and the input variables
are u =

(
Pm, be

)
∈ RN−1 × {0, 1}N−1. The resulting fuel-

optimal optimization problem (21) becomes

min

N−1∑
k=0

Pf [k] · Ts , (23)

subject to the dynamics

Eb[k + 1] = Eb[k]− Pi[k] · Ts , (24)

the state constraints on the battery state-of-charge

Eb[0] = Eb,0

Eb[N ] = Eb,target

Eb,min ≤ Eb[k] ≤ Eb,max ,

(25)

the input constraints

be[k] ∈ {0, 1}
Pm[k] ∈

[
Pm,min(ωm[k]), Pm,max(ωm[k])

]
,

(26)

the system equality constraints

Pp[k] = Pm,gb[k] + Pe,gb[k], (27)

the system inequality constraints
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Pf [k] ≥ 0

Pe[k] ≤ Pe,max(ωe[k])

Pe,gb[k] ≤
1

ηgb,e
· Pe[k]

Pe,gb[k] ≤ ηgb,e · Pe[k]

Pm,dc[k] ≥ ηgm(ωm[k]) · Pm[k]

Pm,dc[k] ≥
1

ηmm(ωm[k])
· Pm[k]

Pm[k] ≥ ηgb,m · Pm,gb[k]

Pm[k] ≥
1

ηgb,m
· Pm,gb[k]

Pi[k] ≥ ηcb · Pb[k]

Pi[k] ≥
1

ηdb
· Pb[k]

Pp,fd[k] ≤
1

ηfd
· Pp[k]

Pp,fd[k] ≤ ηfd · Pp[k]

Pp,fd[k] ≥ Preq[k] ,

(28)

and the system inequality constraints with binary variables

Pe[k] ≥ e(ωe[k]) · Pf [k]− Pe,0(ωe[k])− (1− be[k]) ·M
Pe[k] ≤ e(ωe[k]) · Pf [k]− Pe,0(ωe[k]) + (1− be[k]) ·M
Pe[k] ≥ −be[k] ·M
Pe[k] ≤ be[k] ·M .

(29)

3. ALGORITHM

This section presents a threshold-based linear program-
ming (TB-LP) algorithm to solve the minimum-fuel en-
gine on/off and power split control problem presented in
Section 2.2. The main goal is to rapidly solve the MILP
presented in Section 2.3 in an iterative fashion. Fig. 5
shows a schematic representation of the algorithm, high-
lighting an inner and an outer loop. Iterating on the engine
on/off signal be, the inner branch solves Problem (21) as
a two-point boundary value problem (TPBVP), whereby
the initial and final battery state of charge are given whilst
the path constraints on the battery energy are ignored.
The outer branch is a multi-point boundary value problem
(MPBVP) solver built upon [Rousseau et al., 2007] check-
ing whether the battery path constraints are respected by
the solution of the TPBVP solved by the inner loop. If this
is not the case, the solver splits up the problem into sub-
problems that are fed to the inner loop as TPBVPs. In this
paper we solely focus on scenarios where the lower battery
state constraint Eb,min may become active over the cycle,
since this is the most common case in standard driving
cycles. Such an approach is readily extendable to introduce
also the upper path constraint. The proposed algorithm
consists of the three steps delineated in the following three
subsections.

3.1 MILP Relaxed to LP

We perform a convex relaxation on the Willans approx-
imation of the engine (1). As a result we obtain the
gray convex hull shown in Fig. 6. Since the minimum-fuel
control strategy would then always operate the engine on
the maximum efficiency dash-dotted line of Fig. 6, we can
reformulate Eq. (1) by substituting Pf with the maximum
fuel power that the engine can deliver Pf,max and relaxing
the binary on/off variable as brlxe ∈ [0, 1]. The engine power
Pe is therefore

Pe = (e(ωe) · Pf,max(ωe)− Pe,0(ωe)) · brlxe , (30)

LP (brlxe )

TPBVP Algorithm
LP (bthe )

Eb(t) ≥ Eb,min

Iterative
Algorithm

to solve MPBVP

BEGIN

END

brlxe

Eb

Yes

No

Fig. 5. The proposed TB-LP algorithm.

Pf,max

−Pe,0

Pe,max

0

b
rl
x
e

Pf

Pe

Fig. 6. Willans approximation and relaxation at a given
engine speed.

where the maximum fuel power Pf,max at every time
instant is defined by the relationship

Pf,max(ωe) =
Pe,max(ωe) + Pe,0(ωe)

e(ωe)
. (31)

This way, we cast the problem into a linear form and
we allow the engine to operate over the dash-dotted line
depicted in Fig. 6. The engine operating points can span
between maximum engine power when brlxe equals one and
turned-off condition when brlxe equals zero.

The engine power Pe is therefore found solving a linear
program where the optimization variables are the me-
chanical power provided by the electric motor Pm and
the continuous variable brlxe regulating the power delivered
by the engine. Since the operating points of the engine
can span over the dash-dotted line corresponding to the
most efficient engine operating zone, this yields a lower
bound on the achievable fuel consumption. Specifically, the
relaxed problem is

min

∫ T

0

Pf dt

s.t. (5), (7), (8), (10), (11), (13),

(14), (16), (18), (19), (20), (30), (31)

brlxe (t) ∈ [0, 1]

Eb(0) = Eb,0

Eb(T ) = Eb,target .

(32)
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Fig. 7. Results from the relaxed LP for the NEDC.

Fig. 8. Simulation results after the second step of the
algorithm. In the first plot the relaxed variable brlxe
and the upper (gray line) and optimal (black dashed
line) thresholds bthe are indicated. The second plot rep-
resents the resulting optimal on/off engine strategy.

Fig. 7 shows the results obtained in the first step of the al-
gorithm using the New European Driving Cycle (NEDC).
The variation of Eb is marginal since the engine is operated
at the maximum efficiency of the non-relaxed Willans
approximation, making load point shifting not profitable.
The bottom plot in Fig. 7 shows the optimization variable
brlxe , highlighting where the engine is turned on and how
much of the maximum fuel power is requested.

3.2 TPBVP

We devise a bisection algorithm that takes as an input brlxe

and converts it to a binary signal. Since the higher is brlxe ,
the higher is Pe in the non-relaxed Willans approximation
and, thus, the more efficient is the engine, we turn on the
engine where it has the largest efficiency selecting its on/off
policy as

bbine =

{
1 if brlxe ≥ bthe
0 if brlxe < bthe ,

(33)

bthe max
{
brlxe

}
brlxe

J

Fig. 9. Objective function J in the bisection algorithm.

where the constant threshold bthe ∈ [0, 1] is subject to iden-
tification. This procedure is shown in Fig. 8. Specifically,
we want to find the largest bthe for which

be = bbine (34)

would still result in a feasible problem (21). Therefore, we
devise a bisection algorithm to find bbine . Specifically, we
first extend Problem (21) by introducing a slack variable
defined as

ε = max{0, Preq − Pp,fd} , (35)

to measure the problem infeasibility. The objective func-
tion is

J :=

∫ tf

t0

(
Pf(t) + kε · ε(t)

)
dt (36)

and the optimization problem is relaxed to the TPBVP

min J

s.t. (2), (3), (5), (7), (8), (10), (11), (13),

(14), (16), (19), (34), (35)

Eb(t0) = Eb,i

Eb(tf) = Eb,f ,

(37)

which can be parsed to a LP and where kε is a large
positive coefficient to penalize infeasibility.

Fig. 9 shows a qualitative sketch highlighting how the
objective (36) varies as a function of the threshold
bthe . The bisection algorithm is detailed in Algorithm 1.
It terminates when the tolerance ∆btole is met after
log2(max

{
brlxe (t)

}
/∆btole ) iterations.

3.3 MPBVP

After solving the TPBVP detailed in Section 3.2 for
the complete driving cycle, i.e., t0 = 0, tf = T ,
Eb,i = Eb,0 and Eb,f = Eb,target, we check the path con-
straint E�

b(t) ≥ Eb,min.
If this condition is satisfied, we return the optimal solution
of the TPBVP, otherwise we use Algorithm 2 inspired
by [Rousseau et al., 2007], and theoretically proven in [van
Keulen et al., 2014], to deal with path constraints. The
main rationale is to split the problem into sub-problems
between the constraint violation points and solve them one
by one, until each becomes feasible.

4. RESULTS

This section presents the results obtained by implementing
the developed TB-LP algorithm on the NEDC. We com-
pare them to the globally optimal solution obtained by
solving the MILP parsed in Section 2.3. All computations
are conducted on a Dell XPS15 Desktop PC with an
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Fig. 8. Simulation results after the second step of the
algorithm. In the first plot the relaxed variable brlxe
and the upper (gray line) and optimal (black dashed
line) thresholds bthe are indicated. The second plot rep-
resents the resulting optimal on/off engine strategy.

Fig. 7 shows the results obtained in the first step of the al-
gorithm using the New European Driving Cycle (NEDC).
The variation of Eb is marginal since the engine is operated
at the maximum efficiency of the non-relaxed Willans
approximation, making load point shifting not profitable.
The bottom plot in Fig. 7 shows the optimization variable
brlxe , highlighting where the engine is turned on and how
much of the maximum fuel power is requested.

3.2 TPBVP

We devise a bisection algorithm that takes as an input brlxe

and converts it to a binary signal. Since the higher is brlxe ,
the higher is Pe in the non-relaxed Willans approximation
and, thus, the more efficient is the engine, we turn on the
engine where it has the largest efficiency selecting its on/off
policy as

bbine =

{
1 if brlxe ≥ bthe
0 if brlxe < bthe ,

(33)

bthe max
{
brlxe

}
brlxe

J

Fig. 9. Objective function J in the bisection algorithm.

where the constant threshold bthe ∈ [0, 1] is subject to iden-
tification. This procedure is shown in Fig. 8. Specifically,
we want to find the largest bthe for which

be = bbine (34)

would still result in a feasible problem (21). Therefore, we
devise a bisection algorithm to find bbine . Specifically, we
first extend Problem (21) by introducing a slack variable
defined as

ε = max{0, Preq − Pp,fd} , (35)

to measure the problem infeasibility. The objective func-
tion is

J :=

∫ tf

t0

(
Pf(t) + kε · ε(t)

)
dt (36)

and the optimization problem is relaxed to the TPBVP

min J

s.t. (2), (3), (5), (7), (8), (10), (11), (13),

(14), (16), (19), (34), (35)

Eb(t0) = Eb,i

Eb(tf) = Eb,f ,

(37)

which can be parsed to a LP and where kε is a large
positive coefficient to penalize infeasibility.

Fig. 9 shows a qualitative sketch highlighting how the
objective (36) varies as a function of the threshold
bthe . The bisection algorithm is detailed in Algorithm 1.
It terminates when the tolerance ∆btole is met after
log2(max

{
brlxe (t)

}
/∆btole ) iterations.

3.3 MPBVP

After solving the TPBVP detailed in Section 3.2 for
the complete driving cycle, i.e., t0 = 0, tf = T ,
Eb,i = Eb,0 and Eb,f = Eb,target, we check the path con-
straint E�

b(t) ≥ Eb,min.
If this condition is satisfied, we return the optimal solution
of the TPBVP, otherwise we use Algorithm 2 inspired
by [Rousseau et al., 2007], and theoretically proven in [van
Keulen et al., 2014], to deal with path constraints. The
main rationale is to split the problem into sub-problems
between the constraint violation points and solve them one
by one, until each becomes feasible.

4. RESULTS

This section presents the results obtained by implementing
the developed TB-LP algorithm on the NEDC. We com-
pare them to the globally optimal solution obtained by
solving the MILP parsed in Section 2.3. All computations
are conducted on a Dell XPS15 Desktop PC with an
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Algorithm 1. TPBVP algorithm

Solve Problem (32) and get brlxe

bth,le = 0
bth,re = max

{
brlxe (t)

}
while bth,re − bth,le > ∆btole /2 do

bthe =
(
bth,le + bth,re

)
/2

bbine =
(
brlxe ≥ bthe

)
Solve Problem (37) and get ε(t)

if
∫ tf
t0

ε(t) dt > 0 then
Problem infeasible
bth,re = bthe

else
Problem feasible
bth,le = bthe

end
end
bbine =

(
brlxe ≥ bth,le

)
Solve feasible Problem (37) and get E�

b(t) and P �
m(t)

b�e(t) = bbine (t)
return x�(t) = E�

b(t) and u�(t) =
(
P �
m(t), b

�
e(t)

)

Algorithm 2. MPBVP algorithm

t0 = 0
tf = T
Eb,i = Eb,0

Eb,f = Eb,target

while t0 �= T do
[x�(t), u�(t)] = TPBVPalgorithm(t0, tf , Eb(t0), Eb(tf))
if Eb(t) < Eb,min then

tf = argmint∈[t0,tf ] Eb(t)
Eb,f = Eb,min

else
t0 = tf , tf = T, Eb,i = Eb,min, Eb,f = Eb,target

append x�(t), u�(t) to x�(t),u�(t)
end

end
return x�(t) and u�(t)

Intel Core i7-6700HQ CPU and 16 GB RAM running
Ubuntu 16.04. To parse the LP and the MILP we used
YALMIP [Löfberg, 2004], and the adopted convex solver is
CPLEX. First, we assess the performance of our algorithm
by considering different lower bounds Eb,min under the
charge-sustaining constraint Eb,target = Eb,0. Second, we
perform a parametric study to compute the achievable fuel
consumption for different battery targets.

4.1 Solution for Different Path Constraints

We set the lower bound on Eb,min to zero. Fig. 10 shows
that the solution provided by the proposed TB-LP algo-
rithm is close to the one obtained by solving the MILP.
The lower bound on the path constraint is not active
(i.e., the condition E�

b(t) ≥ Eb,min is always satisfied), thus
the algorithm terminates after just one iteration of the
TPBVP branch, returning a constant value of bthe . Table 1
collects and compares the results, highlighting a slightly
higher fuel consumption for the TB-LP algorithm, whilst
showing a significant reduction of the computational time.

Fig. 11 presents the results when the lower bound on the
normalized battery energy is set equal to 0.4. The lower

Fig. 10. NEDC, Eb,min = 0 (dash-dotted line).

MILP TB-LP

Computational time [s] 430.89 6.49
Fuel consumption difference [%] – +0.23

Table 1. Comparison for Eb,min = 0.

Fig. 11. Results on the NEDC with Eb,min = 0.4 (dash-
dotted line).

MILP TB-LP

Computational time [s] 3237.80 53.95
Fuel consumption difference [%] – +0.33

Table 2. Comparison for Eb,min = 0.4.

path constraint is active and the MPBVP algorithm iter-
ates five times to reach convergence, returning a piecewise
constant value of bthe . In terms of fuel consumption, the
solutions provided by the MILP and the TB-LP are very
close, with a difference of just +0.33% as pointed out
in Table 2. Also in this case the computational time is
reduced by two orders of magnitude.
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Fig. 12. Scan on different Eb targets. The first plot rep-
resents the impact on total fuel consumption (nor-
malized w.r.t. ∆Eb = 0). The second plot shows the
difference in fuel consumption compared to the MILP.

4.2 Scan on Battery Targets

To showcase the effectiveness of the proposed algorithm we
also provide a parameter study on the impact of different
Eb,target on the achievable fuel consumption. The complete
computation took 297 s. Fig. 12 shows a linear relationship
between fuel and battery usage as well as good coherence
with the MILP results.

5. CONCLUSION

This paper presented an optimization algorithm to quickly
assess the minimum-fuel engine on/off control for the
energy management of a hybrid electric vehicle. After
identifying a piecewise affine model of the powertrain,
we parsed the fuel-optimal control problem to a mixed-
integer linear program (MILP) with a binary variable
representing the engine on/off signal. Finally, we devised
an iterative algorithm to rapidly solve the multi-points
boundary value problem arising from the battery size
constraints as a sequence of two-points boundary value
problems, each tackled as a sequence of linear programs
iterating on the engine on/off variable. We tested our
approach on the New European Driving Cycle and the
results showed good coherence with the globally optimal
MILP solution, whilst achieving significantly lower com-
putational times by roughly two orders of magnitude. To
demonstrate the effectiveness of the proposed algorithm,
we then investigated the impact of different battery targets
on the achievable fuel consumption.

Future research could extend the presented algorithm to
account for scenarios where the upper battery energy
limit constraint is active and assess the optimal gear-shift
strategy. Furthermore, this approach could be extended to
topology optimization and real-time control.
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