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Abstract. In this work, we compare different constitutive models of heat flux
in a rigid heat conductor. In particular, we investigate the relation between
the solutions of the Green-Naghdi type III equation and those of the classical
Fourier heat equation. The latter is often referred to as a limit case of the
former one, as (formally) obtained by letting certain small positive parameter
ε vanish. In presence of steady heat sources, we prove that the type III equation
may be considered as a perturbation of the Fourier one only if the solutions are
compared on a finite time interval of order 1/ε, whereas significant differences
occur in the longterm. Moreover, for a bar with finite length and prescribed
heat flux at its ends, the solutions to the type III equation do not converge
asymptotically in time to the steady solutions to the corresponding Fourier
model. This suggests that the Green-Naghdi type III theory is not to be
viewed as comprehensive of the Fourier theory, at least when either asymptotic
or stationary phenomena are involved.

1. Introduction. A new class of models for heat conduction in a rigid body oc-
cupying a volume Ω ⊂ Rn has been developed in the nineties by Green and Naghdi
[8]. In the framework of their general theory, the propagation of thermal waves at
finite speed is allowed. They proposed three types of models, named type I, type
II and type III, respectively, the latter being the most general, which (formally)
includes the others as particular instances.

Type I model essentially consists of the classical heat conduction based on the
Fourier constitutive law for the heat flux

q(x, t) = −κ∇ϑ(x, t), (x, t) ∈ Ω× R+, (1)

where ϑ is the absolute temperature and κ > 0 is the thermal conductivity. Instead,
type II and type III models are quite different, since they are based on an extra
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thermal state variable, named thermal displacement, defined as

α(x, t) = α0(x) +

∫ t

0

ϑ(x, s) ds. (2)

Here ϑ is an empirical temperature scale, not necessarily the absolute one. More
comments on the notion of thermal displacement, along with its history and use,
can be found in [10]. Type III model is characterized by the heat-flux law

q(x, t) = −κ∇ϑ(x, t)− ε∇α(x, t) (3)

with ε > 0, while type II is obtained from this law as the limiting case corresponding
to κ = 0. Formally, even the type I (Fourier) theory is enclosed in this general law
provided that ε = 0.

This new class of heat conduction models raised a wide interest in the mathemat-
ical community, due to the capability of describing heat propagation by means of
thermal waves in addition to diffusive propagation (see [12] and references therein).
For instance, thermal wave effects have recently addressed as a possible mechanism
for heat transfer enhancement observed in nano-fluids suspensions [11, 13]. While
the type II model predicts a finite speed of heat propagation without any damping
or smoothing, the type III generates thermal waves which travel at finite speed and
smoothen during the propagation, containing the type II as a dissipationless special
case. Approximated Taylor shock waves with finite-speed wavefront can also be
obtained in the genuine type III model (cf. Section 2.3), revealing that both infinite
and finite speed features are present (see also [1]). In some sense, we may say that
a smooth transition between the dissipative and non-dissipative regime takes place
passing from a type III (κ > 0) to a type II (κ = 0) conductor.

The Green-Naghdi are neither the only nor the firstly appeared nonclassical heat
conduction models able to predict heat-wave propagation. We may quote for in-
stance the Maxwell-Cattaneo law, introduced in order to generate a hyperbolic heat
equation, so to remove the infinite velocity paradox of the Fourier heat diffusion.
Unlike Fourier and Green-Naghdi theories, the Maxwell-Cattaneo theory is based
on a rate-type constitutive equation for the heat flux, i.e.

τ q̇(x, t) + q(x, t) = −κ∇ϑ(x, t) (4)

with τ > 0 small, the dot standing for material time-derivative. This constitutive
equation predicts heat-wave propagation and can be viewed as a sort of general-
ization of (1), which is recovered when τ = 0. Nevertheless, in the recent past
some controversy raised about the non-objective character of the material deriva-
tive appearing in (4), and several efforts have been devoted to circumvent such a
difficulty (cf. [2] and references therein). On the contrary, the Green-Naghdi models
are completely immune from this criticism, since their constitutive equations do not
contain the material derivative of any vector field.

Another generalization of the heat-flux constitutive law was proposed by Coleman
and Gurtin [3] in the form of an hereditary relation

q(x, t) = −κ0∇ϑ(x, t)−
∫ t

−∞
K(t− s)∇ϑ(x, s) ds (5)

where κ0 ≥ 0 and K is a convex summable function on the positive half-line.
Because of the presence of a time-convolution integral, it is also referred to as a
theory of heat conduction with thermal memory. When κ0 = 0 this model is also
known as the (linear) Gurtin-Pipkin model [9]. The Coleman-Gurtin relation can
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be considered as the most general model among all the others cited so far. Indeed,
on the one hand (5) with κ0 = 0 reduces to the Maxwell-Cattaneo relation (4) when
the exponential kernel

K(s) =
κ

τ
e−s/τ

is involved; on the other hand, assuming the summability of ϑ on R−, we can extend
the definition of the thermal displacement as

α(x, t) =

∫ t

−∞
ϑ(x, s) ds.

In this framework, we are allowed to assume that the quantity α0(x) = α(x, 0) in
(2) summarizes the temperature history up to the initial time t = 0, namely,

α0(x) =

∫ 0

−∞
ϑ(x, s) ds.

Accordingly, the type III model can be formally obtained from (5) by letting

K(s) = ε.

In addition, the thermal displacement α(x, t) is related to the auxiliary variable

ηt(x, s) =

∫ t

t−s

ϑ(σ) dσ,

accounting for the integrated past history of ϑ in the Coleman-Gurtin theory (see
e.g. [5, 6, 7]), through the relation

ηt(x, s) = α(x, t)− α(x, t− s).

Remark 1. Actually, the (singular) limit process where the summable kernel K(s)
approaches the constant function ε drives us out of the realm of the Coleman-Gurtin
model, since the summability condition onK is lost and we are passing from a fading
memory to a persistent memory model.

Summarizing, we report the following hierarchy of the different heat-flux consti-
tutive laws discussed so far:

Coleman-Gurtin ⊃
κ0 =0

Gurtin-Pipkin ⊃
K(s)= e−s/τ

Maxwell-Cattaneo ⊃
τ =0

Fourier

and
Coleman-Gurtin ⊃

K(s)= ε
Green-Naghdi type III ⊃

ε=0
Fourier

However, this scheme is completely formal, and a comparison of the different theories
would need to confront the solutions to the corresponding heat equations. In order
to deduce such equations, the heat-flux constitutive relations have to be plugged
into the energy balance

et(x, t) + div q(x, t) = r(x, t)

where e is the internal energy and r is an external source term, the subscript ·t
standing for partial derivative with respect to time. Assuming, as usual, a linear
constitutive equation for the internal-energy, i.e.

e(x, t) = e0(x) + cϑ(x, t)

where c > 0 is the specific heat, we obtain the desired differential equation for the
temperature field

cϑt(x, t) + div q(x, t) = r(x, t), (6)
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according to the different constitutive laws for q. In particular, it is of great interest
to establish if, passing from a more general heat constitutive law to a particular one
(via some limit procedure), there exists a convergence between the solutions to the
corresponding heat equations. For instance, we recall that the regular limit of the
solutions to the Coleman-Gurtin versus the Fourier model has been proved [4], which
occurs when the kernel K approaches the Dirac mass at zero. In this connection,
one may consider the Coleman-Gurtin (and then the Maxwell-Cattaneo) model as
a genuine extension of the Fourier theory.

In this work, we address the problem of comparing the behavior of the solu-
tions to the type III model and the classical solutions when ε → 0 (that is, when
the equation formally reduces to the Fourier one). By virtue of a simple exam-
ple which admits an explicit analytical treatment, we show that for quite general
source terms the solutions to the type III equation diverge from the solutions to the
classical Fourier heat equation as soon as t � 1/ε. In particular, the asymptotic
behavior differs at least in two cases: either when an external heat source with a non-
vanishing time-mean is present, or in absence of sources within non-homogeneous
boundary conditions. In conclusion, the type III theory of heat conduction cannot
be considered as comprehensive of the Fourier theory in a proper sense.

The paper is organized as follows. In Section 2.1, both the Fourier and the type
III heat equations are stated as initial-boundary value problems in terms of the
temperature field ϑ. Then, two simple one-dimensional situations are considered
and compared. In Section 2.2 a particular problem with external heat sources
and homogeneous Dirichlet boundary conditions is discussed, while in Section 2.3
the asymptotic behavior with different boundary conditions in absence of external
sources is investigated. Some conclusions are drawn in Section 3.

2. Fourier versus Green-Naghdi Type III. The aim of this section is to com-
pare the Fourier (type I) and the type III heat conduction models in their simplest
linear versions.

First, we consider the classical Fourier heat equation in presence of an external
heat source r, obtained by substituting (1) into (6), so to get

cϑt − κ∆ϑ = r (7)

where ϑ is the empirical temperature (an affine function of the absolute tempera-
ture). By the same token, substituting (3) into (6), and recalling that αt = ϑ, we
obtain the type III heat equation

cαtt − κ∆αt − ε∆α = r. (8)

In spite of the fact that (7) is formally recovered from (8) when ε = 0, we will show
that, in general, the corresponding solutions fail to be close as ε becomes small.

2.1. Comparison between Fourier and type III models. Assuming the ho-
mogeneous Dirichlet boundary condition for the temperature1 (hence for α) and
initial conditions for ϑ and α, we have the initial-boundary value problems



cϑt − κ∆ϑ = r,

ϑ|∂Ω = 0,

ϑ(0, x) = ϑ0(x),

(9)

1 In this case, it is understood that ϑ is not the empirical temperature, but a shifted one
vanishing on the boundary. This has no effect in the form of the considered linear equations.
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and 



cαtt − κ∆αt − ε∆α = r,

α|∂Ω = αt|∂Ω = 0,

α(0, x) = α0(x),

αt(0, x) = α1(x),

(10)

where ϑ0, α0, α1 are given initial data. In order to compare the solutions, we make
the choice

ϑ0(x) = α1(x).

Since the physically observable quantity is the temperature field ϑ, supposing r to
be sufficiently regular in time, it is more convenient to consider the time-derivatives
of (9) and (10); namely, appealing again to the equality αt = ϑ and setting for
simplicity c = κ = 1, 



ϑtt −∆ϑt = rt,

ϑ|∂Ω = 0,

ϑ(0, x) = ϑ0(x),

ϑt(0, x) = ϑ1(x),

(11)

and 


ϑtt −∆ϑt − ε∆ϑ = rt,

ϑ|∂Ω = ϑt|∂Ω = 0,

ϑ(0, x) = ϑ0(x),

ϑt(0, x) = ϑ̂1(x),

(12)

where, on account of (9)-(10), the initial values ϑ1 and ϑ̂1 read

ϑ1(x) = r(x, 0) + ∆ϑ0(x), (13)

ϑ̂1(x) = r(x, 0) + ∆ϑ0(x) + ε∆α0(x). (14)

Doing so, we are implicitly assuming ϑ0 and α0 to be sufficiently regular. The next
step is investigating the possible differences in the behavior of the solutions to the
two problems above when ε → 0.

2.2. The one-dimensional case. For simplicity, let us take Ω = [0, π]. We will
treat the simple and analytically solvable case where the space component of the
source term is a fixed eigenfunction of the Dirichlet operator −∆ acting on L2(0, π)
with domain H2(0, π) ∩H1

0 (0, π). Without loss of generality, we can restrict to the
eigenfunction relative to the first eigenvalue, i.e.

r(x, t) = ϕ(t) sinx.

We also choose the initial conditions

ϑ0(x) = a sinx,

α0(x) = b sinx,

for some a, b ∈ R. Accordingly, we infer from (13)-(14) that

ϑ1(x) = [ϕ(0)− a] sinx,

ϑ̂1(x) = [ϕ(0)− a− εb] sinx.

Hence, looking for solutions of the form

ϑ(x, t) = u(t) sinx,
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which automatically fulfill the Dirichlet boundary condition

ϑ(0, t) = ϑ(π, t) = 0,

systems (11)-(12) reduce to the ODE problems



u′′ + u′ = ϕ′,

u(0) = a,

u′(0) = ϕ(0)− a,

(15)

and 


u′′ + u′ + εu = ϕ′,

u(0) = a,

u′(0) = ϕ(0)− a− εb.

(16)

To write down explicit solutions, we consider a specific source

ϕ(t) = p+ q sinωt, p, q ∈ R.

Such a choice is meaningful for our purposes, for it includes both a constant and
a time-dependent term with zero mean. By elementary calculations, the following
solution of (15) is obtained:

u(0)(t) = ae−t + p
[
1− e−t

]
+

q

1 + ω2

[
sinωt− ω cosωt+ ωe−t

]
.

Instead, the solution to the second Cauchy problem (16) is given by

u(ε)(t) = µ1e
−λ1t + µ2e

−λ2t +
ωq

(ε− ω2)2 + ω2

[
(ε− ω2) cosωt+ ω sinωt

]
,

where2

λ1 = ε+ εO(ε), λ2 = 1− ε+ εO(ε),

and

µ1 = p+O(ε), µ2 = −p+ a+
ωq

1 + ω2
+O(ε).

We can rewrite more conveniently the solution u(ε) as

u(ε)(t) = ae−λ2t+(p+O(ε))
[
e−λ1t− e−λ2t

]
+

q +O(ε)

1 + ω2

[
sinωt−ω cosωt+ωe−λ2t

]
.

Then, the difference

δε(t) = u(ε)(t)− u(0)(t)

between such solutions reads

δε(t) = p
[
e−λ1t − 1

]
+
[
a+ p+

qω

1 + ω2

][
e−λ2t − e−t

]
+ β(t)O(ε)

where β(t) is the bounded function

β(t) = p
[
e−λ1t − e−λ2t

]
+

1

1 + ω2

[
sinωt− ω sinωt+ ωe−λ2t

]
.

In particular, if εt � 1, we deduce that

|δε(t)| ≤ |O(εt)|+ |O(ε)|.
Therefore, if t ≤ 1/εη for some η < 1, we find the estimate

|δε(t)| ≤ Cε1−η,

2 With standard notation, O(ε) means “at most of the same order of ε”.
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for some positive constant C depending only on η. At the same time, if t ≥ 1/ε we
have the controls

|p|
[
1− e−1

]
− |O(ε)| ≤ |δε(t)| ≤ |p|+ |O(ε)|,

so that (as ε → 0) the large time behavior is the same if p = 0, which in this example
means a source term with zero time-mean. Contrarily, if p �= 0 the asymptotic
behaviors are diverging, and the divergence pops up at time t ∼ 1/ε.

In summary, both the solutions to models (11) and (12) in the case p = 0, i.e.
when

r(x, t) = q sinωt sinx,

approach the steady state solution

ϑ∞(x, t) =
1

1 + ω2

[
sinωt− ω cosωt

]
sin(x)

for large times and when ε → 0. Conversely, taking for instance

r(x) = p sin(x), p �= 0,

the corresponding solutions ϑ(0) and ϑ(ε) to (11) and (12), respectively, satisfy the
limits

lim
t→∞

ϑ(0)(x, t) = r(x)

and

lim
t→∞

ϑ(ε)(x, t) = 0, ∀ε > 0

uniformly in x. Of course, the difference here is the same which occurs in the
formally analogous problem of the motion of a mass-point subject both to a viscous
and a time-varying external force, depending whether or not an elastic force is
applied (no matter how small its stiffness is). In the first case there is only one
equilibrium configuration at the origin of the elastic force, whereas in the second
one any point can be an equilibrium (see Fig. 1).









Figure 1. The phase space diagram of u′′ + u′ + εu = 0 for ε small
(on the left) and for ε = 0 (on the right). On the left, the orbits (solid)
move parallel to the long-dashed line up to time t ∼ 1/ε, then return
to the origin by approaching the short-dashed line. On the right, the
short-dashed line overlaps the x-axis and the orbits do not return to the

origin.
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Another analogy with a familiar system which illustrates the same qualitative
difference in the asymptotic behavior comes from the RLC circuits. The equation
of a RLC circuit with components arranged in series is

L
d

dt
I +RI +

1

C
Q = E ,

where Q is the charge of the capacitor, I = d
dtQ is the current flowing in the circuit

and E the electromotive force. We can make the analogy with the temperature
equation through the correspondence

Q ↔ α, I ↔ ϑ, E ↔ r,
1

C
↔ ε.

Clearly, the presence of a finite (although arbitrarily large) capacity C drastically
changes the behavior of the current with respect to the case where the capacitor
is absent (that is, C = ∞, when the capacitor is considered an in-series circuital
element).

2.3. One-dimensional problem with non-homogeneous boundary condi-
tions. A different one-dimensional test problem has been scrutinized in [1] in order
to capture the profile of thermal waves. A semi-infinite rigid heat conducting rod
is considered at initial uniform temperature, ϑ(x, 0) = ϑ0 and ϑt(x, 0) = 0 for
all x > 0. No external heat sources are applied, but a time-dependent boundary
condition at x = 0 is considered in the form of a temperature jump, namely,

ϑ(0, t) = ϑ0 + ϑ∗H(t)

where H is the Heaviside step function. At the opposite end of the rod, an asymp-
totic static boundary condition is assumed, i.e.

lim
x→∞

ϑ(x, t) = ϑ0.

As the time t increases, at any point of the rod with x > 0 the temperature ϑ(x, t)
will tend to ϑ0+ϑ∗ both in type I and type III model. The different behavior in the
propagation of the thermal front is depicted in Fig. 2, from which it is apparent that
type III sharply approaches the form of a Taylor shock wave, but with an infinite
tail, due to the parabolic character of the evolution equation. Since the rod has an
infinite length, the solution consists of a wave front propagating forever, so that we
cannot speak of an asymptotic stationary state. Indeed, at any finite time t > 0,
the temperature reaches the uniform value ϑ0 + ϑ∗ in a finite portion, but it equals
ϑ0 at all x sufficiently large.

This is not the case if we consider a rod of finite length � subject to similar
boundary conditions at the ends, namely,

ϑ(0, t) = ϑ0 + ϑ∗H(t) and ϑ(�, t) = ϑ0.

Indeed, after a transient which looks like the wave front of the previous case, it is
meaningful to consider the asymptotic regime when time goes to infinity. As we
can easily check, for both the Fourier and the type III models, the corresponding
stationary asymptotic solution

lim
t→∞

ϑ(x, t) = ϑ̃(x)

consists in a linear temperature profile

ϑ̃(x) = ϑ0 +
�− x

�
ϑ∗. (17)
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Figure 2. Temperature profiles θ(x, t0) and θ(x, 2t0) for type I (dot-
ted), type II (dashed) and type III (solid), where θ = ϑ− ϑ0.

In spite of that, such a stationary asymptotic situation involves very different fea-
tures. According to the Fourier constitutive equation (1), the linear temperature
profile yields a constant (in time) heat flux across the rod

q̃ = κ
ϑ∗

�
.

On the contrary, in the framework of the Green-Naghdi theory, such a stationary
asymptotic situation is physically unsatisfactory. Since the model rests on the heat
constitutive equation (3), any non-homogeneous stationary temperature solution,
as well as (17), involves a non-stationary (actually, linearly diverging) configuration
of the heat flux. Indeed, by assuming α0 = 0, we have

q = [κ+ ε(t− t0)]
ϑ∗

�
.

As a consequence, in type III conductors the physical environment, which maintains
the prescribed boundary conditions at the ends, has to supply the rod with an heat
flux whose amount linearly increases in time.

Furthermore, by reversing this problem, we unveil another unsatisfactory feature.
Let us consider a constant-in-time heat flux q̃ prescribed at both ends of the rod:

q(0, t) = q(�, t) = q̃.

Then, for a rigid Fourier conductor the stationary asymptotic solution (17) is easily
recovered. For a Green-Naghdi type III conductor, first note that any possible
asymptotic state, in absence of external sources, has to satisfy the conservation
law ∂xq = 0 for the heat flux, on account of the energy balance (6). As we are
considering a one-dimensional problem, the prescribed conditions on the heat flux
at the ends imply q(x) = q̃ for any stationary state. Hence, (3) gives

κ∂xϑ∞(x) + ε∂xα∞(x, t) = −q̃ (18)

where ϑ∞ is the assumed asymptotic stationary state for the temperature field, and

α∞(x, t) = tϑ∞(x) + α0(x).

Then equation (18), holding for any t, readily yields

∂xϑ∞(x) = 0, 0 ≤ x ≤ �,

that is, the asymptotic stationary temperature solution has to be uniform. We stress
that, in such a stationary state, a finite amount of heat q̃ flows steadily across the
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rod when its end points x = 0 and x = � have the same temperature ϑ0. In the
framework of the Clausius formulation of the second law of thermodynamics, this
situation seems to be at the limit of admissibility. In particular, we note that in
the asymptotic state the heat flux vector selects a privileged direction, albeit the
boundary conditions are symmetric. Our point of view is that this favored direction
arises as a consequence of the persistent memory of the model, that retains the
past orientation of the flux. This feature can be related to the constant memory
kernel K(s) = ε which characterizes the type III model, viewed as the limit of the
Coleman-Gurtin model.

3. Conclusions. We have considered the linearized type III model of heat con-
duction in rigid bodies in the perspective of its relation with the classical Fourier
model as a possible limit case. It has been shown that, in presence of a stationary
heat source term, the longtime behavior of the solution with null Dirichlet bound-
ary conditions, does not approach the Fourier steady state when the formal limit
from type III to Fourier equation is considered. In fact, however small is the per-
turbing parameter ε in system (12), the temperature always tends to the boundary
value, irrespectively of the external steady sources applied in the domain. A possi-
ble physical interpretation is that, as time increases, the body becomes more and
more efficient in transmitting the heat power received from the source towards the
boundary of the domain. So, in stationary conditions, the body behaves as a per-
fect heat conductor, and the heat received from the source moves out of the body
throughout the Dirichlet boundaries. On the other hand, finite-speed heat con-
duction effects appear in dynamical situations, such as thermal waves induced by
non-homogeneous boundary conditions. This feature is appreciable and shows that
the Green-Naghdi type III model fits well in processes of finite duration (transient
regime).

We have also remarked in Section 2.3 that, even considering situations without
external heat sources, some physical-consistency problems may arise if, beyond the
temperature behavior, we take into account the related predictions of the model for
the asymptotic properties of the heat flux. Of course, this rather strange asymp-
totic behavior is an unavoidable consequence of the persistent memory in the heat
constitutive equation (3), as indicated by its comparison with the Coleman-Gurtin
one.

Indeed, our main concern was to stress a point that, to the best of our knowl-
edge, is not yet clarified in the literature as it probably should be. In fact, very
often (see e.g. [1]) one encounters the statement that the type III theory contains
type I and type II versions as limit cases. Although this is obvious from the point
of view of heat flux constitutive laws, the issue of the comparison of the solutions
seems to be overlooked. Here, we showed that some phenomena related to steady
state situations are out of reach within the type III theory, which should be consid-
ered more a dynamical theory of thermal conduction, and should not be regarded
as comprehensive of the simpler Fourier theory (suitable for stationary and slow
thermal phenomena).
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