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HIGHLIGHTS 

 A strategic supply chain networks design problem with inventories is studied  

 

 A novel decomposition approach is developed for the studied nonconvex problem  

 

 The proposed Benders based decomposition ensures global optimality for the problem  

 

 Global optimality is ensured based on subproblems with zero Duality Gap  

 

 Computing times are competitive for medium real world size instances.  
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ABSTRACT 

This paper deals with an inventory location problem with order quantity and stochastic inventory capacity 

constraints, which aims to address strategic supply chain network design problems and is of a nonlinear, 

nonconvex mixed integer programming nature. The problem integrates strategic supply chain networks design 

decisions (i.e., warehouse location and customer assignment) with tactical inventory control decision for each 

warehouse (i.e., order size and reorder point). A novel decomposition approach that deals with the nonconvex 

nature of the problem formulation is proposed and implemented, based on the Generalized Benders 

Decomposition. The proposed decomposition yields a Master Problem that addresses warehouses location and 

customer assignment decisions, and a set of underlying SPs that deal with warehouse inventory control 

decisions. Based on this decomposition, nonlinearity of the original problem is captured by the SPs that are 

solved at optimality, while the Master Problem is a mixed integer linear programming problem. The master is 

solved using a commercial solver, the SPs are solved analytically by inspection, and cuts to be added into the 

Master Problem are obtained based on Lagrangian dual information. Optimal solutions were found for 160 

instances in competitive times. 

Keywords: Location; Generalized Benders Decomposition; Mixed Integer Nonconvex-Nonlinear Programming; 

Capacitated Inventory Location Problems; Strategic Supply Chain Network Design. 

1. INTRODUCTION 

Optimization models have been widely developed and employed in order to support decision making processes 

belonging to each organizational level. Over the years, mathematical models have become a key element for 

different organizations or industries. Nevertheless, despite the growing in computer capacities, the use of 

efficient analytic or algorithmic tools for solving these problems in competitive times is mandatory. These 

solution tools can be generic (i.e., for a wider class of problems) or specialized (i.e., for a specific class of 
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problems), and the performance of these tools are usually assessed considering the solution quality and the 

computational times. A great number of works on operational research, and particularly this work, are focused 

on improving these performance indicators for several relevant problems in literature.  

Furthermore, optimization models have been traditionally developed to support decisions related to specific 

problems that consider only a partial branch of the organization, yielding a partial system optimization, as it can 

be expected. Accordingly, the integration of decisions began as a new trend to develop mathematical models. 

This integration normally is achieved by considering decisions from different organizational levels or decisions 

in the same organizational level but made separately. Optimization models that integrate decisions might reach 

better solutions than models that are addressed separately, where in latter local optimums at organizational level 

may be obtained. Unfortunately, the integration of decisions typically generates models with higher complexity. 

An interesting and relevant example of the previous issues is the research on Inventory Location Problems 

(ILPs), which is also the focus of this research. In the last two decades a variety of ILPs have been proposed and 

studied, which integrate strategic facility location decisions (long term decisions) and those decisions related to 

supply chain inventory managing and planning (medium term decisions). Thus, ILPs are novel and 

recommended approaches to address long term supply chain network optimization problems, similar to Facility 

Location Problems (FLPs), which are the base or foundation of all the existent ILPs. Accordingly, tactical and 

operational decision making have to be addressed given the SCN topology obtained by the strategic models 

(Bitran et al., 1981, 1982; Hax and Candrea, 1984; Mourtis and Evers, 1995; Bradley and Arntzen, 1999; 

Miranda and Garrido, 2004). 

This integration, which is proposed in ILP literature, usually yields Mixed Integer Nonlinear Programming 

Problems that require efficient solution approaches to solve them. Particularly, Benders Decomposition has been 

successfully developed and applied for solving mixed-integer linear problems using decomposition, projection 

and dualization (Benders, 1962; Rahmaniani, et al., 2017). This approach decomposes a problem into a Master 

Problem (MP) and a Subproblem (SP) by separating the decision variables in two groups, where one set of 

variables is addressed by the MP and the second set of variables belongs to the SP. Some years after the 

Benders’s publication a generalization to deal with nonlinear, convex problems was developed, named 

Generalized Benders Decomposition (Geoffrion, 1972).  

In this research a Benders Decomposition based solution approach is proposed and implemented for solving an 

Inventory Location Problem with Stochastic Inventory Capacity Constraints. The proposed decomposition 

generates a mixed-integer MP that is solved using a commercial solver, and a set of nonlinear SPs, which are 

solved analytically by inspection. This decomposition deals successfully with the nonlinearity and nonconvexity 

of the original formulation, in spite of the decomposition presented by Geoffrion (1972), which is focused on 

convex problems. Furthermore, global optimality is ensured based on the global convergence for all problems 

involved (MP and SPs) with a zero-gap certificate. These results may lead to successful applications of similar 
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decomposition over more complex ILP models (e.g., multi-period and multi-commodity formulations). 

Considering these features, ILP models may become more applicable in real world industrial cases. 

This document is organized as follows. The literature review of related topics is presented in Section 2. In 

Section 3 the studied problem and its mathematical formulation is presented. Section 4 presents the proposed 

algorithm based on Generalized Benders Decomposition applied to the model explained in Section 3. 

Computational experimentation and results are presented and discussed in Section 5. Finally, Section 6 presents 

the conclusions of this work and a future research discussion. 

2. LITERATURE REVIEW 

The strategic problem of locating different types of facilities has generated great interest in Operation Research 

and Management Science communities. Traditionally, FLPs consider a set of spatially distributed customers and 

a set of potential facilities to fulfill the customers demand. A great number of the FLPs models deal with the 

location of different types of industrial facilities (Daskin, 1995; Owen and Daskin, 1998; Drezner and Hamacher, 

2002; Melo, et al., 2009; Eiselt and Marianov 2011, 2015; Drezner, 2014). Facility location decisions tend to be 

costly and their impact spans a long term horizon, and the optimal location for today may not be optimal under 

future conditions (Coyle, et al., 2003; Snyder, 2006). 

The fierce competitiveness of markets forces the organizations to focus on their Supply Chains (SC), as stated in 

Simchi-Levi, et al. (2003). Supply Chain Management (SCM) involves decisions about a set of key elements 

(i.e., activities, processes and resources) required to be made in an efficient and timely manner. It is difficult to 

conceive SCM without considering mathematical models to support the planning, implementing and controlling 

the operations efficiently (Simchi-Levi, et al., 2004). Decisions involved are traditionally classified into three 

hierarchical levels: strategic (long term), tactical (medium term) and operational (short term). Designing the SC 

network structure has a significant impact into the overall performance and competitiveness (Miranda and 

Garrido, 2004; Shen, 2007; Melo et al., 2009; Farahani, et al., 2014). 

Traditionally decisions belonging to different decisional levels are treated separately (Shen, 2007). Most 

organizations make decisions in a hierarchical and sequential mode leading that may lead to global sub-

optimums (Fahimia, et al., 2013). Naturally, if the different elements of Supply Chain Network (SCN) are 

optimized separately the overall optimality might be unwarranted (Pourhejazy and Kwon, 2016). 

SCN design is considered a strategic problem, consisting of determining facility locations (plants or 

warehouses), in order to meet customers demand at a minimum cost (Daskin, 1995; Owen and Daskin, 1998; 

Drezner and Hamacher, 2002; Melo, et al., 2009; Coyle et al., 2009; Perez-Loaiza, et al., 2017). Inventory 

management and facility location represent two relevant issues that must be addressed to efficiently and 

effectively design the SCN (Diabat, et al., 2015). Accordingly, ILPs are aimed to integrate the optimization of 
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the key decision variables of inventory control and the location of facilities to design the SCN (Pourhejazy and 

Kwon, 2016). The development of models that integrate location and inventory control decisions has grew in the 

last years (Ağrah, et al., 2012). Shen, Z.J. (2007) shows an interesting review on the integrated supply chain 

design models considering different assumptions and modeling approaches used to develop some of the most 

popular models in this area. Farahani, et al. (2015) gives a comprehensive literature review on ILPs considering 

their modeling considerations, solution approaches and the application in different real contexts. It is possible to 

observe that most of the related papers consider a static modeling approach, and consequently only few papers 

use a dynamic approach. Then, dynamic approaches are still a relevant challenge for future developments on 

ILPs.  

Normally ILPs integrate strategic decisions with tactical decisions of SC. The review of Farahani et al. (2015) 

shows that many ILPs consider simultaneously the facility location and the management of a predefined 

inventory policy. Jayaraman (1998) analyzes the relationships among transportation, facility location and 

inventory issues and present a Mixed Integer Programming Model that integrates these three concerns. Later, 

Erlebacher and Meller (2000) presents a Mixed Integer Nonlinear problem considering the facility location and 

inventory control policies. Daskin et al. (2002) and Miranda and Garrido (2004) include safety stock due to 

variability of the customers’ demand into the model. Shen et al. (2003) includes the risk pooling into the mixed 

integer nonlinear model, this model is also reformulated as a set-covering problem. Miranda and Garrido (2006) 

integrates stochastic capacity constraints (order quantity and inventory) using a chance constrains approach to 

formulate it.  Oszen, et al. (2008) presents an intuitive approach to build the capacity constraints that can be 

derived from a chance constraint formulation. Miranda and Garrido (2008) introduces some valid inequalities 

into the solution approach. Oszen, et al. (2009) considers a centralized logistic system where retailers can be 

sourced by more than one warehouse. Miranda and Cabrera (2010) presents a novel problem with stochastic 

capacity constraints considering a periodic review policy for the inventories. Escalona et al. (2015) considers a 

differentiated service level considering two demand classes using a critical level policy. Finally, recent ILPs with 

novel logistics and transportation strategies (multi-sourcing and reverse logistic strategies) are presented in 

Amiri-Aref et al. (2017) and Ross et al. (2017). 

A great number of papers focused on ILPs have used the Economic Order Quantity model (EOQ) to define the 

replenishment decisions at the warehouses or distribution centers. EOQ model is an important tool to balance the 

involved costs (i.e., ordering and holding costs). This theory was developed by Harris (1913) but some years 

later become as a robust tool applied in many contexts. Many models have been developed modifying the basic 

formula or other approaches trying to reach more suitable solutions for real problems (Pereira and Costa, 2014). 

The basic models of inventory control policy based on EOQ theory are clearly developed in Coyle et al. (2009), 

Hillier and Lieberman (2005), Chase, et al. (2004), Ballou (1999) among many other documents.  
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Integrating decisions that traditionally are treated separately tends to generate models with a higher complexity. 

Thus, the development and application of efficient solution approaches to solve these integrated models is 

required. The most popular solution approaches developed to solve ILPs have been Lagrangian relaxation and 

greedy heuristic based algorithms (Ağrah, et al., 2012). Daskin et al. (2002), Miranda and Garrido (2004, 2006, 

2008), Snyder, et al. (2007) and Oszen et al. (2008) present different Lagrangian relaxation algorithms for 

different ILPs. Erlebacher and Meller (2000) proposes a set of algorithms based on greedy heuristic approaches. 

Shen et al. (2003) reformulates the problem into a set-covering formulation and develops a column generation 

based algorithm to solve it. Diabat, et al. (2015) presents an improved Lagrangian relaxation-based heuristic 

considering a multi-echelon ILP. An algorithm based on BD is used by Wheatley et al. (2015) to solve an 

uncapacitated ILP with nonlinear service constraints, which are derived by considering demand fill rate. An 

algorithm based on Generalized Benders Decomposition is presented in Ağrah, et al. (2012) considering an 

uncapacitated ILP with a multi-sourcing approach where a hybrid algorithm based on outer approximation to 

solve the SP is used. It worth to be mentioned that most of ILP literature addresses static, single-period, single-

commodity formulations. It is only possible to find some few works that consider some of these features by 

using heuristic algorithms (Guerrero, et al., 2013; Nekooghadirli, et al., 2014; Zhang, et al., 2014; Ghorbani and 

Akbari Jokar, 2016; Tavakkoli-Moghaddam and Raziei, 2016; Fontalvo, et al., 2017), remaining exact and 

efficient solution approaches as a relevant challenge in ILP literature. A comprehensive literature review of the 

modeling structure and the most used solution approaches to solve ILPs is presented in Schuster and Tancrez 

(2017) and Diabat, et al. (2015). 

This research presents a Generalized Benders Decomposition based algorithm to solve the studied nonconvex, 

nonlinear ILP at optimality. Generalized Benders Decomposition (GBD) was developed by Geoffrion (1972), as 

a generalization of Bender Decomposition (BD) presented by Benders (1962), to solve nonlinear, convex 

models. BD was developed for solving a class of linear and mixed integer linear programming models. BD is a 

classical solution approach based on the decomposition scheme and iterative constraints generation (Costa, 

2005). One of the principles used for BD is that the set variables of the problem can be classified under two 

types, complicating and noncomplicating variables. It is considered that the problem is much easier to solve 

when the complicating variables are temporarily fixed. Considering a set of fixed feasible values for the 

complicating variables, it is possible to solve the problem for the non-complicating variables. The decomposition 

generates two different problems: The MP and the SP. The MP includes only the complicating variables as 

decisions and SP only considers the noncomplicating variables as decisions. The iterative process uses the dual 

optimal information of SP to generate cuts that are added into the MP. If a model has at least one nonconvex 

function (i.e., objective function or constraints) neither BD nor GBD can guarantee optimality convergence due 

to the loss of strong duality (Li, et al., 2011). Li et al., (2014) proposes the Nonconvex Benders Decomposition 

to deal nonconvex problems based on convexification of the problem and the use of the solution algorithm based 

on the algorithm proposed by Geoffrion (1972). As the SP generated by the decomposition proposed in this 
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paper is nonlinear the dual problem is obtained using the Lagrangian Dual problem. The optimal value of the 

dual problem is obtained using the Karush-Khun-Tucker (KKT) conditions. The related theoretical foundations 

are deeply explained in Bazaraa, et al. (1993), Bertsekas (1999) and other seminar documents focused on 

nonlinear programming and nonlinear theory. 

3. A CAPACITATED INVENTORY LOCATION PROBLEM 

The main focus of this paper is to present a novel algorithm to solve a Capacitated ILP, which is described and 

presented in this Section.  

3.1 PROBLEM DESCRIPTION AND ASSUMPTIONS 

The studied ILP, previously proposed in Miranda and Garrido (2006, 2008), considers jointly decisions and costs 

of warehouses location, customer assignment and inventory control for each warehouse in a single-period, 

single-commodity case. It is assumed that a single plant, in a fixed and known location, serves the set of selected 

or located warehouses. End customers present high volume stochastic demands, which are represented by their 

means and variances. Each customer is assumed to be an aggregation of a set of end customers within a specific 

zone (Current and Schilling, 1990; Francis et al., 2004; Emir-Farinas and Francis, 2005, Caniato et al., 2005).  

The model aims to support a long term SCN design problem, focused on warehouse location decisions and 

demand zone assignments. Naturally, this model can be used both to design a new SCN or to periodically 

analyze and re-optimize the SCN (e.g., each year). The problem is aimed to minimize a long-term estimation of 

system costs including warehouse settings, transportation and inventory costs. The focus is not to optimize or 

coordinate inventory levels in short term, but instead to minimize expected long term system costs, including 

inventory costs, which are strongly dependent on network topology (i.e., warehouse location and customer 

assignment), as it has been widely studied in inventory-location literature (see Section 2). 

Given the presence of stochastic demands, each warehouse must hold a safety stock to ensure a given service 

level (modeled as a stock-out probability based on chance constrained programming principles), in addition to 

cycling inventory levels in this case, following the well-known EOQ model (Erlebacher and Meller, 2000; 

Daskin et al., 2002; Shen et al., 2003; Miranda and Garrido, 2004). According to high volume demands 

(Escalona et al., 2015), a Normal approximation is employed to represent the behavior of warehouse demands. 

The model considers a continuous review-inventory control policy for each warehouse with a fixed lot size Q 

and a reorder point r, where both are decision variables of the model. A single steady-state period is considered 

were all parameters and variables are not time dependent. The model integrates two capacity constraints; the first 

one focused on the maximum inventory levels, which is a probabilistic constraint, while the second one is 

focused in order sizes for each warehouse.  
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Natural and necessary extensions to this model are multi-period and multi-commodity formulations, allowing to 

model more realistic cases, mainly focused on real world industrial application. However, these extensions 

remain as a future research that should be based on methodological contributions of this paper and previous ILP 

literature. 

3.2 MATHEMATICAL FORMULATION 

This Section presents the mathematical formulation of the studied problem, following Miranda and Garrido 

(2006, 2008). Subsequently, some additional constraints are integrated into the formulation, in order to make it 

more mathematically tractable within the proposed solution approach.  

Model decision variables are: 

iX  : Binary variable, takes the value 1 if a warehouse is allocated in site i, 0 otherwise. 

ijY  : Binary variable, takes the value 1 if the customer j is assigned to the warehouse i, 0 otherwise 

iD  : Mean of the demand assigned to the warehouse i 

iV  : Variance of the demand assigned to the warehouse i 

iQ  : Order quantity of the warehouse i 

Parameters and sets of the model are: 

N  : Set of potential warehouses  

M  : Set of customers 

jd
 

: Mean of the demand of the customer j 

jv
 

: Variance of the demand of the customer j 

iFC  : Operational and setting fixed cost of warehouse on the location i 

iRC  : Unitary transportation cost between the plant and the warehouse i 

ijTC  : Fixed transportation cost between the warehouse i  and the customer j 

ijAC
 : Assignment cost of customer j to warehouse i, 

ij i j ijAC RC d TC    

iOC  : Ordering cost of the warehouse i 

iHC  : Unitary holding inventory cost of the warehouse i 

iLT  : Lead-time of the warehouse i 

1Z   : Standard normal distribution value that accumulate 1   

1Z 
 : Standard normal distribution value that accumulate 1   

max

iQ  : Maximum order capacity of the warehouse i 

iICap  : Maximum inventory capacity of the warehouse i 

The original mathematical formulation is as follows: 

1
2

ii i i i
i i ij ij i i i

i N i N j M i N i

OC D HC Q
Min FC X AC Y HC Z LT V

Q


   

  
         

 
    (1) 
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 s.t.: 

 1ij

i N

Y j M


    (2) 

 ,ij iY X i N j M      (3) 

 
i ij j

j M

D Y d i N


     (4) 

 
i ij j

j M

V Y v i N


     (5) 

 
max

i

iQ Q i N    (6) 

  1 1

i i

i i i i iQ Z Z LT V ICap X i N           (7) 

  0,1iX i N    (8) 

  0,1 ,ijY i N j M      (9) 

Expression (1) is the total costs function to be minimized. The first term represents the fixed setting and 

operating costs for all installed warehouses. The second term is the total assignment costs (unitary and fixed 

transportation costs). The third term represents the costs of the inventory policy (ordering costs and holding costs 

of cycle inventory and safety stock). Equations (2) ensure that each customer is served by a single warehouse. 

Constraints (3) ensure that the customers are assigned to an installed warehouses. Constraints (4) and (5) 

compute demand mean and variance for each warehouse. Set of constraints (6) represent the maximum values 

for order sizes. Equations (7) ensure that the maximum inventory levels for each ordering period observe the 

available inventory capacity at least with a probability 1-β. Constraints (8) and (9) state the binary domain of the 

decision variables (X and Y). Notice that safety stock costs in expression (1), and inventory capacity constraints 

in equation (7), are derived based on Chance Constraint Programming, given the existence of stochastic demands 

and inventory levels, and assuming Normal demand behavior for the warehouses. 

This work considers two additional constraints, in order to avoid solutions that yield pitfalls arisen in a previous 

preliminary implementation of the proposed decomposition.  

 
max

1

M
i

ij j
j

Y v V i N


     (10) 

 
1

M

i ij
j

X Y i N


    (11) 

where:  

 

2

max

1 1

1,...i i

i

ICap
V i N

Z Z LT  

 
   
   

 (12) 
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Constraints (10) ensure Subproblem feasibility within the proposed decomposition (as described in next section), 

where 
max

iV  is defined by expression (12). The right side of this expression is obtained through a mathematical 

manipulation of constraints (7) and represents a maximum feasible value for a warehouse demand variance 

based on inventory capacity constraint. 

The set of constraints (11) avoid solutions that generate pitfalls in the iterations of the proposed algorithm. 

Particularly, these constraints avoid solutions in which some warehouses are selected (Xi = 1) and no customer 

are assigned to it. Otherwise, related dual variables cannot be computed properly. Notice that these constraints 

are not actually valid inequalities, indeed avoid feasible solutions that are not reasonable in practical terms, and 

also they are not optimal: for a solution that has a selected warehouse with no customers, it is always preferable 

to close it, thus yielding a system costs reduction (assuming CFi > 0, i =1,…,N). 

4. BENDERS DECOMPOSITION BASED SOLUTION APPROACH  

This paper presents a novel implementation of GBD, which is previously developed for non-linear convex 

problems (Geoffrion, 1962), but now for solving a nonlinear nonconvex problem. Notice that GBD was 

developed as a generalization of the decomposition proposed by Benders (1962). The original version of BD was 

aimed to solve Linear or Mixed Linear Integer Programming Problems. Now, GBD was developed to solve 

Nonlinear Convex Programming Problems. However, given the proposed decomposition, this paper uses GBD to 

solve a class of Nonlinear Nonconvex Programming Problems. 

 The aim of the proposed GBD based approach is to decompose the original problem in such way that the MP 

retains the NP hardness related to MILP structure of the problem, the SPs absorb the nonlinearity of the problem, 

and thus ensuring a zero duality gap based on solving SP at optimality. The last property relies on GBD ensures 

optimality (zero duality gap) if and only if the SPs presents strong duality and the MP is solved exactly. 

4.1 GENERAL ALGORITHM 

The proposed algorithm based on GBD is as follows: 

Step 1 (Initializing): Temporarily fix warehouse location and customer assignment decisions, yielding a SP 

which is equivalent to the original problem but only considering inventory control decisions as variables: 

- The MP is defined by considering only the set of variables previously fixed as decision variables 

(warehouse location and customer assignment), and only the set of constraints from the original problem 

that involve these variables. This MP must integrate a set of cuts or constraints that ensure feasibility and 

optimality for the original problem. 

- Feasibility and optimality cuts or constraints to be added into the MP are iteratively built up and added, 

until feasibility and optimality conditions for the original problem may be guaranteed. Given that 
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constraints (10) and (11) are integrated into the formulation, any feasible solution of the MP yield 

always a feasible solution of the SP, and then only optimality cuts are going to be integrated into the MP. 

Step 2: Solve the SP in terms of inventory control decisions variables, thus obtaining the related optimal dual 

variables. 

Step 3: Build a new cut or constraint to be added into the MP, based on the optimal SP solutions (i.e., primal and 

dual variable values). 

Step 4: Solve the MP with all added constraints, obtaining a new set of values for warehouse location and 

customer assignment decision variables. 

- If the new values of MP decision variables (warehouse location and customer assignment) are equal to 

the obtained values in the previous algorithm iteration, then feasibility and optimality properties for the 

original problem can be guaranteed, and the algorithm ends. 

- Otherwise, the SP must be solved once again based on these new values of MP decision variables as 

fixed, in other words, go to Step 2. 

The proposed decomposition ensures zero duality gap for the original problem by ensuring the convergence of 

the MP and considering that this solution, providing a lower bound of the original problem, presents a zero 

duality Gap, due to global optimization conditions for the SP for every algorithm iteration. 

 

4.2 DERIVATION OF THE SUBPROBLEM (SP) 

Following definitions in Benders (1962) and Geoffrion (1972), we consider the binary variables  ,X Y  are 

considered as the “complicating variables” (i.e., decision variables of the MP); consequently, variables 

 , ,D V Q  are embraced by the SP. 

Let  ,X Y  be a vector of feasible values for the variables  ,X Y  considering constraints (2), (3), (8), (9), (10) 

and (11). Then, the SP can be written as follows: 

   , , ,i i i i

i N

Min X Y D V Q 


   (13) 

s.t.:  

 ˆ
i iD D i N    (14) 

 ˆ
i iV V i N    (15) 

 
max

i

iQ Q i N    (6) 

 ˆ
i iQ Q i N    (16) 

where: 
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  , · ·i i ij ij

i N i N j M

X Y FC X AC Y
  

     (17) 

   1, ,
2

i i i i
i i i i i i i

i

OC D HC Q
D V Q HC Z LT V

Q
 

 
       (18) 

 ˆ
i ij j

j M

D Y d


    (19) 

 ˆ
i ij j

j M

V Y v


    (20) 

  1 1
ˆ

i i i i iQ ICap X Z Z LT V         (21) 

According to equation (17), the first term in equation (13) represents the part of the total cost function in 

equation (1), associated to the variables  ,X Y  and evaluated in  ,X Y . For fixed values of variables  ,X Y  

this term becomes constant, and then the SP is solved without considering it. It is remarkable that this SP is 

nonlinear and convex, although the original problem is nonconvex. 

Notice that  ,X Y  may yield a feasible or an infeasible solution for the original problem (1)-(9). However, 

given that constraints (10) and (11) are integrated into the problem formulation and also into the MP, always a 

feasible solution can be found. 

 

4.3 SOLVING THE SUBPROBLEM 

Before to solve the SP, it is decoupled into a set of independent SPs, one SP for each warehouse i, SPi (i = 1,…, 

N) as shown in (22). The same as the original SP, each SPi is of nonlinear, convex nature. These SPs are solved 

analytically by inspection (or equivalently following Theil-Van de Panne conditions, 1960), as explained bellow. 

Then optimal dual variables are determined based on a simple and direct application of the well know KKT 

conditions. 

 

max

, ,

. . :

ˆ

ˆ

ˆ

i i i i

i i

i i

i

i

i i

Min D V Q

s t

D D

V V

Q Q

Q Q











  (22) 
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To solve each SPi, let  ,D V be the optimal value for  ,D V  in (22). Notice that although  ,D V  are indeed SP 

decision variables, its values,  ˆ ˆ,D V , can be known in advance based on equations (19) y (20). Accordingly, 

 ,D V are in addition the optimal values of  ,D V .  

Subsequently, the optimal value of Q, Q , is determined analytically by inspection based on the well known 

EOQ model but observing  capacity constraints. Therefore, the optimal value of (Di, Vi, Qi) is computed as: 

 ˆ
i i

D D   (23) 

 ˆ
i iV V   (24) 

  *

max
ˆmin , , i

i i i
Q Q Q Q   (25) 

where: 

 * 2· ·
i i

i

i

OC D
Q

HC
   (26) 

For each set of constraints in SP a vector of dual variables is defined, independent of the way in which SP is 

decoupled and solved. Let λ1, λ2, µ1 and µ2 be the dual variables assigned to constraints (14), (15), (6) and (16), 

respectively. These variables are used as dual multipliers to build a Lagrangian dual problem. The domain of 

each variable depends on the nature of the associated constraint. Specifically, 
1 2
,   and 

1 2
, 0   .  

Given that every SP is a nonlinear problem, Geoffrion (1962) considers the Lagrangian dual problem where all 

the constraints are added into the Lagrangian function.  

Following Geoffrion (1962), Bazaara (1993) and Wolsey and Nemhauser (1999), for the general case shown in 

(27), the associated Lagrangian dual problem is presented in (28). 

( )

. :

( ) 0

( ) 0

Min f x

s t

g x

h x

x X







   (27) 

 
0,

inf ( ) ( ) ( )T T

x X
Max f x g x h x
 

 
 

       (28) 

Accordingly, the Lagrangian dual problem associated with the SP can be written as: 

     
, ,0,
inf , , · , , · , ,T T

i i i i
D V Q

i N

Max D V Q g D V Q h D V Q
 

  
 



 
  

 
  (29) 

where: 
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1

2






 
  
 

  (30) 

1

2






 
  
 

   (31)  

 
max

, , 0
ˆ

i

Q Q
g D V Q

Q Q

 
    

  (32) 

 
ˆ

, , 0
ˆ

D D
h D V Q

V V

 
  
  

  (33) 

Beside these definitions, and according to the characterization made on (18), the first term in (29) is the 

summation of the objective function of each SPi. For a general problem as is shown in (34) the necessary 

conditions of KKT can be expressed as is shown in (35) (Bazarra, 1993). 

 1,..., 1,...,( ) / ( ) 0, ( ) 0i l j k
x X
Min f x g x h x 


     (34) 

1 1

( ) ( ) ( ) 0

( ) 0 1,...,

0 , 1,..., , 1,...,

l k

i j

i j

i

i j

f x g x h x

g x i l

i l j k

 



 

 

     

   

     

 

  (35) 

Applying these conditions for each SPi and considering the optimal values  , ,D V Q , yields the equation system 

shown in (36). Solving this equation system allows to obtain the optimal values for the dual variables of every 

SPi,  ,  . 

 1 11

1 2 1 2

2

0
0 1 0

0 0 1 0
2 2

1 0 0
1

2

i

i

ii i

i i i i

i i

i i i

i

OC

Q

Z Z LTHC Z LT

V V

OC D HC

Q

     
 

 
 

  
                                                      

  
 

 (36-a) 

 1 max 0i

i iQ Q               (36-b) 

  2 1 1 0i i i i i iQ Z Z LT V ICap X                  (36-c) 

1 2 1 2, 0 , ,i i i i               (36-d) 

In the general BD or GBD algorithm, when MP decision variables are fixed the SP may be feasible or not: 
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 If the SP is feasible then there are two possible cases. The first case is when the SP has at least one 

optimal and bounded solution, in which an optimality cut must be added into the MP. The second case 

occurs when the SP is unbounded, case in which the algorithm ends due to the original problem is 

unbounded too. 

 If the SP is infeasible then a feasibility cut must be added into the MP.  

However, by adding constraints (10) and (11) to the MP the feasibility of each SPi is assured, and moreover each 

SP is bounded. Thus, only optimality cuts are required to be added into the MP. 

4.4 OPTIMALITY CUTS 

Once the optimal primal and dual variables values  , , , ,D V Q    are obtained, as is shown in Section 4.3, it is 

possible to generate an optimality cut to be added into the MP, as shown in (36), where Z is the objective 

function of the MP. 

 

       1, max 2,

1 1 1

1, 2,

1 1

, , ,
N N N

p p p p p i p p p

i i i i i i i i i i i

i i i

N N
p p p p

i ij j i i ij j i

i j M i j M

Z X Y D V Q Q Q Q V ICap X

Y d D Y v V

    

 

  

   

          

   
          

   

  

   

 (36) 

Accordingly, the MP at each iteration k can be written as follow: 

 Min Z   (37) 

 s.t.: 

 1ij

i N

Y j M


    (2) 

 ,ij iY X i N j M      (3) 

 

   

 

 

1,

1

2, 1, max

1

2,

1

, , , ·
N

p p p p p

i i i i ij j i

i j M

N
p p p p i k

i ij j i i i

i j M

N
p p p

i i i i i i

i

Z X Y D V Q Y d D

Y v V Q Q p P

Q V ICap X

  

 

 

 

 



  
      

   

  
          

   

      
  

 

 



 (38) 

  0,1iX i N    (8) 

  0,1 ,ijY i N j M      (9) 

The set P
k
 in (38) represents the set of cuts obtained and added into the MP after k algorithm iterations. For the 

initial iteration 0kP   , and the MP is unbounded  Z   . Thus, an auxiliary optimization problem is built 
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and solved to generate an initial MP feasible solution and to start the algorithm, as described in the following 

section. 

5. COMPUTATIONAL IMPLEMENTATION AND RESULTS 

The computational application of the proposed approach was made considering 160 instances. These instances 

were created from 5 base instances. From each one of these 5 base instances, 32 instances with different sizes 

were created. Base instances were generated from a random distribution in a square area of 2000[km] of side. 

Every base instance considers 20 potential sites to install a warehouse and the location of 40 customers. The 

instances were named using the following notation N_M_I, where: N represents the number of potential 

warehouses, M represents the number of customers and I the number of the base instance. The parameter N takes 

values in {5, 10, 15, 20}, M takes values in {5, 10, 15, 20, 25, 30, 35, 40} and finally I takes values in {1, 2, 3, 4, 

5}.  

The initial solution for the algorithm is obtained using a basic Facility Location Problem, where two sets of 

constraints are integrated to ensure SPs feasibility. The model uses the MP variables  ,X Y and a subset of 

parameters from the original model. The mathematical formulation is as follows: 

 
( , )

,
X Y

X YMin    (17) 

s.t.: 

 1ij

i N

Y j M


    (2) 

 ,ij iY X i N j M      (3) 

 
max

1

·
M

i

ij j
j

Y v V i N


    (10) 

 
1

M

i ij
j

X Y i N


    (11) 

  0,1iX i N    (8) 

  0,1 ,ijY i N j M      (9) 

The objective function (17) is sum of warehouses settings and assignment costs. Sets of constraints (2), (3), (8) 

and (9) are the same as in the original model. Constraints (10) and (11) are derived from the original constraints 

(7) and the definition made on (12). Constraints  are valid inequalities to ensure that a warehouse is open only if 

at least one customer is assigned to it. 

The proposed algorithm is implemented in Microsoft Visual C++ 2010, and MP is solved using Cplex 12.5, both 

using a computer with a processor Intel Core I7 of 3.4 GHz and 8 GB of RAM in a 64-bit Operating System. 
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The notation of the results is showed in the Table 1.  

The following tables show the results for each base instance. Tables 2-6 show the results obtained for each base 

instance, the optimal solution was reached for each and every of these 160 instances.  

Analyzing the Tables 2-6 it is possible to get insights about the behavior of the solutions. In a specific column 

the number of customers is fixed but going down 5 more potential warehouses are added in each instance, from 5 

to 20. Thus, each feasible solution of an instance is also feasible in all the instances bellow for the same column. 

Having in mind that the optimal solution is found for all the instances, this value is in fact an upper-bound for the 

optimal value for all the instances bellow in the same column. Moreover, in some cases the optimal solution of 

an instance is also optimal for some of the instances bellow (e.g. instances 10_5_1, 15_5_1 and 20_5_1).  

Figures 1 - 5 show the behavior of the optimal objective function for each group of instances associated to each 

base instance. The optimal objective function value for a fixed number of potential warehouses performs a non-

decreasing behavior when the number of customers is increased. In most cases the curve for an instance tends to 

show a linear growth. Nevertheless, in some cases adding five customers generate a marginal increase between 

the optimal objective function values of the instances (e.g. optimal values of instances 10_35_5 and 10_40_5). 

 

Figure 1-Optimal objective function values for base instance 1 

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

5 10 15 20 25 30 35 40

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 (
F

O
) 

Number of Customers (M) 

N=5

N=10

N=15

N=20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Figure 2-Optimal objective function values for base instance 2 

 

Figure 3-Optimal objective function values for base instance 3 
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Figure 4-Optimal objective function values for base instance 4 

 

Figure 5-Optimal objective function values for base instance 5 
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160 instances. 
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Figure 6-Histogram of computing times. 

Analyzing Figure 6, it is observed that most of the instances are solved in less than an hour (86.875% of the 

instances). According to Table 7 it is possible to notice that an 80.6% of the instances are solved in less than ten 

minutes. Moreover, the 67.5% of the instances need less than one minute to be solved.  

Considering the nature of the proposed solution approach it may be relevant to analyze the relation between 

computing times and the number of cuts added into the MP. Figure 7 shows the behavior of computing times 

according to the number of cut added (NCA) for the 160 instances, putting aside the impact of the specific 

instance characteristics (e.g. number of warehouses, numbers of customers).  

 

Figure 7-Relationship between NCA and total time 
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According to Figure 7 it is possible to identify a strong relationship that explains the computing time by the 

number of cuts added, with a more accentuated tendency than linear. Naturally, there is more characteristic that 

should be considered for a better understanding of this relationship (e.g. number of potential warehouses, 

number of customer, spatial distribution). 

Finally, Table 8 summarizes the previous results by averaging the results of the five base instances. In order to 

isolate the effect of the size of the instances the average is made considering the instances with the same number 

of potential warehouses and customers. 

The average values of optimal objective function, total time and the number of cuts added into the MP are 

presented in Figure 8, 9 and 10 respectively. 

 

Figure 8-Optimal objective function values for average results 
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Figure 9-Total times for average results 
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approach.  

 

Figure 10-Number of cuts added for average results 
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related to the total time needed to solve all instance as previously suggested by Figure 7. This insight suggests 

further research focused on reducing the number of cuts. 

6. CONCLUSIONS AND FUTURE WORK 

This paper studied a joint Inventory Location Problem with Stochastic Inventory Capacity Constraints, which 

considers decisions related to both the structure of the supply chain network and the sizing of inventories at each 

allocated warehouse. As a consequence, the mathematical structure of the studied mixed integer nonlinear 

nonconvex programming problem requires efficient solution approaches for obtaining optimal solutions in 

competitive times. Accordingly, this paper proposes a novel Generalized Benders Decomposition based solution 

approach that ensures optimality. It is remarkable that, despite of nonconvex model structure, the proposed 

solution approach ensures global optimality. 

Due to this study is focused on long term optimization models, whose usage is sporadic, computing times can be 

considered not as important as the quality of the solutions. In other words, computing times can be longer than 

for real time or short term optimization problem. However, the time for solving the problem is a relevant 

performance indicator to classify an algorithmic approach. It is remarkable that for the real world based medium 

sized instances considered in this study, 75% of the instances were solved in less than four minutes, especially 

considering the complexity of the model. The sizes of the employed instances can be considered as 

medium/small. However, these instances may represent real world sizes for specific industry or company cases. 

The proposed solution approach introduces an interesting and novel strategy to decompose the problem based on 

the decomposition scheme of GBD. Setting the binary variables as the MP decision variables yields a set of SPs 

that can be analytically solved at optimality. As a consequence, the Lagrangian dual information is obtained 

using closed mathematical expressions, and it is properly employed to build the cuts to be added iteratively into 

the MP. Furthermore, the MPs can be solved at optimality using a standard commercial solver, given its mixed 

integer linear programming nature. Then the proposed strategy deals with the nonconvexity of the original 

problem and ensures global optimality.  

In terms of future research, it worth to be mentioned the application of the proposed solution approach to other 

inventory location problems, considering other inventory control policies, more complex supply chain, or 

considering other type of constraints. Moreover, the model can be adapted to deal with unique features and 

requirements of specific industries and/or type of commodities (e.g. final products, raw materials, spare parts). 

The existence of more extended supply chain networks, where sub-networks are embedded into a common 

shared network, may lead to the use of nested decomposition approaches. Natural extensions are multi-period 

and multi-commodity formulations, then increasing the applicability of the ILP models on real industrial cases. 

However, these formulations rely on an even higher complexity in terms of their resolution. Considering the 

results observed in this paper, the proposed decomposition increase potentiality of GBD based approaches for 
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these more complex ILPs models. Further important issues are potential enhancements to the proposed algorithm 

in order to improve the general performance of the algorithm such as computational aspects and also algorithmic 

design issues (e.g. lazy constraints, convergence criteria and approaches for solving the MP). 

AKNOLEDGMENTS 

This research has been partially supported by: the Agreement of Performance for Higher Regional Education, 

initiative executed by Pontificia Universidad Católica de Valparaiso (PMI-PUCV); SustainOwner (“Sustainable 

Design and Management of Industrial Assets through Total Value and Cost of Ownership"), a project sponsored 

by the EU Framework Programme Horizon 2020, MSCA-RISE-2014: Marie Skłodowska-Curie Research and 

Innovation Staff Exchange (RISE), grant agreement number 645733-Sustain-Owner- H2020-MSCA-RISE-2014. 

The authors want to express their gratitude for this support. 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REFERENCES 

Ağrahm S., Geunes, J., Taşkin, Z.C. (2012). A facility location model with safety stock costs: analysis of the 

cost of single-sourcing requirements. Journal of Global Optimization, 54, 551-581. 

Amiri-Aref, M., Klibi, W., Babai, M.Z. (2017). The multi-sourcing location inventory problem with stochastic 

demand. European Journal of Operational Research, In Press. 2017. doi: 10.1016/j.ejor.2017.09.003 

Bazaraa, M.S., Sherali, H.D., Shetty, C.M. (1993). Nonlinear Programming: Theory and Algorithms, Second 

Edition. New York, NY: Wiley.  

Bradley, J.R., Arnzten, B.C. (1999). The Simultaneous Planning of Production, Capacity, and Inventory in 

Seasonal Demand Environments. Operations Research, 47(6), 795-806. 

Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische 

Mathematik, 4, 238-252. 

Bertsekas, D.P. (1999). Nonlinear Programming, Second Edition, Cambridge: Athena Scientific. 

Bitran, G.R., Hass, E.A., Hax, A.C. (1982). Hierarchical Production Planning: A Single Stage System. 

Operations Research, 29(4), 717-743. 

Bitran, G.R., Hass, E.A., Hax, A.C. (1982). Hierarchical Production Planning: A Two-Stage System. Operations 

Research, 30(2), 232-251. 

Cabrera, G., Miranda, P.A., Cabrera, E., Soto, R., Crawford, B., Rubio, J.M., Paredes, F. (2013). Solving a 

Novel Inventory Location Model with Stochastic Constraints and (R,s,S) Inventory Control Policy. 

Mathematical Problems in Engineering, 2013. doi:10.1155/2013/670528 

Caniato, F., Kalchschmidt, M., Ronchi, S., Verganti, R., Zotteri, G. 2005. Clustering Customers to Forecast 

Demand. Production Planning & Control, 16(1), 32-43. 

Chase, R.B., Jacobs, R., Aquilano, N.J. (2004). Operations Management for Competitive Advantages. New 

York, NY: McGraw Hill. 

Costa, A. (2005). A survey on Benders decomposition applied to fixed-charge network design problems. 

Computers & Operations Research, 32, 1429-1450. 

Coyle, J.J., Bardi, E.J., Langley, C.J. (2003). The Management of Business Logistics: A Supply Chain 

Perspective. Quebec: Transcontinental Louisville. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Coyle, J.J., Langley, C.J., Novack, R.A., Gibson, B. (2009). Supply Chain Management: A Logistic Perspective. 

Mason, OH: South-Western Cengage Learning. 

Current, J.R., and Schilling, D.A. (1990). Analysis of Errors Due to Demand Data Aggregation in the Set 

Covering and Maximal Covering Location Problems. Geographical Analysis Volume 22(2), 116-126. 

Daskin, M.S. (1995). Network and Discrete Location: Models, Algorithms, and Applications, New York, NY: 

Wiley-Interscience.  

Daskin M.S., Coullard C.R., Max Shen Z.J. (2002). An Inventory-location Model: Formulation, Solution 

Algorithm and Computational Results. Annals of Operations Research, 110(1), 83-106. 

Diabat, A., Battaïa, O., Nazzal, D. (2015). An improved Lagrangian relaxation-based heuristic for a joint 

location-inventory problem. Computers & Operations Research, 61, 170-178. 

Drezner, T. 2014. A review of competitive facility location in the plane. Logistic Research, 7(114), 1-12. 

Drezner, Z., Hamacher, H. W. (2002). Facility Location: Applications and Theory. New York, NY: Springer-

Verlag. 

Eiselt, H.A., Marianov, V. (2011) Foundations of Location Analysis. New York, NY: Springer. 

Eiselt, H.A., Marianov, V. (2015) Applications of Location Analysis. New York, NY: Springer. 

Emir-Farinas, H., Francis, R.L. (2005). Demand point aggregation for planar covering location models. Annals 

of Operations Research. 136(1),  175-192. 

Erlebacher, S.J., Meller, R.D. (2000). The interaction of location and inventory in designing distribution 

systems. IIE Transactions, 32(2), 155-166. 

Escalona, P., Ordonez, F., Marianov, V. (2015). Joint location-inventory problem with differentiated service 

levels using critical level policy. 83, 141-157. 

Fahimnia, B. Parkinson, E. Rachaniontis, N.P., Mohamed, Z. Goh, M. (2013). Supply chain planning for a 

multinational enterprise: A performance analysis case study. International Journal of Logistics Research and 

Applications, 16(5), 349-366. 

Farahani, R.Z., Rashidi Bajgan, H., Fahimnia, B. Kaviani, M. (2015). Location-inventory problem in supply 

chains: a modeling review. International Journal of Production Research, 53(12), 3769-3788. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S. (2014). Competitive supply chain network design: An 

overview of classifications, models, solution techniques and applications. Omega, 45, 92-118. 

Francis, R.L., Lowe, T.J., Tamir, A., Emir-Farinas, H. (2004). A framework for demand point and solution space 

aggregation analysis for location models. European Journal of Operational Research, 159 (3), 574-585. 

Fontalvo, M.O. Maza, V.C., Miranda, P.A. (2017). A Meta-Heuristic Approach to a Strategic Mixed Inventory-

Location Model: Formulation and Application. Transportation Research Procedia, 25, 729-746. 

Geoffrion, A.M. (1972). Generalized Benders Decomposition. Journal of Optimization Theory and Applications 

Volume 10(4), 237-260. 

Ghiani, G., Laporte, G., Musmanno R. (2004). Introduction to Logistics Systems Planning and Control. New 

York, NY: Wiley. 

Ghorbani, A., Akbari Jokar, M.A. (2016). A hybrid imperialist competitive-simulated annealing algorithm for a 

multisource multi-product location-routing-inventory problem, 101, 116-127. 

Guerrero, W.J., Prodhon, C., Velasco, N., Amaya, C.A. (2013). Hybrid heuristic for the inventory location-

routing problem with deterministic demand. International Journal of Production Economics, 146, 359-370. 

Harris, F.W. (1913), How many parts to make at once. Factory, the Magazine of Management, 10(2), 135-136. 

Hax, A.C., Candea, D. (1984). Production and Inventory Management. New Jersey, NJ: Prentice Hall. 

Hillier, F.S., Lieberman, G.J. (2005). Introduction to Operations Research. New York, NY: McGraw Hill. 

Jayaraman, V. (1998). Transportation, facility location and inventory issues in distribution network design: An 

investigation. International Journal of Operations and Production Management, 18(5), 471-494. 

Li, X., Tomasgard, A., Barton, P.I. (2011). Nonconvex Generalized Benders Decomposition for Stochastic 

Separable Mixed-Integer Nonlinear Programs. Journal of Optimization Theory and Applications, 151(3), 425-

454. 

Li, X., Sundaramoorthy, A., Barton, P.I. (2014). Nonconvex Generalized Decomposition. In: Rassias, T.M., 

Floudas, C.A., Butenko, S. (Eds), Optimization in Science and Engineering (307-331). New York, NY: Springer. 

Melo, M.T., Nickel, S., Saldanha-da-Gama, F. (2009). Facility location and supply chain management-A review. 

European Journal of Operational Research, 196, 401-412. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Miranda, P.A., Garrido, R.A. (2004). Incorporating inventory control decisions into a strategic distribution 

network design model with stochastic demand. Transportation Research Part E: Logistics and Transportation 

Review, 40(3), 183-207. 

Miranda, P.A., Garrido, R.A. (2006). A Simultaneous Inventory Control and Facility Location Model with 

Stochastic Capacity Constraints. Networks and Spatial Economics, 6(1), 39-53. 

Miranda, P.A., Garrido, R.A. (2008). Valid inequalities for Lagrangian relaxation in a inventory location 

problem with stochastic capacity. Transportation Research, Part E, 44, 47-65. 

Miranda, P.A., Garrido, R.A. (2009). Inventory service-level optimization within distribution network design 

problem. International Journal of Production Economics, 122, 276-285. 

Miranda, P.A., Cabrera, G. (2010). Inventory location problem with stochastic capacity constraints under 

periodic review (R,s,S). International Conference on Industrial Logistics “Logistics and Sustainability”, 1,  289-

296. 

Mourtis, M., Evers, J.J.M. (1995). Distribution network design: An integrated planning support framework. 

International Journal of Physical Distribution & Logistics Management, 25(5), 43-57.  

Nekooghadirli, N., Tavakkoli-Moghaddam, Ghezavati, V.R., Javanmard, S. (2014). Solving a new bi-objective 

location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial 

Engineering, 76, 204-221. 

Owen, S.H., Daskin, M.S. (1998) Strategic facility location: A review. European Journal of Operational 

Research, 111(3), 423-447. 

Ozsen, L., Coullard, C., Daskin, M. (2008). Capacitated warehouse location model with risk pooling. Naval 

Research Logistics, 55(4), 295-312. 

Ozsen, L., Daskin, M.S., Coullard, C. (2009). Facility Location Modeling and Inventory Management with 

Multisourcing. Transportation Science, 43(4), 455-472. 

Pereira, V., Costa, H.G. (2014). A literature review on lot size with quantity discounts: 1995-2013. Journal of 

Modelling in Management, 10(3), 341-359. 

Perez-Loaiza, R.E., Olivares-Benitez, E., Miranda, P.A., Guerrero, A., Martinez, J.L. (2017). Supply chain 

network design with efficiency, location, and inventory policy using a multiobjective evolutionary algorithm. 

International Transactions in Operational Research, 24, 251-275. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Pourhejazy, P., Kwon, O.K. (2016). The New Generation of Operations Research Methods in Supply Chain 

Optimization: A review. Sustainability, 8(10), 1033. doi:10.3390/su8101033. Retrieved from: 

http://www.mdpi.com/2071-1050/8/10/1033/pdf. 

Rahmaniani, R., Crainic, T.G., Gendreau, M, Rei, W. (2017). The Benders decomposition algorithm: A literature 

review. European Journal of Operational Research, 259(3), 801-817. 

Ross, A., Khajehnezhad, M., Otieno, W., Aydas, O. (2017). Integrated location-inventory modelling under 

forward and reverse product flows in the used merchandise retail sector: A multi-echelon formulation. European 

Journal of Operational Research, 259(2), 664-676. 

Schuster, M., Tancrez, J.S. (2017). A heuristic algorithm for solving large location-inventory problems with 

demand uncertainty. European Journal of Operational Research, 259(2), 413-423.  

Shen, Z.J. (2007). Integrated Supply Chain Design Models: A Survey and Future Research Directions. Journal of 

Industrial and Management Optimization, 3(1), 1-27. 

Shen, Z.J., Coullard, C., Daskin, M. (2003). A joint location-inventory model. Transportation Science, 37 (1), 

40-55. 

Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E. (2003). Designing and Managing the Supply Chain: Concepts, 

Strategies and Case Studies. New York, NY: McGraw-Hill. 

Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E. (2004). Managing the Supply Chain: The Definitive Guide for 

the Bussiness Professional. New York, NY: McGraw-Hill. 

Snyder, L. (2006). Facility location under uncertainty: a review. IIE Transactions, 38, 537-554. 

Snyder, L., Daskin, M.S., Teo, C.P. (2007). The stochastic location model with risk pooling. European Journal of 

Operational Reseach, 179, 1221-1238. 

Tavakkoli-Moghaddam, R., Raziei, Z. (2016). A New Bi-Objective Location Routing-Inventory Problem with 

Fuzzy Demands. IFAC-PaperOnLine, 49(12), 1116-1121. 

Theil, H., Van de Panne, C. (1960). Quadratic Programming as an Extension of Classical Quadratic 

Maximization. Management Science, 7, 1-20. 

Wheatley, D., Gzara, F., Jewkes, E. (2015). Logic-based Benders decomposition for an inventory-location 

problem with service constraints. Omega, 55, 10-23. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Wolsey, L.A., Nemhauser, G.L. (1999). Integer and Combinatorial Optimization. New York, NY: Willey. 

Zhang, Y., Qi, M., Miao, L., Liu, E. (2014). Hybrid metaheuristic solutions to inventory location routing 

problem. Transportation Research Part E, 70, 305-323. 

 

 

 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1 – Notation used in tables of results 

NOTATION 

N 
Number of potential 

warehouses 

M Number of customers 

OF Optimal Objective Function  

T Computing time [s] 

NCA Number of cuts added 
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Table 2 – Results of base instance 1 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

OF 282,336.24 554,434.37 770,046.77 957,136.84 1,242,964.02 1,578,384.49 1,583,497.47 1,836,125.71 

T 0.144 0.088 0.089 0.046 0.212 0.142 0.048 0.052 

NCA 7 6 5 3 5 6 3 3 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

OF 268,123.24 466,713.86 657,455.23 843,767.27 1,006,153.99 1,227,083.68 1,363,669.12 1,575,606.95 

T 0.455 0.288 1.457 3.163 1.126 2.149 4.646 5.569 

NCA 13 9 22 31 16 16 28 29 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

OF 268,123.24 466,713.86 571,136.42 785,754.97 951,789.76 1,154,815.38 1,316,919.51 1,536,874.27 

T 1.075 6.631 0.859 46.581 57.811 96.095 394.99 780.43 

NCA 26 47 13 91 90 97 156 203 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

OF 268,123.24 449,567.32 558,464.41 748,307.26 951,789.76 1,118,771.67 1,240,319.96 1,396,095.90 

T 4.271 12.715 5.374 48.736 716.95 1164.6 1810.9 392.59 

NCA 52 52 27 80 181 211 246 115 
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Table 3 – Results of base instance 2 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

FO 273,509.31 488,596.29 728,109.15 971,747.72 1,202,002.78 1,352,426.42 1,650,183.90 1,847,962.81 

T 0.065 0.127 0.24 0.099 0.128 0.113 0.12 0.109 

NCA 3 4 5 3 3 3 3 3 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

FO 249,114.18 440,739.38 698,268.74 816,057.92 1,058,996.82 1,259,315.81 1,382,592.91 1,545,264.18 

T 1.252 1.708 50.601 2.143 17.514 13.621 8.593 21.432 

NCA 18 20 81 15 39 36 22 44 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

FO 234,623.95 440,739.38 633,728.35 777,430.84 957,822.21 1,152,265.98 1,314,181.59 1,527,322.99 

T 2.227 76.867 224.59 79.18 178.72 225.44 267.04 5984.9 

NCA 29 88 127 69 99 96 96 304 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

FO 217,304.71 412,105.94 633,294.85 777,430.84 937,273.62 1,152,265.98 1,283,385.74 1,459,502.27 

T 7.109 221.75 12201 16428 1939.5 67309 38639 95420 

NCA 32 124 470 580 283 1103 805 1101 
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Table 4 – Results of base instance 3 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

FO 309,773.67 663,268.42 857,475.38 1,134,696.25 1,324,234.81 1,696,998.56 1,792,011.57 1,933,157.61 

T 0.082 0.63 0.172 0.312 0.156 0.313 0.243 0.125 

NCA 4 12 4 6 4 5 5 4 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

FO 267,418.10 496,809.74 700,722.82 891,762.16 1,087,393.04 1,353,302.51 1,404,540.69 1,574,895.32 

T 0.784 4.483 1.504 1.941 10.119 5.058 4.099 6.685 

NCA 15 31 16 12 26 20 17 19 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

FO 244,661.41 492,831.52 613,697.72 841,690.07 1,014,224.90 1,242,187.28 1,415,749.10 1,481,751.09 

T 1.31 92.139 52.678 60.781 300.86 196.6 7006.6 473.58 

NCA 20 135 78 61 96 106 404 139 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

FO 223,911.16 459,349.51 613,697.72 776,053.35 971,087.48 1,206,745.15 1,291,004.46 1,426,955.46 

T 2.829 763.36 1966 6857.7 8617.6 25254 6300.3 9579.7 

NCA 17 220 270 450 367 492 244 508 
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Table 5 – Results of base instance 4 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

FO 343,840.59 693,779.62 892,452.76 1,048,419.31 1,377,994.71 1,630,786.16 1,774,022.88 2,021,612.05 

T 0.072 0.151 0.143 0.105 0.196 0.072 0.238 0.075 

NCA 7 7 7 6 8 4 4 4 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

FO 269,752.30 521,275.87 714,412.91 863,829.27 1,041,778.56 1,302,147.92 1,417,713.59 1,623,970.44 

T 0.442 1.069 10.883 5.025 5.244 8.314 4.964 1.595 

NCA 18 24 58 38 30 36 25 13 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

FO 245,527.63 474,834.38 663,728.94 789,644.75 1,041,778.56 1,239,589.13 1,403,783.93 1,503,614.61 

T 0.64 5.771 26.729 20.907 862.57 266.43 461.11 483.64 

NCA 18 40 79 55 238 158 186 151 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

FO 238,971.87 459,965.31 639,091.51 755,769.46 990,445.43 1,162,732.61 1,324,579.24 1,441,995.04 

T 2.822 208.05 4485 442.23 7963.3 9564.9 21154 2364.4 

NCA 43 208 534 172 468 495 701 240 
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Table 6 – Results of base instance 5 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

FO 335,246.32 604,107.67 865,731.80 1,066,347.32 1,237,721.23 1,502,105.47 1,679,858.10 1,873,356.59 

T 0.064 0.083 0.129 0.08 0.051 0.084 0.059 0.152 

NCA 5 6 8 3 3 4 3 4 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

FO 318,176.43 479,904.04 786,961.71 966,229.42 1,170,330.56 1,383,688.76 1,539,986.14 1,553,323.32 

T 0.406 0.22 14.621 5.5056 2.593 2.255 8.274 0.703 

NCA 17 8 67 33 20 17 37 8 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

FO 317,046.57 479,904.04 647,006.72 912,726.76 1,037,050.31 1,211,723.26 1,362,499.71 1,553,323.32 

T 1.762 9.828 4.901 39.816 9.05 15.727 49.544 689.93 

NCA 35 51 40 62 29 39 63 192 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

FO 255,818.67 435,024.37 647,006.72 806,329.66 986,809.08 1,141,832.15 1,271,783.91 1,397,482.35 

T 1.62 7.715 4619.3 148.37 7262.5 5718.8 11776 5909 

NCA 31 43 515 116 535 458 474 388 
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Table 7 – Computational times 

Time [s] 

Number of 

instances 

Percentage 

[%] 
Cumulative 

Cumulative 

Percentage [%] 

T 1  49 30.6% 49 30.6 

1 T 10   42 26.3% 91 56.9 

10 T 60   17 10.6% 108 67.5 

60 T 300   14 8.8% 122 76.3 

300 T 600   7 4.4% 129 80.6 

600 T 1,800   6 3.8% 135 84.4 

1,800 T 3,600   10 6.3% 139 86.9 

3,600 T 18,000   16 10.0% 155 96.9 

18,000 T 36,000   2 1.3% 157 98.1 

36,000 T  3 1.9% 160 100.0 
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Table 8 – Average results 

N 5 5 5 5 5 5 5 5 

M 5 10 15 20 25 30 35 40 

OF 308,941.23 600,837.27 822,763.17 1,035,669.49 1,276,983.51 1,552,140.22 1,695,914.78 1,902,442.95 

T 0.0854 0.2158 0.1546 0.1284 0.1486 0.1448 0.1416 0.1026 

NCA 5.2 7 5.8 4.2 4.6 4.4 3.6 3.6 

N 10 10 10 10 10 10 10 10 

M 5 10 15 20 25 30 35 40 

OF 274,516.85 481,088.58 711,564.28 876,329.20 1,072,930.59 1,305,107.73 1,421,700.49 1,574,612.04 

T 0.6678 1.5536 15.8132 3.55552 7.3192 6.2794 6.1152 7.1968 

NCA 16.2 18.4 48.8 25.8 26.2 25 25.8 22.6 

N 15 15 15 15 15 15 15 15 

M 5 10 15 20 25 30 35 40 

OF 261,996.56 478,377.69 625,859.63 821,449.48 1,000,533.15 1,200,116.21 1,362,626.77 1,520,577.26 

T 1.4028 38.2472 61.9514 49.453 281.8022 160.0584 1635.8568 1682.496 

NCA 25.6 72.2 67.4 67.6 110.4 99.2 181 197.8 

N 20 20 20 20 20 20 20 20 

M 5 10 15 20 25 30 35 40 

OF 240,825.93 443,202.49 624,165.37 772,778.11 967,481.08 1,156,469.51 1,282,214.66 1,424,406.20 

T 3.7302 242.718 4655.3348 4785.0072 5299.97 21802.26 15936.04 22733.138 

NCA 35 129.4 363.2 279.6 366.8 551.8 494 470.4 

 

 


