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M
usculoskeletal disorders, the single largest category of work-
related injuries in many industrial countries, are associated 
with very high costs in terms of lost productivity. In high-
volume production facilities, large parts of the workstation 
should ideally be adapted to individual workers in real time 

to prevent such injuries. However, in smaller production lines, especially 
those found in small and medium enterprises (SMEs), regularly adapting the 
entire workstation to accommodate flexibility is a major challenge. A 
solution to the problem is the development of reconfigurable human–robot 
collaboration (HRC) workstations and frameworks. These are key to 
enabling agile manufacturing, by merging the dexterity, flexibility, and 
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problem-solving ability of humans with the strength and 
precision of robotics. 

In this direction, we propose a novel HRC framework that 
enables real-time adaptation to human dynamic factors and 
intentions. The first is associated with the overloading of the 
body joints, while the latter determines whether or not a cer-
tain part is intended to be manipulated, whether the worker is 
left or right handed, or that the worker has moved within the 
workspace. Robot responses are then framed to help the work-
er perform the intended manipulation task in configurations 
where the effect of external loads on body joints is at a mini-
mum. An experimental evaluation of the proposed framework 
on 10 subjects is provided to demonstrate the potential for 
industrial applications.

The Need for an Adaptive HRC Framework
Several industrial duties require forceful, repetitive, or sus-
tained movements that may result in cumulative trauma, 
increasing the risk for work-related musculoskeletal disor-
ders. In large manufacturing facilities, such duties are usually 
well defined and have led to the publication of suitable train-
ing procedures and workstation design standards to ensure 
that workers follow ergonomics best practices [1].

The transition of such technologies and procedures to 
SMEs is more problematic in terms of economic sustain-
ability [2] because of the implementation costs and SMEs’ 
low-volume, high-mix production processes. The latter 
represent a larger barrier, mainly due to the requirements 
for customized production, changing prototypes, and so 
on. Therefore, highly adaptive and quickly reconfigurable 
systems with real-time data processing capabilities are 
required to address the ergonomics issues in SMEs while 
also ensuring productivity.

A potential solution is the development of HRC worksta-
tions that combine human dexterity and capacity for problem 
solving with the precision, endurance, and power of robotics 
[3], [4]. Nevertheless, collaborative robots (called cobots) are 
rarely thought of as being physically coupled with human 
coworkers to provide assistance. In fact, most existing real-
time HRC frameworks are built around the concept of human 
avoidance to ensure safety, i.e., avoiding accidental collisions 
between humans and robots carrying sharp or heavy industri-
al objects. These frameworks follow suitable guidelines pub-
lished in international standards, such as the International 
Organization for Standardization’s technical specification  
15066, to account for the force, pressure, and velocity limits of 
the cobots given the hardware characteristics [5]. Although 
this safety aspect is crucial for cobots to work with humans, 
the controlled use of physical assistance by cobots should not 
be neglected.

Early works to achieve this aimed to develop HRC frame-
works that physically couple humans and robots. Examples of 
applications include cocarrying [6], [7] and comanipulation 
[8]–[10], among others. These frameworks usually process the 
interaction forces induced by human operators and the environ-
ment to control robot movements, but they do not take into 

account human factors and the delivered effort. Other offline 
processing techniques are available for the inclusion of human 
factors in HRC systems, with applications oriented toward 
workstation or cobot mechanical design [11], [12], but these 
cannot be easily incorporated into industrial applications having 
fast-reconfigurability demands. In fact, most existing standard 
techniques used to study human ergonomics are based on 
offline processing of human kinematic movements and the 
environment [13]. This approach cannot be considered for real-
istic collaborative tasks due to the dynamic interactions between 
humans and the external world (robot and the environment).

To equip cobots with the additional capability of real-
time processing of human states while collaborating with 
humans, our recent work [14] proposed a method to esti-
mate human body joint loadings caused by external forces. 
The method was built on the displacement of the human 
whole-body center of pressure (CoP) in the support plane, 
which was caused by the application of an external force. 
This consideration reduced the number of subject-specific 
dynamic model parameters to be identified, compared with 
previous techniques that required the identification of vari-
ous model parameters to account for full dynamics [15].

This article extends our previous work in several ways and 
aims to create a unified ergonomic and reconfigurable HRC 
framework. To enhance the cost efficiency and applicability of 
human tracking in industrial workplaces, the wearable senso-
ry suit used in our previous work is replaced by an external, 
low-cost red-green-blue depth vision system equipped with a 
real-time multiperson keypoint detection library. The multi-
person algorithms detect the human in a 2D image and then 
reconstruct the 3D body pose by using a disparity map while 
applying a number of biophysical constraints [16]. The vision 
system also tracks the movements of the operator in the 
robot’s workspace, the tool [17], and the operating hand 
(right or left) during the execution of the task (see Figure 1). 

Part Tool

Figure 1. The proposed HRC framework aims to improve worker 
ergonomics and productivity in competitive manufacturing 
environments. This is achieved, first, by the real-time perception 
of human kinematic and dynamic states, tools, and the 
environment. On this basis, appropriate robot responses are framed 
to enable adaptability to task variations and human factors.
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The human kinematic data together with the tool proper-
ties are used to estimate the human body overloading torques, 
those variations of body joint torques caused by an external 
load. The algorithm is based on [18] and calculates the center 
of mass (CoM) of a human with and without the detected tool. 
From this point, the overloading values of joint torques are 
estimated online and used by the robot optimization process 
to guide the human coworker toward an ergonomic configura-

tion to perform the task. 
In this pose, the effect of 
tool load on body joints is 
minimal. A visual feed-
back interface is devel-
oped to guide the operator 
toward the optimized 
configurations. Further-
more, to follow the opera-
tor’s preferred locations 
within the robot work-

space, the vision system tracks human movements; conse-
quently, the robot trajectories are regulated to achieve the task.

In industrial production/assembly lines, the processes are 
usually known, and each task (for example, drilling, screwing, 
polishing, and so on) is associated with a certain tool–part 
combination (see Figure 2). Hence, improved adaptability of 
the cobot to human intentions can be achieved by an online 
detection of the tool. The robot has a reactive response so that 
a target part is automatically detected and provided to the 
operator for manipulation. For instance, if a user picks a pol-
isher or a drill, the robot detects the specific tool and grasps 
and picks the correct part associated with the tool, providing it 
to the operator while ensuring the best use of the individual’s 
physical capabilities.

In summary, the proposed HRC framework enables robot 
adaptation to human kinematic and dynamic states and to task 
variations. To our knowledge, this is the first attempt to inte-
grate several human-centered mechatronics and software com-
ponents to grant a certain level of autonomy in achieving 

adaptive and ergonomic HRC. The fast reconfiguration of the 
proposed HRC framework for new users and production pro-
cesses can be achieved simply by including new user model 
parameters and tool–part combinations, highlighting the time 
and cost efficiency of the proposed technique. In the following, 
we provide details of the individual components of this frame-
work and present experimental results on 10 healthy subjects of 
different ages and genders to evaluate the actual performance of 
the system.

The HRC Framework
The proposed HRC framework is composed of several parts: 
human whole-body pose tracking, tool recognition, estima-
tion of joint torque overloading, robot interaction and optimi-
zation control, and the graphical interface. Here, we describe 
in more detail the implementation of each of the components 
and their integration to form a unified HRC framework.

Human Whole-Body Kinematic Tracking
Human whole-body kinematic tracking provides kinematic 
body configurations extracted directly from the stereovi-
sion cameras’ input images (monochrome in this case). The 
algorithm extends the work proposed by Nguyen et al. [16], 
which originally consisted of two successive phases. In the 
first phase, the 2D poses of the main human keypoints (that 
is, head, shoulders, elbows, hands, hips, knees, and ankles) 
are detected within the images of a stereovision system. 
Unlike [16], we adopt here the OpenPose deep-learning 
model [19] pretrained on the COCO (for Common 
Objects in Context) data set [20], with the goal of identify-
ing and tracking all workers visible in the scene while guar-
anteeing a sufficient level of accuracy. The outcome of this 
phase is a set of pixels [ui, vi] representing the keypoints of 
all workers’ bodies.

In the second phase, we estimate the 3D coordinates of 
each keypoint pixel [ , ]u vi i  (with respect to the camera frame) 
by projecting it and its ( )N 1-  neighbors through the dispari-
ty map from standard stereo geometry:
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where w  and h are the image dimen-
sions, t  is the stereo baseline, dk  is the 
disparity value at pixel ,u vi

k
i
k6 @ (the 

kth  neighbor pixel of the keypoint 
pixel [ , ]),u vi i  and f  is the focal length 
after rectification. In this setting, N  is 
empirically set to eight, which gives us 
the best estimation results.

Subsequently, on the basis of the 3D 
knowledge acquired in the previous 
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Figure 2. The HRC experimental setup in this study.

A visual feedback interface 

is developed to guide 

the operator toward the 

optimized configurations.
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step and the workspace bounds known in advance, we can fil-
ter out the workers belonging to the background and obtain 
only the partner who is actively collaborating with the robot. 
(This was a crucial requirement for the KUKA Innovation 
Award because several visitors were expected to be close to the 
scene and visible to the camera.) Finally, to further refine the 
set of 3D keypoints, we use median filtering with a window 
size of 11 samples for all keypoints independently; we also 
apply biophysical constraints, such as admissible ranges of 
human body dimensions (to avoid undersized or oversized 
body parts). Therefore, a limb that does not comply with the 
biophysical bounds because of occlusions or wrong projec-
tions of the keypoints is automatically adjusted such that its 
size is normalized within the allowed range, while its pose in 
the 3D space is retained. It should be noticed that in our HRC 
framework, the Roboception [33] camera (shown in Figure 2) 
produces monochrome images at a rate of 25 Hz, while the 
disparity map is computed onboard and streamed at 18 Hz.

Tool Recognition
To allow the robot to recognize the tool held by the human part-
ner, we adopt the object teaching and recognition methodology 
proposed by Pasquale et al. [17]. The detection of the partner’s 
hands in the scene is solved by recruiting the keypoint pixels 
representing the hands as a result of the 2D pose computation. 
Thus, with this information, we are able to extract suitable 
bounding boxes in the images that contain the hands (with or 
without a tool). The cropped images serve as an input to the 
downstream image-recognition system composed of a cascade 
of a CaffeNet [21] deep neural network for features extraction 
and a regularized least-square linear classifier. The system finally 
outputs the classification scores computed over all of the object 
classes with which it has been trained. In this article, we use 
three classes that correspond to a free hand, a drill, and a polish-
er (Figure 3).

In certain body configurations, the tool was not fully 
visible to the camera. This could potentially introduce 
errors in recognition. To address this issue, the output of 
the classifier is further improved by means of a temporal 
filter that introduces a voting mechanism to cast the score 
of each class, as observed during a given time window. 
The tool class that receives the highest score throughout 
the time window represents the predicted tool.

The whole vision framework, as shown in the vision 
module of Figure 4, is implemented based on YARP middle-
ware [22], [23] and communicates with the other modules of 
the HRC framework via User Datagram Protocol (UDP) 
connections.

Joint Torque Overloading 
Central to the development of the ergonomic HRC system is 
a procedure for estimating the overloading of human joint 
torques, that is, the loading effect of an external force/object 
on human joints. The method, which was previously pro-
posed in [14], is built on the displacement of the whole-body 
CoP in the support plane ( )xy  under two conditions: the 

results from body dynamics themselves (inertial, Coriolis, 
centrifugal, and gravity forces) and exposure to external forc-
es. This calculation of the CoP displacement eliminates body 
dynamics from the resulting equation, which implies that the 
number of subject-specific parameters to be identified can be 
significantly reduced.

An extension to this 
approach proposed in [18] 
eliminates the need to use 
additional sensory sys-
tems (for example, force 
plate and sensor insoles) 
to measure the CoP and 
ground reaction force 
(GRF) when an external 
load is applied to the hu -
man body. The assumption 
behind this choice is the 
known properties of the 
external load: because we 
target the use of tools for manipulating parts in industrial-use 
cases, this assumption is valid, but it implies that the tools’ 
mass properties must be previously known and stored. As a 
result, the human CoP model can be updated to include the 
additional mass at the operator’s hand. It is worth noting here 
that the detection of the tool and whether it is held by the right 
or left hand is performed autonomously using the vision 

Tool Recognition Skeleton 3D

(a)

(b)

(c) (d)

Figure 3. Samples of different classes in the demo: (a) the free 
hand, (b) polisher, and (c) drill and (d) a snapshot of the human 
pose estimation result.

The proposed HRC 

framework enables robot 

adaptation to human 

kinematic and dynamic 

states and to task 

variations.
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system. Once the tool type is detected, the 
mass of the tool can be included in the 
CoP model.

Next, we provide a brief overview of the 
algorithm presented in [18]. The human 
floating base frame 0R  was positioned at 
the pelvis link and connected from the 
inertial frame WR  by a six-virtual degrees 
of freedom (DoF) chain. We assumed the 
links were rigid and articulated through n  
revolute joints, and we defined a local ref-
erence frame iR  at each joint. The robot 
base frame BR  was defined at the robot’s 
base link. The endpoint of the human was 
at the human hand frame ,HR  and the 
endpoint of the robot was at the robot tool 
frame ,TR  both of which were connected 
to the external objects such as parts (i.e., 
work pieces).

The joint torque overloading vector 
can be defined by the relation between the 
GRF (with and without the effect of an 
interaction force) and the CoP displace-
ment due to the external load. The rela-
tion between nk  contact points and the 
resultant contact force can be expressed by  
the Lagrangian equation of motion with 
respect to ,WR

 
( ) , ( )

( ) ,

M q q C q q q G q

S J q f

h h h h h h
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p h i
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= +
=

^ h

/  
 (2)

where , ,M C  and G  represent the inertia 
matrix, the centrifugal and Coriolis forces, 
and the vector of gravity force, respectively. 
The generalized coordinates of the system 
are defined as ,q x q Rh

T T
h
T T n

0 0
6

a !i= +6 @  
where n  is the number of DoF in the 
model. x R0

3!  and R0
3!i  represent 

the position and orientation of 0R  with 
respect to ,WR  while qha  represents angular 
positions of human joints. In addition, 

[ ]0S I R ( )
n n n

n n
6

6!= # #
# +  is the actua-

tion matrix, Rn!x  is the vector of applied 
joint torques, and ( )J qp hi  is the contact 
Jacobian at point ,pi  where the contact forc-
es fi  are applied with respect to .WR

In our approach, we calculate the CoP 
using the whole-body CoM position and 
acceleration obtained from the human 
model. In the static condition, the ground-
projected CoM corresponds to the CoP. 
In the dynamic condition, the difference 
between the CoP and the projected whole-
body CoM highly correlates with the 
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angular acceleration of the body [24]. Deriving from this, we 
can obtain the CoP components on the contact surface in the 
dynamic condition as [25]

 ( ) , { , },C C C g
C C C x yP M

Mz

Mz Pz
M a= -

+

-
=a a ap

p  (3)

where g  is the gravitational constant, CPx  and CPy  are 
positions of the CoP in the x  axis and y  axis, CPz  is the 
height of the ground, and CM = [ ]C C C RMx My Mz

T 3!  is 
the CoM vector. If the ground is flat and not moving with 
respect to ,WR  then CPz  becomes zero. Therefore, we con-
sider only the second derivative of the CoM vector and g to 
determine the CoP of the human body. To obtain the accel-
eration of the CoM vector, we use the Kalman filtering 
approach [26].

For the purposes of this article, the calculation of the 
whole-body CoM is based on a geometric model presented in 
[27], known as the SESC technique. This model contains a 
number of subject-specific parameters that must be identified 
offline. The complete procedure for one-time-only parameter 
identification is described in [14] and will not be repeated 
here. Furthermore, to reduce the number of sensory systems 
for the measurement of the whole-body CoP when an exter-
nal force is applied ( ,CPwt  required for the calculation of joint 
torque overloading, as described in the following para-
graphs), based on [18], a modified SESC model is devel-
oped. This model includes an external object’s mass 
properties, me , at the right or left arm endpoint, all of 
which are detected by the vision system.

To estimate joint torque overloading, we use the difference 
between the estimated CoP CPwot  from the human body 
model without the external object and the CoP CPwtt  from the 
body model with the external object. The condition without 
the external object produces a torque vector

 ( ) ,S J q f ,
T

wo b
T

h wo i
i

n

C
1

P i

f

woxx = -
=

t/  (4)

where ( ) , ( )M q q C q q q G q R
. .

b h h h
n 6..

h h h !x = + + +^ h  is 
the joint torque vector of the human body without any exter-
nal contact (that is, without the ground contact as well) and 
fwo  is the vertical GRF (vGRF) in this condition, which can 
be estimated by the human body mass. , ,n f0 2f f! #" , 
is the number of ground contact points at the foot.

On the other hand, the condition with the external object 
produces a torque

 ( ) ( ) ,S J q f J q f, ,
T
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T
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n
T
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1 1
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h
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where fwt  is the vGRF, which can be estimated by the com-
bined mass of the human body and the external object. 

, ,n h0 2h f! #" , is the number of contact points where 
the interaction forces are applied.

The relationship between the interaction force fh  and 
vGRF variation f f f, , ,w i wt i wo iD = -  can be defined as

 .F f f, ,w i
i

n

h j
j

n

1 1

f h

D D= =-
= =

/ /  (6)

We consider an approximate distribution gain for vGRF and 
interaction forces , .0 1i j# #g h^ h  Each gain can be distrib-
uted according to the body configuration over the number of 
contact points n f  and ,nh  respectively [28], [29]. Deriving 
from (4)–(6), the overloading joint torque can be defined as
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(7)

It is important to note that bx  does not affect the overloading 
joint torque vector sxD  in any configuration.

Robot Interaction Controller
To achieve safe and adaptive physical interactions between 
humans and cobots, robot hardware with torque control (or 
similar) capacity and a lightweight structure is desirable. In 
this way, one can plan for robot interactions at the end effector 
to perform the primary task and achieve a suitable null-space 
behavior to execute lower-hierarchy tasks, e.g., safely treating 
accidental collisions. Hence, our setup used a KUKA LBR iiwa  
robot, the vector of whose joint torques R7!x  is calculated 
by [30]

 ( ) ( , ) ( ) ,M q q C q q q g qr r r r r r r r ext
.. . .

rx x= + + +  (8)

with ,J FrT c stextr rx x= +  where q Rr
7!  is the joint angles 

vector, J Rr
6 7! #  is the robot arm Jacobian matrix, 

M Rr
7 7! #  is the mass matrix, C Rr

7 7! #  is the Coriolis and 
centrifugal matrix, g Rr

7!  is the gravity vector, and extrx  is 
the external torque vector. Fcr  represents the forces vector in 
the Cartesian space, and stx  are the second task torques pro-
jected onto the null space of .Jr

The quasi-static relationship between the environmental 
displacements and Cartesian forces F Rc

6
r !  can be governed 

by the choices of stiffness K Rc
6 6! #  and damping 

D Rc
6 6! #  parameters, by

 ( ) ( ),F K X X D X Xc c d a c d ar = - + -o o  (9)

where Xd  and X Ra
6!  represent the Cartesian desired and 

actual position, with Xdo  and X Rd
6!o  being their corre-

sponding velocity profiles, respectively. The Cartesian stiff-
ness, by default, was set to 1,500 N/m in all of the 
translational and 150 Nm/rad in all of the rotational Car-
tesian directions to have a reasonable tradeoff between 
the tracking performance (due to joint friction and other 
nonmodeled dynamics) and human safety in case of an 
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accidental collision at the end effector. The null-space stiff-
ness was always set to a low value (100 Nm/rad) using a 
stiffness-consistent projection [31] so that a collision with a 
human or the environment can be treated softly. No other 
considerations were taken into account for redundancy res-
olution of the KUKA iiwa robot.

The damping matrix was calculated based on the desired 
stiffness matrix, using the double diagonalization design,

 ( ) ( ),2D Q q D K Q qc r d
T

r0
2
1

= p  (10)

with ( ) ( )K Q q K Q qc r d
T

r0=  given the diagonal matrix Kd0  
(see details in [30]).  { }diagD ip=p  is also a diagonal matrix, 
with the damping factor ip  set to 0.7 to achieve a critically 
damped behavior.

To facilitate the op -
erator’s movements in 
a c h i e v ing ergonomic 
configurations during 
comanipulation, the robot 
trajectories were adaptive-
ly modulated depending 
on three states: the human 
position in the robot 
workspace, the operating 
hand (left or right), and 
the overloading condition. 
The robot’s Cartesian 
stiffness and damping 
parameters were preset 
and not optimized during 
the interaction. Through 
visual detection of the 
human body pose and 

operating hand, an ergonomic body configuration was 
determined by online minimization of overloading of the 
human joint torques. A symmetric positive, definite weight 
matrix / / ,diagW Rmax maxn

n n
1 n1 gT T !x x xx= #6 @  with 

components maxnx  chosen from biomechanical data [32], was 
considered to assign higher priorities to the highly overloaded 
body joints. Consequently, the optimization process was 
defined as

   ,min WT
qh

T Tx x  (11)

where q Rh
n!  is the human joint angle vector and RnT !x  

is the vector of joint torque overloading from (7).
Several constraints were considered in the numerical opti-

mization process, such as upper and lower bounds on the 
human joint angles ;qh  a linear inequality constraint on the 
CoP, ,C RP

2!  to keep the postural stability of the human 
body, constraints on the position of the object; and finally, a 
constraint for the endpoint manipulability of the human arm 
(details can be found in [18]). Once an optimal human body 
configuration was computed, the robot trajectories were 

calculated online based on the current human hand and its 
position in the workspace (where the robot end effector was 
placed) and the optimized one (where the effect of loading is 
minimized) to facilitate the subject in achieving such ergo-
nomic configurations by following the end-effector move-
ments. The subjects were instructed to adjust their pose 
following the robot movements and accomplish the task 
while achieving the optimized configuration.

To assign zero initial and final values to velocity and 
acceleration and, hence, to achieve smoother trajectories in 
the transitions between the target robot end-effector points, 
the desired position and velocity profiles were generated with 
a fifth-order polynomial. Throughout the trials, the target 
points and the corresponding trajectories were adaptively 
modulated based on human displacement in the robot’s 
workspace and changes of the operating hand (see the 
accompanying video, which can be found as supplemental 
material for this article in IEEE Xplore.). A delay profile of 3 s 
and a dead-zone displacement of 5 cm for human move-
ments were deliberately introduced in robot trajectory regen-
eration to avoid agitated and unnecessary robot movements 
in response to small/fast human displacements.

When a comanipulation task was completed, the operator 
pushed the robot end effector in the y axis (with respect to 
the robot base frame) to make the robot aware of the task 
completion. This was accomplished by projecting the estimat-
ed external torques to the robot end effector through the 
pseudoinverse of the Jacobian transpose. As a result, the 
robot placed the part back and was prepared for the opera-
tor’s next commands.

Graphical Interface
To make the operator aware of the online estimated body 
joint overloadings, along with his or her current body config-
uration, a graphical interface was created. The Robot Operat-
ing System 3D visualizer RViz was employed for the display. 
The joint overloadings were color coded to denote high 
(red), medium (orange), or low (green) values. The three 
thresholds were defined based on the data available in ergo-
nomic studies (for example, [32]) and fine-tuned based on 
the feeling of discomfort among the subjects. Different tools/
objects were represented with a different colors/shapes in this 
graphical interface. Depending on their weight, the external 
forces and the overloading of joint torques experienced by 
the human varied.

An example of the information that can be provided in 
real time to the human is illustrated in Figure 5. Figure 5(a) 
and (b) indicates the example postures and the joint over-
loading of a subject without and with a tool (drill) in hand, 
respectively. In addition, the positions of the measured (red) 
and the estimated CoP (blue) are illustrated on the ground. 
In Figure 5(b), three different body configurations are repre-
sented, passing from a risky condition, denoted by high val-
ues of overloading on the joints, to a safe and comfortable 
one, in which the physical effort is minimized, as suggested 
by the lower overloading values. It should be noted that, in 

We provide details of the 

individual components of 

this framework and present 

experimental results on 

10 healthy subjects of 

different ages and genders 

to evaluate the actual 

performance of the system.
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Figure 5(a), the human is operating without any tool and, 
thus, without the effect of any external forces. Therefore, the 
overloading on the joints is always low.

Finite-State Machine
The integration of various components described previously 
into a unified HRC framework was achieved using a global 
finite-state machine (FSM), depicted in Figure 4. This was 
due to the requirement for continuous transitions from one 
state to another in response to the external inputs and to 
coordinate the data exchange among the three modules. 
Communication among the different modules of the frame-
work, such as ergonomics, control, and vision, was imple-
mented via UDP messages, while submodules of the vision 
system utilized YARP protocols (that is, a combination of 
UDP, Transmission Control Protocol, and so on).

The FSM’s initial state is identified by the homing primi-
tive in which the robot end effector is in the center of the 
workspace waiting for an input from the vision module. 
When the vision system recognizes that the subject is hold-
ing a tool, the object-picking state is triggered, and the robot 
arm picks the corresponding part, bringing it close to the 
tool to start the comanipulation stage. In this phase, the 
stiffness and damping matrices are modulated to avoid devi-
ations from the desired trajectories caused by the part’s 
weight. After receiving the optimization pose from the ergo-
nomics module, the robot moves toward the desired config-
uration, where the comanipulation can be executed more 
comfortably. At this stage, three possible actions can be trig-
gered as shown in Figure 4: hand change, human pose 
change, and external force detection. If the subject moves in 
the workspace or he or she switches the tool hand, the vision 
module communicates the relative changes to the control 
module, and a new path is generated from the trajectory 
replanning and executed by the move primitive. On the 
other hand, if external forces are detected on the y axis, the 
object is returned to its original position, and the robotic 
arm goes back to the homing configuration.

Experimental Setup
Figure 2 illustrates the experimental setup in our study. As 
noted previously, we used the KUKA LBR iiwa robotic 
manipulator equipped with the Pisa/IIT softhand. We 
chose to use a synergy-driven, underactuated robotic 
hand because of the mechanical adaptability of the hand 
to the shapes of the parts, which simplifies grasp planning 
and control.

All software components were implemented in a C++ 
environment. The robot was controlled by joint torque, and 
the torque commands were sent to KUKA using Fast 
Research Interface (FRI) at 500 Hz. The Cartesian impedance 
controller in the section “Robot Interaction Controller” was 
implemented by setting the stiffness and damping gains of the 
FRI’s default joint impedance controller to zeros. This allowed 
us to directly set the torque references related to the imped-
ance behavior of the robot; in our case, this was the desired 

stiffness and damping as we targeted quasi-static interactions 
between humans and the iiwa robot.

The hand was controlled using a custom control board 
that implements an outer position loop and inner current 
regulator (that is, impedance controlled) at 1 kHz. The 
hand control gains were tuned to have a firm grasp of the 
parts and kept constant during the experiments. The reli-
ability of each module’s performance and the communica-
tion between modules was important, because a continuous 
demonstration of the proposed ergonomic and reconfigu-
rable HRC framework for the entire duration of the KUKA 
Innovation Award (one week, 8 h/day) was a critical mea-
sure for success.

Ten healthy subjects (eight males and two females; age, 
30.2 ± 3.7 years; weight, 79.6 ± 10.9 kg; and height, 178.4 ± 
5.5 cm)   participated in the overall experiments. An electric 
drill/screwdriver (4 kg) and a polisher (3 kg) were placed 
next to the subjects. Each tool was associated with a part to 
be manipulated (see also Figure 6). Two components of a 
robot actuator (outer shell and inner part) were chosen for 
this purpose. The subjects were asked to pick a tool by 
choice [Figure 6(a) and (g)], in a random order, perform the 
manipulation, and push the robot in the y axis [Figure 6(f)] 
to end the task. While manipulating, the subjects could 
change hands [Figure 6(c) and (d)] and move in the work-
space arbitrarily and repeatedly [Figure 6(e)]. Nevertheless, 
they were instructed to follow the robot end-effector move-
ments in the sagittal plane (xz) and possibly align the whole-
body pose to the one illustrated by the graphical interface 
[Figure 6(b) and (c)] to achieve ergonomic postures. The 
current pose and the optimal one were illustrated to the user 
in black and blue, respectively.

High Medium Low

(a)

(b)

Figure 5. Examples of the information provided by the 
graphical interface. (a) Example postures without a tool. 
(b) Example postures with a tool. The levels of joint torque 
overloading are color coded to denote a high (red), medium 
(orange), or low (green) value and are illustrated in the main 
joints of the human body.
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Results

Visual Tracking Accuracy
The performance of the vision module was evaluated by esti-
mating the accuracy of the tool and operating hand recogni-
tion and the tracking of the human skeleton, i.e., the joint 
angles and the operator’s absolute position in the robot’s 
workspace. The assessment of vision accuracy was crucial for 
us to understand the performance of the system in a simulta-
neous tracking of the hand, tool, and body. In particular,  
the placement of the robotic arm in front of the camera  
introduced errors to the tracking of human whole-body 

kinematics because the robotic arm could be confused with 
the operator’s. As mentioned previously, we applied some bio-
metric constraints to resolve such issues.

Regarding the accuracy of the tool (drill versus polisher) 
and hand recognition (left versus right), we obtained the suc-
cess rates by comparing the captured screens through the 
vision module and the actual ones. Ten trials were performed 
in which 10 subjects were asked to randomly change the tool 
and the operating hand within each trial. The score for the 
tool detection accuracy among all subjects was 83.5% ± 0.1% 
(88.0% ± 0.05% in the right hand and 79.0% ± 0.1% in the 
left hand).

To evaluate the performance of the vision system in 
terms of human tracking, we measured the human configu-
ration in terms of joint angles and absolute position in the 
robot workspace. First, we provide a comparison between 
the vision system’s tracking of human joint angles and the 
tracking by a commercially available, wearable suit (Xsens 
Technologies BV, The Netherlands). The root-mean-square 
error between the joint angles provided by the vision system 
and the wearable MVN Biomech suit was 6.93° ± 3.86° in 
the overall 10 joints. The tracked joints were the hips, knees, 
ankles, shoulders, and elbows on both the left and right.

Typical results of the vision system’s tracking of the elbow 
and knee joint angles (sketched by solid red line) and the 
wearable suit (solid blue line) are illustrated in Figure 7. 
The selected joints from the lower body (knee) and upper 
body (elbow) in this plot are significantly affected by the 
tool weight in this task. The tracking accuracy of the vision 
system was adequate experiments calculating the joint 
torque overloading.

80
60
40
20
0

0
–25
–50
–75

–100

E
lb

ow
 (

°)
K

ne
e 

(°
)

0 5 10 15 20 25
Time (s)

Xsens Vision

Figure 7. Some typical joint-angle tracking results of the elbow 
and knee joint provided by the commercial Xsens system and 
the developed skeleton 3D model (vision module).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Snapshots of a typical HRC experiment in this study; (a)–(f) represent one test sequence, while (g) and (h) represent another. 
(a) and (g) The subjects could pick a tool of their choice, and (b) the robot grasped the associated part and gave it to them in a 
configuration (for the sake of comparison with the ergonomically optimized posture). (c) Next, robot trajectories were optimized online 
to change the human configuration and so minimize the effect of external load on body joints. (d) and (h) The user could switch hands 
or (e) move within the workspace, and the robot trajectories were continuously adapted. (f) When the task was accomplished, the user 
pushed the robot end effector on the y axis, to make the robot return the part and prepare for the next commands.
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Calculating the operator’s position error in space required 
comparing the positions between the measured (via the vision 
system) position and five predefined positions. To achieve this, 
the subjects were instructed to relocate their position to differ-
ent points on the floor (±0.2 m on the x axis and ±0.3 m on the 
y axis). The position error was 0.06 ± 0.03 m on the x axis and 
0.04 ± 0.03 m on the y axis across all 10 subjects.

Human–Robot Comanipulation
Typical results of the comanipulation experiment for a male 
subject are provided in Figure 8. The variations of joint 
torque overloading, estimated from the ergonomics module 
for different tools, are clearly observable in the first row of 
the plot. The subsequent plots show the human position on 
the y axis as estimated by the vision module, which was 
caused by an arbitrary movement in the workspace, and the 
KUKA LBR iiwa motion in Cartesian space. Between the 

plots, the tool types provided by the vision module are illus-
trated in different colors (green, free hand; blue, drill; and 
red, polisher).

The typical task included two different tool–part com-
binations (that is, drill–inner shell and polisher–outer 
shell) (see the section “Experimental Setup”). The sub-
phase (A) refers to the case in which the robot changed its 
configuration due to the optimization and contributed to 
the reduction of human joint torque overloading [see also 
Figure 6(b) and (c)]. In subphase (B), the subject switched 
hands [Figure 6(d)], and, in subphase (C), the subject 
moved in the workspace arbitrarily [Figure 6(e)]. In sub-
phase (D), the robot was notified about the task accom-
plishment [the robot end effector was pushed in the y axis; 
Figure 6(f)], and the robot placed the object back to a cer-
tain position. Between the subphases, the estimated over-
loading effects were occasionally inaccurate due to the 
vision error caused by occlusions (for example, the robot 
covering a part of the human body). The control module 
did not react in such cases because, between the phases, 
the robot configuration on the xz-plane was kept fixed for 
safety reasons.

Subphase (A) is also demonstrated for two other sub-
jects (one male and one female) in Figure 9. Figure 9(a) 
and (c) represents a deviation of the joint overloading 
while following the optimized configuration. Figure 9(b) 
and (d) depicts the distance of the CoP, which was calcu-
lated by the effect of the tool mass. Moreover, the initial 
and final body configurations, also shown by the graphical 
interface, are illustrated.

All experiments demonstrated a coherent reduction of 
joint torque overloading in subjects when the robot behavior 
was optimized (see Figure 10). The average decrement ratio of 

Figure 9. The results for (a) and (b) male subject two and (c) and (d) female subject three for the optimization phase. (a) and (c) 
The calculated joint torque overloading. (b) and (d) The whole-body CoP displacement caused by the external tool and the subjects’ 
configurations.
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the overloading of joint torques for subphase (A) among 10 sub-
jects was 30.24% ± 2.38% (mean ± standard error of mean) as 
follows: 32.65% ± 16.12% in the hip, 33.50% ± 14.16% in the 
knee, 32.54% ± 12.44% in the ankle, 37.21% ± 15.23% in the 
shoulder, and 15.30% ± 17.25% in the elbow. Statistical signif-
icance tests were conducted at the 0.05 significance level using 
the Bonferroni post hoc t-test. The optimized configuration 
showed a significantly lower overloading effect in all joints 
compared with the initial configurations. The difference val-
ues of joint torque overloading in each joint were 8.24 ± 0.97 Nm 
(p #0.001) in the shoulder, 2.13 ± 0.65 Nm (p #0.001) in the 
elbow, 9.29 ± 1.31 Nm (p #0.001) in the hip, 10.37 ± 1.26 Nm 
(p #0.001) in the knee, and 10.62 ± 1.18 Nm (p #0.001) in 
the ankle. These results provide solid evidence of the cobot’s 
ability to make online adaptations to human factors and so 
contribute to better ergonomics.

Conclusions and Future Work
This article presented the development of a unified HRC 
framework that aims to improve human ergonomics and the 
reconfigurability of the production/assembly processes in 
industrial environments. The proposed framework enabled a 
cobot to simultaneously adapt to user states, such as pose, 
overloading torques, manipulating hand, positional variations 
in the workspace, and task condition, by detecting the tools 
and parts in the workspace.

A human–robot comanipulation task was further consid-
ered in this study, with 10 subjects participating in drilling/
polishing experiments. The framework was intensely evaluat-
ed during the KUKA Innovation Award at Hannover Messe, 
where we ran 8 h of live daily demonstrations for one entire 
week. The accuracy of the algorithm in tracking multiple sub-
jects and tools and its robustness to the detection of multiple 
visitors at the booth (so that robot behavior is adapted to the 
subject and not a visitor in the crowd) were validated, demon-
strating its high potential in realistic industrial environments.

One of the key extensions of this article with respect to 
our previous approach in [14] was the introduction of an 
external vision system for real-time tracking of the human’s 
pose and estimation of the human’s intention (by recognizing 
handheld tools). This consideration was intended to improve 
the cost effectiveness and applicability of the proposed HRC 
framework in cross-domain industrial scenarios. The accu-
racy of the human pose tracking using the visual system was 
evaluated by comparing 10 joints of the human body to the 
results of a commercial, wearable suit during arbitrary yet 
extensive whole-body movements. Although the joints of the 
lower body demonstrated low differences, the upper body 
joints had slightly higher values: the upper body joints can be 
covered by human hands or tools during the action, which 
causes high errors in the vision system’s reconstruction step 
from 2D to 3D (see the section “Human Whole-Body Kine-
matic Tracking”). Nevertheless, the overall accuracy of the 
visual tracking system was acceptable for our experiments.

Future work will focus on the introduction of a face recog-
nition component in the vision module so that the SESC 

parameters of the workers and other subject-specific informa-
tion can be updated autonomously. This will enable cobots to 
assist multiple workers, with robot responses optimized to 
each individual. Next, robot mobility will be added to the 
framework so that a cobot can follow the subject in the pro-
duction line and provide assistance. This concept is similar to 
wearable force-augmenting exoskeletons, with the major dif-
ference being that the cobots do not add extra weight to users 
or affect user comfort.
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