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The problem of minimum-time, constant-thrust orbital transfer between coplanar

circular orbits is revisited using a relative motion approach in curvilinear coordinates

for the dynamics and an indirect optimization method. This is a continuation of a

previous work where the authors studied the orbit rephasing problem. A linearization

of state and costate equations leads to approximate analytical relations characterizing

the evolution of the system dynamics and the optimal thrust pro�le as a function of

a fundamental non-dimensional parameter, χ, which characterizes the maneuver dura-

tion. This approach allows one to study the range from very short to multi-revolution

maneuvers using a uni�ed framework. The optimal solution is seen to undergo a struc-

tural change as χ increases moving from a short to a long-maneuver regime and passing

through a transition zone. Approximate expressions are obtained that can predict the

maneuver duration with reasonable accuracy when su�ciently far from the transi-

tion zone. The full nonlinear problem characterized by an additional non-dimensional

parameter is studied numerically, showing that the e�ect of nonlinearities can be ac-

commodated by adopting a speci�c intermediate orbit as a reference. Examples of

applications to Earth orbit, interplanetary missions and orbit control around small

bodies are presented.
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I. Introduction

The determination of the optimum control law to change the radius of a circular orbit in

minimum time is a fundamental problem in astrodynamics and has been dealt with extensively in

the past. One of the main contributions is the 1961 milestone paper of Theodore N. Edelbaum

[1], which contains an approximate analytical solution for the optimum low thrust transfer between

circular orbits including an inclination change maneuver. Edelbaum's solution applies very well to

optimization cases where the transfer maneuver takes more than one revolution to be completed.

The opposite condition, when the transfer takes less than a full revolution around the primary, has

been investigated in other works (see, in particular, [2�4]). Among the previous references, the work

by R. Broucke is especially signi�cant as he provides an analytical solution (as a function of three

parameters to be numerically determined) of the costate equations of the linearized problem in polar

coordinates, �nally leading to a generalization of the classical linear-tangent steering law. Other

aspects of the problem have been investigated by di�erent authors. Alfano and Thorne performed

in [5] an extensive numerical optimization campaign to study the relation between the magnitude

of the available thrust acceleration and the achievable velocity change. Casalino [6] investigated

the limitations of Edelbaum's solution and proposed an approximate analytical method to extend

Edelbaum's solution to the short-maneuver regime.

In this work, the minimum-time transfer between two coplanar, circular orbits is studied in

depth using a new formulation for the system dynamics and exploiting linearization as a key ele-

ment to construct approximate analytical solutions for the transfer time and thrust pro�le. It is

a continuation of a previous work by the same authors [7], where the minimum-time, same-orbit

rephasing problem was dealt with. Following the same approach, a nonlinear formulation in curvi-

linear coordinates is used to describe relative dynamics [8], and the optimal control problem in the

thrust orientation is posed using the indirect method. While the focus is set to low-thrust transfers,

a wide rage for the thrust parameter is considered. The formulation used for the relative motion

di�ers from the classical solution by Clohessy and Wiltshire [9] in two aspects. On the one hand,
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it introduces curvilinear coordinates to achieve a better description of the natural orbit curvature.

On the other hand, it takes into account nonlinear terms to improve accuracy when initial velocity

and displacement conditions are not very small. Together with the previous paper on the rephasing

problem [7], this work completes the study on the minimum-time constant-thrust control between

circular orbits in curvilinear coordinates.

The structure of the paper is as follows. First, the problem is described in detail by providing

all the relevant assumptions, characteristic magnitudes, coordinate systems and dynamical models.

Particular attention is given to the equations of motion and the boundary conditions, both for the

exact (nonlinear) and linearized models, as well as to the choice of a reference orbit for the relative

motion. Next, the minimum-time transfer problem is posed by applying Pontryagin's Maximum

Principle to derive the �rst order optimality conditions, which take the form of a two-point boundary

value problem (TPBVP). A qualitative understanding of the problem is then sought for by linearizing

the TPBVP and comparing the orders of magnitude of the di�erent terms in the equations. This

a common technique in the �eld of �uid mechanics, but it is rarely applied to orbital dynamics.

This analysis predicts the existence of two di�erent regimes with fundamental qualitative di�erences

depending on the ratio between the desired displacement and the available thrust χ. Approximate

expressions relating the time of �ight with the displacement-thrust ratio are also obtained, showing

that, similarly to the optimum same-orbit rephasing problem (see [7]), the key di�erence between

both regimes is whether the transfer takes less or more than one revolution of the reference orbit to

complete (short- and long-maneuver regimes, respectively). Further developments allow one to �nd

approximate analytical solutions for the linearized TPBVP ful�lling the boundary conditions, both

for the short- and long-maneuver regimes, and to accommodate nonlinear e�ects by a judicious

choice of the reference orbit. Finally, an extensive set of Earth-bound and interplanetary test

cases is solved numerically using a multiple-shooting algorithm, both for the linearized and exact

(nonlinear) models. The results con�rm the qualitative �ndings of the analytical study, and allow

one to evaluate the in�uence of the nonlinear e�ects. Several practical application examples are also

provided to ease the physical interpretation of the results.
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Fig. 1 Schematic representation of the problem. Compared to the rephasing problem in [7]

there are now three orbits involved.

II. Problem Statement and Equations of Motion

This work studies the minimum-time transfer of a spacecraft subjected to constant thrust ac-

celeration between two coplanar, circular orbits. The propellant mass expelled from the spacecraft

mprop is assumed to be negligible compared to its total mass m, so it can be taken as constant.

As a consequence, this optimal control problem (OCP) would be equivalent to minimizing the total

impulse required for the transfer.

A nonlinear relative motion formulation in curvilinear coordinates will be used for the dynamics

[7, 8, 10]. Let us consider a chief C (either a real or `virtual' object) describing a circular Keplerian

orbit of radius R around a primary O with gravitational constant µ. From now on, all equations

and variables will be expressed in nondimensional form taking the chief orbit radius R and inverse

mean motion Ω−1 =
√
R3/µ as units of length and time, respectively. Let us also introduce an

inertial reference frame I = {O; i, j,k} and a local-vertical/local-horizontal one C = {C; i′, j′,k′}, as

shown in Figure 1. The relative motion of a follower F (also real or virtual) with respect to the chief

can then be expressed through two curvilinear coordinates ρ (follower radial separation from chief

orbit) and θ (angle formed by the position vectors of follower and chief) associated to a cylindrical

reference frame F = {O;uρ,uθ,k
′}, where uρ and uθ are the radial and transversal unitary vectors

for F , respectively. Note that it is straightforward to convert between (ρ, θ), the inertial position r
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and the relative position r′ using geometrical relations (see [8]). Projecting the equations of relative

motion onto F leads to [8]:

ρ̈− 2θ̇ − 3ρ = aiρ + agρ + aTρ

θ̈ + 2ρ̇ = aiθ +
aTθ

1 + ρ

(1)

where ` · ' denotes the derivative with respect to the nondimensional time τ . Terms aiρ, agρ, and

aiθ account for the nonlinear perturbing accelerations, which can be written as follows [7, 8]:

aiρ = θ̇2 (1 + ρ) + 2θ̇ρ , aiθ =
2ρ̇
(
ρ− θ̇

)
1 + ρ

,

agρ = −2ρ+ 1− 1

(1 + ρ)
2 ,

whereas aTρ , a
T
θ are the components in F of the thrust acceleration:

[
aTρ aTθ

]
= ε

[
uρ uθ

]
= εu .

where ε is the nondimensional thrust acceleration, and u is the unitary thrust orientation vector.

The thrust orientation angle γ (see Figure 1) can be de�ned as

tan γ =
uρ
uθ

.

Given that ε is a constant parameter, u also represents the control vector for the problem.

It is convenient to express Eq. (1) as a �rst order system

dS

dτ
= F (S,u, ε; τ) , (2)

where S is a state vector de�ned as follows:

S =

[
ρ̇ θ̇ ρ θ

]>
, (3)

and F is the right-hand side of the equations:

F (S,u, ε; τ) =



2θ̇ + 3ρ+ aiρ + agρ + aTρ

−2ρ̇+ aiθ + aTθ / (1 + ρ)

ρ̇

θ̇


. (4)
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By neglecting the nonlinear perturbing terms and assuming ρ � 1, a linear formulation with the

same structure as the well-known Clohessy-Wiltshire equations is reached. The right-hand side of

Eq. (2) for the linear formulation, denoted as F∗ for clarity, can be written as follows:

F∗ (S,u, ε; τ) ≈



2θ̇ + 3ρ+ aTρ

−2ρ̇+ aTθ

ρ̇

θ̇


. (5)

The initial and �nal states for the maneuver depend on the choice for departure, arrival and

reference (chief) orbit. In all cases, the circular to circular orbit condition implies that the radial

velocity will be zero, and the derivative of θ will be the di�erence between the mean motions of the

current and reference orbits. In mathematical form:

S (τ0) =

[
ρ̇0 θ̇0 ρ0 θ0

]>
=

[
0
√

1/(1 + ρ0)3 − 1 ρ0 θ0

]>
,

S (τf ) =

[
ρ̇f θ̇f ρf θf

]>
=

[
0
√

1/(1 + ρf )3 − 1 ρf θf

]>
,

(6)

where subscripts 0 and f denote initial and �nal orbit, respectively. The desired radial displacement

is ∆ρ = ρf − ρ0, the angular displacement is ∆θ = θf − θ0, and the time of �ight is ∆τ = τf − τ0.

Keep in mind that both ∆ρ and ∆τ are non-dimensional magnitudes expressed in terms of the

radius and inverse mean motion of the reference orbit. When the linearized equations of motion are

used the boundary conditions should also be expressed in linear form, leading to:

S∗ (τ0) =

[
0 −3/2ρ0 ρ0 θ0

]>
,

S∗ (τf ) =

[
0 −3/2ρf ρf θf

]>
.

(7)

From now on ∆θ will be set free, implying that the phasing problem will be solved by simply

selecting the phasing at which the maneuver is started. This is a fuel-e�cient solution for LEO orbits,

separating it from the radius modi�cation problem. Moreover, it is possible to further simplify the

problem by setting θ0 = 0 and τ0 = 0, leading to θf = ∆θ and τf = ∆τ . Regarding the choice of

reference orbit, two particular cases will be considered henceforth: reference orbit coincident with

either the initial or �nal orbit. They correspond, respectively, to ρ0 = 0, ρf = ∆ρ and ρ0 = −∆ρ,

ρf = 0.
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III. Maneuver Optimization

The cost function for the minimum-time constant-thrust transfer between two coplanar, circular

orbits can be expressed in the form[11]:

J =

∫ ∆τ

0

L (S,u; τ) dτ = ∆τ ,

where L = 1 is the Lagrangian. Since the cost function does not depend on the �nal state, this is a

particular case of a Problem of Lagrange. From this objective function a Hamiltonian is de�ned as:

H (S,λ,u; τ) = λ>F + L (8)

where

λ =

[
λu λv λρ λθ

]>
, (9)

is the costate associated to the state S. The equations of motion can then be written in the following

form:

Ṡ =
∂H

∂λ
, (10)

and the evolution of the costate is given by the adjoint (or costate) equations derived from the �rst

order optimality conditions[11]:

λ̇ = −∂H
∂S

. (11)

An expression for u (S,λ; τ) is now sought for using the Pontryagin Maximum (or minimum)

Principle[12], which states that the optimal control for a given optimal trajectory is the one that

leads to an extreme value of H over the set of admissible controls. Mathematically (for the mini-

mization case):

u− (τ) = arg min
u∈U

H
(
S− (τ) ,λ− (τ) ,u; τ

)
∀τ ∈ [0,∆τ ] ,

where the superscript `−' denotes the optimal trajectory and U is the set of valid controls, which

in this case corresponds to:

U =
{
u ∈ R2/||u|| = 1

}
,
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that is, u must be a unitary vector. Gathering the terms in H involving the control vector one

reaches:

εuρλu + ε
uθ

1 + ρ
λv = ε

[
λu

λv

1+ρ

]
· u

It follows that, for this contribution to minimize H for all τ , the vectors in the previous expression

must have opposite directions. Together with the unitary requirement for u this leads to:

uρ = − λu√
λ2
u +

(
λv

1+ρ

)2
, uθ = −

λv

1+ρ√
λ2
u +

(
λv

1+ρ

)2
. (12)

Interestingly, for the linear case this expression reduces to u = [λu λv], which has the same expression

as the primer vector in cartesian coordinates[13, 14].

Substituting Eq. (12) into Eq. (11) and operating one reaches:

λ̇u = −∂H
∂ρ̇

= 2λv
1 + θ̇

1 + ρ
− λρ

λ̇v = −∂H
∂θ̇

= −2λu (1 + ρ) (1 + θ̇) + λv
2ρ̇

1 + ρ
− λθ

λ̇ρ = −∂H
∂ρ

= −λu

[(
1 + θ̇

)2

+
2

(1 + ρ)
3

]
− λv

2ρ̇
(

1 + θ̇
)

+ ε
(
−2uθ + u3

θ

)
(1 + ρ)

2

λ̇θ = −∂H
∂θ

= 0 .

(13)

The last equation indicates that the costate associated to the angular coordinate is constant. More-

over, given that at least one of the boundary values (BVs) for θ is free the corresponding costate

will be zero.

One last optimality condition is needed to account for the free �nal time. Imposing J to be

stationary with respect to variations in ∆τ leads to the following transversality condition[11]:

H (∆τ) = 0 . (14)

Substituting the known values of the �nal state and recalling that λθ is zero for all τ , Eq. (14) takes

a simpler form:

λu(∆τ)2 +

[
λv(∆τ)

1 + ρf

]2

=
1

ε2
. (15)

Equations (2), (13) and (15) form a di�erential-algebraic system of eight Ordinary Di�erential

Equations (state and costate equations) and one algebraic equation (transversality condition). The
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state boundary conditions are given by Eq. (6), where the values of ρ0 and ρf depend on the

choice for the reference orbit. All the state BVs are �xed except for the total angular displacement,

implying that the corresponding costate BVs will be unknown parameters except for the �nal λθ

which will be zero:

λ (0) =

[
λu0 λv0 λρ0 λθ0

]>
,

λ (∆τ) =

[
λuf λvf λρf 0

]>
.

(16)

Gathering these results, the OCP now takes the form of a TPBVP with 8 di�erential equations

describing the time evolution of state and costate, 9 terminal constraints (7 �xed state BVs, 1

�xed costate BV, and the transversality condition), and 9 unknowns (7 unknown costate BVs, the

angular displacement and the time of �ight). However, it was already noted that according to the

last of Eq. (13) λθ is constant, so λθ0 = λθ (∆τ) = 0 and the TPBVP dimension can be reduced

to 8. Moreover, none of the equations depends explicitly on θ, so it is possible to take ∆θ and the

corresponding equation out of the TPBVP further reducing its dimension to 7.

The full TPBVP cannot be solved analytically for a general case. In the remainder of this

section the problem will be studied from a qualitative point of view, with the aim of extracting

knowledge about the structure of the solution and the evolution of the state. This information can

then be used to generate initial guesses for the iterative numerical method presented in the next

section. To ease the treatment of the equations, the linearized formulation of the relative motion in

curvilinear coordinates, Eq. (5), is used, yielding the Hamiltonian:

H∗ = λ>F∗ = λu

(
2θ̇ + 3ρ+ εuρ

)
+ λv (−2ρ̇+ εuθ) + λρρ̇+ λθ θ̇ + 1 .

This leads to the following set of adjoint equations:

λ̇ρ̇ = −∂H
∗

∂ρ̇
= −λρ + 2λv

λ̇θ̇ = −∂H
∗

∂θ̇
= −2λu − λθ

λ̇ρ = −∂H
∗

∂ρ
= −3λu

λ̇θ = −∂H
∗

∂θ
= 0

(17)

Note that, by neglecting the nonlinear terms in the dynamics, the adjoint equations have been

decoupled from the equations of motion. Their solution along with the boundary conditions in
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Eq. (16) is now straightforward

λu = A sin (τ + ϕ)

λv = 2A cos (τ + ϕ) + C

λρ = 3A cos (τ + ϕ) + 2C

λθ = 0

where the three parameters A, C, and ϕ are related to the initial value of the costate as follows:

λu0 = A sinϕ , λv0 = 2A cosϕ+ C , λρ0 = 3A cosϕ+ 2C ,

A =

√
λ2
u0 + (2λv0 − λρ0)

2
, C = 2λρ0 − 3λv0 , ϕ = atan2 (λu0, 2λv0 − λρ0) .

A further simpli�cation can be achieved by exploiting the symmetry properties of the linearized

problem (see Pontani[15]) to express ϕ as a function of the time of �ight, thus removing one unknown

from the TPBVP. First of all, note that λu and λv have opposite behaviors regarding symmetry,

one of them will be odd and the other even. However, λv cannot be odd for C 6= 0, leading to λu

odd and λv even. The symmetry conditions then yield:

sin (∆τ/2 + ϕ) = 0 , cos (∆τ/2 + ϕ) = ±1 ,

which yields:

ϕ = −∆τ/2 + nπ , n ∈ N0 ,

where the value of n determines whether the cosine has a maximum (n even) or a minimum (n odd)

at τ = ∆τ/2. Given that the value of n only changes the sign of the trigonometric functions and

they are always multiplied by A, it is possible to arbitrarily set n = 0 and let the sign be determined

by A. The costate equations for the linearized problem then reduce to:

λu = A sin (τ −∆τ/2)

λv = 2A cos (τ −∆τ/2) + C (18)

λρ = 3A cos (τ −∆τ/2) + 2C

λθ = 0
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There is no closed form solution for the linearized equations of motion perturbed by a thrust

acceleration, so it is not possible to �nd a fully analytical solution for the OCP even in the linearized

case. Nevertheless, additional information on the solution can be obtained by analyzing the orders

of magnitude of the di�erent terms in the equations and locating the dominant ones, following a

procedure similar to [7]. To this end, a new non-dimensionalization is introduced taking ∆r = |∆ρ|

and ∆τ as characteristic displacement and time respectively:

d2ρ̂

dτ̂2
= 2∆τ

dθ̂

dτ̂
+ 3∆τ2ρ̂+Kuρ , (19)

d2θ̂

dτ̂2
= −2∆τ

dρ̂

dτ̂
+Kuθ , (20)

with:

τ̂ =
τ

|∆τ |
, ρ̂ =

ρ

∆r
, θ̂ =

θ

∆r
, K =

∆τ2

χ
,

where:

χ =
∆r

ε
,

is the non-dimensional ratio between the desired displacement and the available thrust acceleration.

The boundary conditions now take the form:

Ŝ (0) =

[
0 θ̂′0 ρ̂0 θ̂0

]>
=

[
0 −3/2∆τ ρ̂0 ρ̂0 0

]>
,

Ŝ (1) =

[
0 θ̂′f ρ̂f θ̂f

]>
=

[
0 −3/2∆τ ρ̂f ρ̂f ∆θ/∆r

]>
.

(21)

Introducing the symbols

±∆ = sign (∆ρ) , ∓∆ = −sign (∆ρ) ,

the radial boundary values for the case where the initial orbit is taken as reference are:

ρ̂0 = 0 , ρ̂f = ±∆1 ,

whereas if the �nal orbit is used as reference they can be written as:

ρ̂0 = ∓∆1 , ρ̂f = 0 ,

being in all cases ∆ρ̂ = ρ̂f − ρ̂0 = ±∆1.
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The orders of magnitude for each term in Eqs. (19,20) are:

d2ρ̂

dτ̂2
∼ 1 , ∆τ

dθ̂

dτ̂
∼ ∆τ

∆θ

∆r
, ∆τ2ρ̂ ∼ ∆τ2 , Kuρ ∼

∆τ2

χ
uρ ,

d2θ̂

dτ̂2
∼ ∆θ

∆r
, ∆τ

dρ̂

dτ̂
∼ ∆τ , Kuθ ∼

∆τ2

χ
uθ ,

where:

u2
ρ + u2

θ = 1 , |uρ|, |uθ| ≤ 1 .

According to Eq. (20), the angular displacement can be driven both by gravitational e�ects and

the action of thrust. Making the hypothesis that the second is at least as important as the �rst, by

comparing the transversal acceleration with the thrust component one reaches:

∆θ

∆r
∼ ∆τ2

χ
uθ .

Introducing this into the orders of magnitude relations for Eq. (19) yields:

d2ρ̂

dτ̂2
∼ 1 , ∆τ

dθ̂

dτ̂
∼ ∆τ3

χ
uθ , ∆τ2ρ̂ ∼ ∆τ2 , Kuρ ∼

∆τ2

χ
uρ .

It is now possible to distinguish the limit cases for ∆τ � 1, long-maneuver regime, and ∆τ � 1,

short-maneuver regime. For the long-maneuver regime (∆τ � 1) the second and third terms of

Eq. (19) are dominant, leading to:

∆τ ∼ χ

|uθ|
,

which not only gives a �rst estimate of the required maneuver time, but also shows that the optimum

thrust orientation pro�le will remain as close as possible to the transversal direction (the need to

ful�ll all the boundary conditions will of course introduce deviations). For the short-maneuver

regime (∆τ � 1) the �rst and fourth terms of Eq. (19) become dominant (note that at least one

control term must be retained), giving the following estimate for the maneuver time:

∆τ ∼
√

χ

|uρ|
.

The preferred orientation of thrust for minimum time has now changed with respect to the long-

maneuver regime, from the transversal to the radial direction.
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These results have been obtained under the hypothesis that transversal thrust was at least as

important as gravitational e�ects in their respective equation of motion. Therefore, before accepting

them as valid we have to check whether this hypothesis holds. The following developments not only

will prove this true, but also show that the Coriolis term is non-negligible too. In the long-maneuver

regime, ∆τ � 1, introducing the estimation for ∆τ into the orders of magnitude for Eq. (20) yields

(note that ` ′ ' denotes derivative with respect to τ̂):

θ̂′′ ∼ ∆θ

∆r
, ∆τ ρ̂′ ∼ ∆τ , Kuθ ∼ ∆τ ,

showing that both gravitational and thrust e�ects are of the same order, and giving an estimate for

∆θ:

∆θ ∼ ∆τ∆r .

Interestingly, Eq. (19) previously showed that the desired displacement in ρ̂ was reached through the

coupling between both equations due to the Coriolis term, so this regime is driven by gravitational

e�ects. In the short-maneuver regime, ∆τ � 1, the orders of magnitude for Eq. (20) read:

θ̂′′ ∼ ∆θ

∆r
, ∆τ ρ̂′ ∼ ∆τ , Kuθ ∼

uθ
uρ

.

There are two opposing criteria regarding the magnitude of uθ. On the one hand, uθ should be as

small as possible since the preferred thrust orientation for minimum time is radial. On the other

hand, transversal control needs to be non-negligible in order to ensure the ful�llment of the boundary

conditions in θ̂′. Therefore, the transversal acceleration term will be at most of the same order as

the other two. Comparing the acceleration and Coriolis terms leads to the same ∆θ estimate already

obtained for the long-maneuver regime, ∆θ ∼ ∆τ∆r, while comparing the acceleration and Coriolis

terms yields uθ <∼ ∆τ � 1 (that is, the shorter the maneuver time the closer the thrust pro�le will

be to the radial direction). Since the displacement in ρ̂ is mainly driven by the direct action of

thrust in the radial direction, this regime is dominated by thrust e�ects.

The transition between both regimes takes place for

∆τ ∼ O (1) ⇒ ∆r ∼ ε .
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In this transition zone, all terms in both equations become of the same order, and no simpli�cations

can be made. The structure of the solution undergoes fundamental qualitative changes as it moves

from one regime to the other, transitioning from nearly radial thrust orientation for the short-

maneuver regime to nearly tangential for the long-maneuver regime. Since ∆τ = 2π corresponds to

one orbital revolution of the leader, it follows that a key physical di�erence between both regimes

is whether the maneuver requires only a small fraction of an orbital revolution to complete (short-

maneuver regime) or several (long-maneuver regime).

For consistency and convenience, in further developments the linear costate solutions, Eq. (18),

will also be expressed in non-dimensional form as follows:

λ̂u = ελu = Â sin (∆τ τ̃)

λ̂v = ελv = 2Â cos (∆τ τ̃) + Ĉ

λ̂ρ = ελρ = 3Â cos (∆τ τ̃) + 2Ĉ

λ̂θ = ελθ = 0

(22)

with:

Â = εA , Ĉ = εC , τ̃ = τ̂ − 1/2 ,

where a change in the origin of the time variable has been introduced to better re�ect the symmetry

properties of the linearized solution.

A more accurate description for the short and long-maneuver regimes is obtained in the following

subsections by solving the approximate problem resulting from neglecting the non-dominant terms

in the linearized equations of motion. This kind of approximate analytical analysis cannot be carried

out for the transition zone, where all the terms in the equations become of comparable order. In

the absence of an approximate analytical solution, this transition zone will be studied numerically.

A. Short-maneuver regime

The previous results for the short-maneuver regime already show that |uρ| ∼ 1, but it is possible

to obtain additional information on the control using the costate solutions for the linearized problem.
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Expanding the �rst two of Eq. (22) in Taylor series around τ̃ = 0 for ∆τ � 1 yields:

λ̂u = Â∆τ τ̃ +O
(
∆τ3

)
,

λ̂v = Ĉ + 2Â− Â∆τ2τ̃2 +O
(
∆τ4

)
,

(23)

and the |uρ| � |uθ| condition implies that:

∣∣∣Ĉ + 2Â
∣∣∣� ∣∣∣Â∆τ

∣∣∣ . (24)

Introducing the expansions for the costate into the transversality condition, Eq. (15), and retaining

only the leading order terms (taking into account the previous inequality) yields:

Â ≈ ± 2

∆τ
.

Plugging this value into Eq. (24), an estimation for Ĉ is also obtained:

Ĉ ≈ −2Â ≈ ∓ 4

∆τ
.

Gathering these results, the leading component of the primer vector can be approximated for ∆τ � 1

as:

λ̂u ≈ ±2τ̃ .

This expression together with Eq. (12) show that the radial component of thrust has exactly one

change of sign at the middle point of the maneuver. Since the control is known to be preferably

aligned in the radial direction, this leads to a nearly bang-bang control.

Neglecting small terms in the linearized equations of motion, Eqs. (19,20), for the short-

maneuver regime yields:

ρ̂′′ ≈ Kuρ , (25)

θ̂′′ + 2∆τ ρ̂′ ≈ Kuθ . (26)

Knowing that control is nearly bang-bang, it is straightforward to check from Eq. (25) that a positive

∆ρ requires thrust to be initially oriented along the positive radial direction (an vice versa). Along

with Eq. (12), this allows to determine the correct signs for the costate:

λ̂u ≈ ±∆2τ̃ ≈ ±∆ (2τ̂ − 1) ,
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Â ≈ ±∆
2

∆τ
, Ĉ ≈ ∓∆

4

∆τ
.

Assuming control is strictly bang-bang and taking the previous signs into account, Eq. (25) can

be solved as:

ρ̂− ρ̂0 ≈ ±∆


K
τ̂2

2
0 < τ̂ < 1/2

K

(
− τ̂

2

2
+ τ̂ − 1

4

)
1/2 < τ̂ < 1

An estimate for the time of �ight can now be obtained by imposing the desired radial displacement

∆ρ̂ = ±∆1:

∆τ ≈ 2
√
χ , (27)

where all parameters involved are non-dimensional. This solution for ρ̂ ful�lls the boundary condi-

tions in position and, due to the control symmetry, also in velocity. Building on this result, it would

be possible to obtain an expression for θ̂ in the bang-bang control limit by taking uθ = 0 in Eq. (26)

and integrating. However, said θ̂ would separate appreciably from the actual optimal maneuver,

and particularly it could not ful�ll the boundary conditions in velocity since it would take the same

value at both extremes. The reason is that the transversal component of thrust, albeit small, can

be of the same order as the other terms in the transversal equation and cannot be neglected.

The previous approximation was based on neglecting Ĉ + 2Â in the series expansion for the

primer vector, supported by the knowledge that it must be preferably oriented along the radial

direction. However, a closer look at Eq. (23) reveals that, since τ̃ crosses 0, no matter how small

that term is there will always be a region near the bang-bang switch where its contribution is

dominant. In order to reach a better approximation ful�lling all the boundary conditions, this

switching region must be preserved. To this end, a change of parameter is proposed for Ĉ based on

Eq. (24):

Ĉ + 2Â = cÂ∆τ2 . (28)

The series expansion for [λu λv] can now be written as:

λ̂u = Â∆τ τ̃ − 1

6
Â∆τ3τ̃3 +O

(
∆τ5

)
,

λ̂v = Â∆τ2
(
c− τ̃2

)
+O

(
∆τ4

)
,
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and the square of its norm:

λ̂2
u + λ̂2

v = Â2∆τ2

[
c2∆τ2 +

(
1− 2c∆τ2

)
τ̃2 +

2

3
∆τ2τ̃4

]
+O

(
∆τ6

)
.

Because ∆τ � 1 and |τ̃ | ≤ 1/2, the leading term of this norm will be the one in τ̃2 save for a

small region around 0 where the constant part will dominate; it is straightforward to check that

both contributions become equal for τ̃2 = c2∆τ2/(1 − 2c∆τ2). Neglecting the term in τ̃4 (whose

contribution will always be smaller) and knowing from the previous solution that Â/|Â| = ±∆1, it

is possible to propose a new control vector in the form:

uρ ≈ ∓∆
τ̃√

c2∆τ2 + (1− 2c∆τ2) τ̃2
,

uθ ≈ ∓∆

∆τ
(
c− τ̃2

)√
c2∆τ2 + (1− 2c∆τ2) τ̃2

.

Eqs. (25,26) can be solved for this control vector and the initial conditions in Eq. (21), obtaining

the radial solution �rst and then substituting into the transversal equation. The resulting ρ̂ and θ̂

can be expressed in a compact way as:

ρ̂′ = ±∆K
K1 − g
K2

,

ρ̂− ρ̂0 = ±∆K

[
K1 (1 + 4τ̃)− 2gτ̃

4K2
− c2∆τ2

2K
3/2
2

g2

]
,

θ̂′ − θ̂′0 = ±∆∆τK

[
−K1 (1 + 8τ̃) + 6gτ̃

4K2
+
c
(
−2 + 5c∆τ2

)
2K

3/2
2

g2

]
,

θ̂ − θ̂0 = θ̂′0

(
τ̃ +

1

2

)
±∆ ∆τK

[
4c (g −K1)−K1τ̃ + 2 (g − 2K1) τ̃2

4K2
−
c
(
2− 5c∆τ2

)
2K

3/2
2

τ̃ g2

]
,

with

2K1 =
√

1− 2c (1− 2c) ∆τ2 , K2 = 1− 2c∆τ2 ,

g =
√
c2∆τ2 + (1− 2c∆τ2) τ̃2 , g2 = log

[
g
√
K2 +

(
1− 2c∆τ2

)
τ̃

−1/2 + c∆τ2 +K1

√
K2

]
.

The boundary conditions given by Eq.(21) can now be imposed. The radial velocity automatically

satis�es them due to symmetries, while for the radial position and transversal velocity one reaches
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(after several algebraic manipulations):

(
4− 7c∆τ2

)
= 2KK1 ,

√
K2 = 2cK log

2K1 +
√
K2

2K1 −
√
K2

.

(29)

This nonlinear system can be solved numerically for the values of ∆τ and c. Interestingly, by taking

the limit c → 0 it reduces to the results already obtained for the bang-bang control, with the �rst

equation returning the same estimate for ∆τ as Eq. (27) and the second one becoming incompatible

(because it is not possible to ful�ll all the boundary conditions without introducing c). The second

part of Eq. (29) is not easy to handle (even numerically, since the logarithmic term is close to an

indetermination of the type 0 · ∞ for ∆τ → 0), but the �rst one turns out to be a polynomial both

in c (second degree) and ∆τ (sixth degree with only even powers):

16χ2 − 56cχ2∆τ2 +
(
−1 + 49c2χ2

)
∆τ4 + 2c (1− 2c) ∆τ6 = 0 .

The roots of this polynomial can be found analytically either for c or ∆τ . The full solution for ∆τ

is too lengthy to report here, but by retaining terms up to order 4 in ∆τ a �rst approximation is

found in a compact way:

∆τ ≈
2
√
χ

√
1 + 7χc

, (30)

This shows that the in�uence of c on the time of �ight is small, being scaled by χ � 1. On the

other hand, the solution for c would take the following form:

c =
−28χ2 + ∆τ4 + ∆τ

√
χ2 (64− 7∆τ2) + ∆τ4 (−4 + ∆τ2)

−49χ2∆τ2 + 4∆τ4
,

which goes to 0 as ∆τ approaches 2
√
χ.

Once ∆τ and c are determined, the new value for Â can be recovered by introducing the

expansions for λ̂u and λ̂v into the transversality condition, Eq. (20), and retaining terms up to

order 4 in ∆τ , yielding:

Â ≈ ±∆
2

∆τ
√

1 + ∆τ2 (1/6− 2c+ 4c2)
,

whereas Ĉ is obtained from the de�nition of c, Eq. (28):

Ĉ ≈ Â
(
c∆τ2 − 2

)
.
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Although this new control improves the solution for Eqs. (25) and (26), ful�lling all the boundary

conditions, its validity as a solution for the linear formulation is still limited by the fact that small

terms for ∆τ � 1 have been neglected in the equations of motion. Furthermore, during the de�nition

of the control vector it was assumed that terms of order 4 and higher in ∆τ where negligible in

the expansion for λ2
u + λ2

v. However, a closer look reveals that the quadratic term is scaled by

K2 = 1 − 2c∆τ2, which goes to zero as χ increases, whereas the coe�cient for the quartic term

grows with ∆τ2. Therefore, the series expansion used to approximate uρ and uθ breaks down for

high enough values of χ, further limiting the applicability of this solution for χ ∼ 1.

Similarly to the work by Broucke [2], an analytical description of the costates for the linearized

problem has been reached. The main advantage of the proposed method is that it does not require

the numerical evaluation of additional parameters (at least for the �rst approximation).

B. Long-maneuver regime

In the long-maneuver regime, since ∆τ � 1 from Eq. (22) it follows that:

∣∣∣λ̂u∣∣∣ ≤ ∣∣∣Â∣∣∣ , ∣∣∣λ̂v∣∣∣ ≤ 2
∣∣∣Â∣∣∣+

∣∣∣Ĉ∣∣∣ ,
and the requirement of |uθ| ∼ 1 (i.e. |λ̂v| � |λ̂u|) leads to:

∣∣∣Ĉ∣∣∣� ∣∣∣Â∣∣∣ .
Introducing this into the transversality condition, Eq. (15), and retaining only the leading terms

yields an estimation for Ĉ:

Ĉ ≈ ±1 ,

while for Â only the bound:

∣∣∣Â∣∣∣� 1 ,

is available. Gathering these results, the dominant component of the primer vector can now be

approximated as:

λ̂v ≈ ±1 ,
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showing that, contrary to the short-maneuver regime, there is no reversal in the direction of thrust

during the maneuver.

The equations of motion can be approximately solved by neglecting the non-dominant terms

and assuming |uθ| = 1, leading to:

2∆τ θ̂′ + 3∆τ2ρ̂ ≈ 0 ,

θ̂′′ + 2∆τ ρ̂′ ≈ Kuθ .

The �rst equation provides a relation between the radial displacement and the angular velocity, and

substituting it into the second equation leads to a system of �rst order ODEs:

θ̂′ ≈ −3

2
∆τ ρ̂ ,

ρ̂′ ≈ 2
∆τ

χ
uθ .

(31)

The second of Eq. (31) shows that uθ has to be positive for ∆ρ > 0, allowing to determine the signs

for the transversal component of the primer vector:

λ̂v ≈ ∓∆1 , Ĉ ≈ ∓∆1 .

Eq. (31) can now be readily integrated to yield:

ρ̂− ρ̂0 ≈ ±∆2
∆τ

χ
τ̂ ,

θ̂ − θ̂0 ≈
3

2
∆τ

(
∓∆

∆τ

χ
τ̂2 − ρ̂0τ̂

)
,

and imposing ∆ρ̂ = ±∆1 gives an estimate for the time of �ight:

∆τ ≈ χ

2
. (32)

Note that this expression has a di�erent structure from the one obtained for the short-maneuver

regime, Eq. (27). However, there is not an inconsistency with the units as both ∆τ and χ are

non-dimensional parameters.

Since the linearized equations of motion have been reduced to a �rst order system by neglecting

small terms, only the initial conditions for ρ̂ and θ̂ can be directly imposed. Interestingly, it is

straightforward to check that θ̂′ also ful�lls its initial condition, whereas ρ̂′ is constant and can never
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meet either of its boundary conditions. This shows that the small components in the linearized

equations of motion, particularly the radial contribution of the thrust acceleration, have to be

retained in order to impose all the boundary conditions.

A more accurate solution is now sought for by de�ning an approximation for the control vector

that includes the small contribution of its radial component. After some manipulations it is possible

to write uρ and uθ in the form:

uρ = ±∆
A sin (∆τ τ̃)√

1 + 4A cos ∆τ τ̃ + 1
2A

2
cos 2∆τ τ̃

,

uθ = ±∆
1 + 2A cos (∆τ τ̃)√

1 + 4A cos ∆τ τ̃ + 1
2A

2
cos 2∆τ τ̃

,

where A = Â/Ĉ. Since |Â| � |Ĉ|, it is possible to expand the previous expressions for |A| � 1 to

reach:

uρ = ±∆

[
A sin (∆τ τ̃)−A2

sin (2∆τ τ̃) +O
(
A

3
)]

,

uθ = ±∆

[
1− 1

4
A

2 − 1

4
A

2
cos (2∆τ τ̃) +O

(
A

3
)]

.

Higher time harmonics appear as more terms in A are retained, but their contribution is small

because A� 1. From now on only the �rst harmonic is considered, leading to:

uρ ≈ ±∆A sin (∆τ τ̃) = ±∆A sin ∆τ (τ̂ − 1/2) , uθ ≈ ±∆C , (33)

where:

C = 1− 1

4
A

2
, (34)

and A corresponds to the amplitude of the control vector oscillations about the transversal direction.

The full linearized equations of motion, Eq. (5), can be solved analytically for the periodic

control vector in Eq. (33) and the initial conditions given by Eq. (21) to reach:

ρ̂′ = ±∆2
∆τ

χ

[(
∆τ

A

4
sin ∆τ (τ̂ − 1/2)

)
τ̂ + C (1− cos ∆τ τ̂)− A

4
sin

∆τ

2
sin ∆τ τ̂

]
,

ρ̂− ρ̂0 = ±∆2
∆τ

χ

[(
C − A

4
cos ∆τ (τ̂ − 1/2)

)
τ̂ +

(
−C +

A

4
cos

∆τ

2

)
sin ∆τ τ̂

∆τ

]
,
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θ̂′ − θ̂′0 = ±∆
∆τ

χ

[(
4C −A cos

∆τ

2

)
sin ∆τ τ̂ + ∆τ

(
−3C +A cos ∆τ (τ̂ − 1/2)

)
τ̂

]
,

θ̂ − θ̂0 = θ̂′0τ̂ ±∆
∆τ

χ

[
−3

2
∆τCτ̂2 +

(
A sin ∆τ (τ̂ − 1/2)

)
τ̂

+

(
4
C

∆τ
− 2

A

∆τ
cos

∆τ

2

)
(1− cos ∆τ τ̂) +

A

∆τ
sin

∆τ

2
sin ∆τ τ̂

]
.

The boundary conditions at τ̂ = 1, Eq. (21), can now be imposed:

ρ̂′f = 0 = ±∆2
∆τ

χ

[
C (1− cos ∆τ)− A

4
sin

∆τ

2
(sin ∆τ −∆τ)

]
,

ρ̂f − ρ̂′0 = ±∆1 = ±∆

[
2

∆τ

χ

(
C − A

4
cos

∆τ

2

)(
1− sin ∆τ

∆τ

)]
,

θ̂′f − θ̂′0 = ∓∆
3

2
∆τ = ±∆

∆τ

χ

[
C∆τ − 4∆τ

(
C − A

4
cos

∆τ

2

)(
1− sin ∆τ

∆τ

)]
.

Note that the solution for this system of equations does not depend on the sign of ∆ρ. From the

second equation it is possible to obtain an expression for A as a function of ∆τ and C:

A = 8C
sin ∆τ

2

sin ∆τ −∆τ
. (35)

Introducing Eq. (35) into the other two boundary conditions and operating, it turns out that both

yield the same relation between ∆τ and C:

∆τ =
χ

2C
. (36)

Eqs. (34), (35), and (36) form a system of transcendental algebraic equations allowing to determine

A, C, and ∆τ for a given value of χ. It is observed that the time of �ight estimate in Eq. (36) is a

generalization of the one given by Eq. (32), which corresponded to C = 1, showing that the time of

�ight increases slightly with the amplitude on the control oscillations. Regarding said amplitude,

Eq. (35) reveals two important characteristics of its evolution with ∆τ . First of all, its average

value decreases with the time of �ight, so longer maneuvers have their control vector closer to

the transversal direction. Secondly, the amplitude also depends on the time synchronization of the

maneuver with respect to the orbital period of the reference orbit through the sine in the numerator.

Maneuvers which take nearly a whole number of orbital revolutions of the reference to complete

will have a lower amplitude of the control vector oscillation, thus being more e�cient. Particularly,
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Eq. (35) predicts no oscillations for ∆τ = 2nπ with n ∈ N, although this will not happen in the

actual trajectory due to the contribution of nonlinear terms.

The values of Â and Ĉ can be calculated from A, ∆τ and the transversality condition. Substi-

tuting Â = AĈ in Eq. (15) and solving for Ĉ yields:

Ĉ = ∓∆

√
2

2 + 5A
2

+ 8A cos ∆τ/2 + 3A
2

cos ∆τ
,

and then Â can be directly obtained as AĈ.

Comparing this approach with the classic solution by Edelbaum [1], one can see that both

have a similar complexity when just evaluating the �rst approximation for the time of �ight. The

computational cost of the new method increases when going into the re�ned approximation, but it

has the advantage of capturing a more detailed description of the evolution of ∆τ with the total

displacement. Furthermore, it also provides detailed estimates for the states and costates, that can

be used to initialize numerical resolution methods. On the other hand, Edelbaum's methods retains

the nonlinearity of dynamics, and does not require the choice of a reference orbit. These two topics

are reviewed in details in Sections IIID and III E.

C. Transition Zone

As previously stated, it is not feasible to search for an analytical solution, even approximate, in

the region between both limit regimes. In this transition zone the structure of the optimal maneuver

undergoes fundamental qualitative and quantitative changes, as it evolves from the nearly bang-bang

control pro�le of the short-maneuver regime to the nearly tangential control of the long-maneuver

regime. It is however possible to predict for which values of the fundamental parameter χ it will

developed by comparing the time of �ight predictions obtained for the two limit regimes. Equating

the time of �ight estimates given by Eqs. (27) and (32) and solving for χ yields:

χ ≈ 16 ,

corresponding to a time of �ight of

∆τ ≈ 8 ,
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which is very close to the 2π period of the reference orbit. This is consistent with the previous

conclusion that all the contributions in the equations of motion become of comparable order for

∆τ ∼ O (1), and reinforces the idea that the main di�erence between both regimes is whether the

maneuver takes less or more than one revolution of the reference orbit to complete.

The behavior in this transition zone is studied numerically through a set of test cases in the

last section of the paper.

D. Nonlinearity e�ects

The developments in the previous sections are restricted to the linear formulation. Therefore,

even the solution for the long-maneuver regime, which is feasible and near-optimal, will separate

from the actual solution due to the contribution of nonlinear terms.

A time of �ight estimate for the long-maneuver regime including the nonlinearity e�ects can

be obtained leveraging the result that thrust orientation must be nearly tangential, and assuming

quasi circular orbit during the transfer. Let us consider the vis-viva equation:

E =
v2

2
− 1

1 + ρ
= − 1

2a
, (37)

where E is the speci�c energy, a is the semi-mayor axis, and v the velocity (all dimensionless).

Deriving with respect to τ a relation between the derivatives of E and a is reached:

dE

dτ
=

1

2a2

da

dτ
.

Because thrust is tangential the derivative of E amounts to εv. Furthermore, the quasi circular

condition allows us to write a ≈ 1 + ρ, and from Eq. (37) an expression for v as a function of a is

reached:

v ≈ 1√
a

Gathering these results an ODE for the time evolution of a is obtained as follows:

da

dτ
≈ 2εa3/2 .

Integrating between 0 and ∆τ and solving for ∆τ �nally yields an approximation for the time of
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�ight:

∆τ = ±∆
1

ε

√
af −

√
a0

√
a0af

= ±∆
χ

∆r

√
af −

√
a0

√
a0af

, (38)

where af = 1+ρf , a0 = 1+ρ0. This result coincides with the classic solution given by Edelbaum[1].

Unlike the solution for the linearized dynamics it is now not possible to explicitly impose the

boundary conditions, although the quasi circular hypothesis implies that they will be approximately

ful�lled as long as it holds. It is interesting to check that, by expanding for ρ � 1 and retaining

only the leading term, the �rst linear estimate is recovered:

∆τ = ±∆
χ

∆r

ρf − ρ0

2
+O

(
ρ2
)
≈ χ

2
.

A quantitative accounting of the in�uence of the nonlinearity e�ects in the optimal maneuver

can be seen in the test cases included in section IV.

E. Selection of reference orbit

Owing to the use of a linearized model for dynamics, the approximate analytic expressions

obtained so far do not explicitly depend on the choice of the reference orbit. However, the agree-

ment between their predictions and the exact solution is expected to depend on said reference.

Particularly, because gravity is linearized around the reference orbit the approximate solution will

overestimate or underestimate its contributions depending on R. In this subsection, a criterion for

the selection of a reference orbit in order to minimize these e�ects and improve the accuracy of the

prediction is proposed.

Let us consider a second reference orbit of radius R. The new units of length and time are R

and the inverse mean motion Ω
−1

=

√
R

3
/µ, respectively. For now on, all non-dimensional values

expressed with respect to this second reference are denoted as ·. The ratio of the units of time for

both reference orbits is:

Ω
−1

Ω−1
=

(
R

R

)3/2

,

depending only on the ratio of the reference radii, as the primary is the same in both cases. The

relations between ∆τ , radius change, non-dimensional thrust parameter, and χ for both references
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can be computed to be:

∆τ =

(
R

R

)3/2

∆τ , ∆r =
R

R
∆r ε =

(
R

R

)−2

ε , χ =

(
R

R

)3

χ . (39)

It is key to understand how the choice of the reference orbit a�ects the ∆τ prediction, espe-

cially because R does not appear explicitly in Eq. (27) or Eq. (32). Taking the short-maneuver

approximation, Eq. (27), in reference R and changing it to reference R, one gets:

∆τ = 2
√
χ ⇒

(
R

R

)3/2

∆τ = 2

√(
R

R

)3

χ ⇒ ∆τ = 2
√
χ ,

that is, the short-maneuver ∆τ approximation is reference-independent. The same procedure applied

to the long-maneuver case yields:

∆τ =
χ

2
⇒
(
R

R

)3/2

∆τ =

(
R

R

)3
χ

2
⇒ ∆τ =

(
R

R

)3/2
χ

2
,

which di�ers from the result obtained by applying Eq. (32) directly in reference R. Therefore, the

ToF estimate for the long-maneuver regime depends on the choice of the reference orbit. Note that

the aim of this reasoning is just to identify the e�ects in ∆τ of changing reference orbit; the proper

way of computing it is still to apply the original formulas, as their derivation does not depend on

the reference orbit.

Given that the short-maneuver ToF estimation is not a�ected by R, one criteria for the choice

of the reference orbit would be to make the long-maneuver linearized time estimation match the

averaged, nonlinear Edelbaum's solution, Eq. (38), which is known to be very accurate for multi-

revolution transfers [1]. The new reference radius reads:

R =

[
1

2

√
A0Af∆R∣∣√Af −√A0

∣∣
]2/3

=

[
1

2

√
A0Af

(√
A0 +

√
Af

)]2/3

. (40)

where A0 and Af are the dimensional values of the initial and �nal semimajor axis, and ∆R =

|Af −A0|. Alternatively, if the non-dimensional semimajor axis in reference R are given the ratio

between R and R is:

R

R
=

[
1

2

√
a0af

(√
a0 +

√
af
)]2/3

. (41)
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IV. Test Cases

The proposed minimum-time transfer is now solved numerically for several Earth-bound and

interplanetary test cases. Wide ranges are considered for the dimensionless thrust parameter ε

and the radial displacement ∆r. Although some of these values may lack a practical interest (for

instance, having a thrust acceleration too high or requiring an exceedingly long time of �ight), they

serve to highlight the physical and mathematical characteristics of the problem and the di�erences

between the linear and nonlinear cases. These numerical solutions are obtained solving the TPBVP

derived from the indirect method in the previous sections. A di�erent approach using a direct

transcription and a large-scale NLP solver can be seen in previous works by Gonzalo et al.[16].

The TPBVP derived from the indirect method is solved using a classic shooting scheme. Keeping

the assumption that all values of the initial and �nal states are �xed except for θf , the corresponding

shooting function can be written as follows:

Z (λ0,∆τ) =



ρ̇ (∆τ)

θ̇ (∆τ)− θ̇f

ρ (∆τ)− ρf

λθ (∆τ)

H (∆τ)


= 0 ,

where S (∆τ) and λ (∆τ) are obtained integrating Eqs. (4) and (13) (or Eqs. (5) and (17) for the

linearized problem) with initial conditions [S0 λ0]. The initial condition for the state, S0, is given

by Eq. (6) (or Eq. (7) for the linearized case), whereas λ0 is an unknown of the shooting algorithm.

Continuing with the de�nition of the shooting algorithm, it is important to note that the previous

shooting function corresponds to a single-shooting scheme. The results presented in this work have

been obtained using a multiple-shooting algorithm with 32 segments; that requires augmenting the

vector of unknowns with the states and costates at the beginning of each intermediate segment

as well as adding the equations for the matching of consecutive segments (8 extra unknowns and

equations for each additional segment, leading to a total of 261 unknowns). In all cases, the reference

orbit is either the initial, the �nal or the intermediate one (see Section III E), and the initial angular

position is set to zero for simplicity.
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Third party algorithms are employed both for integrating the system of ODEs (Matlab's ode45 )

and zero �nding (Matlab's fsolve and its Trust-Region-Dogleg algorithm). In order to improve the

robustness and e�ciency of the method, the Jacobian for the shooting function is constructed

analytically from the State Transition Matrix (STM) for [S> λ>], following a procedure analogous

to the one proposed by Zhang et al.[17] for the Cartesian case. Computing the STM requires to

analytically derive the variational equation and integrating it alongside the ODE system for state

and costate; because the STM is a 8×8 matrix for the planar problem in curvilinear coordinates, this

means adding 64 ODEs to the problem (for a total of 72 ODEs). The derivation of the variational

equation is relatively simple and can be performed using a symbolic manipulator.

One last aspect to consider is the generation of an initial guess of the solution for the iterative

multiple shooting algorithm. For the linear case the re�ned versions of the analytical approxima-

tions are used except for a region around the transition zone corresponding to χ ∈ [6, 16], where

the underlying hypothesis lose validity (as previously commented) and the �rst approximation is

preferred. This approach proves to be remarkably good, allowing to solve all the linear test cases.

For the nonlinear cases the corresponding linear solution is tried �rst, falling back to a continuation

in χ if the shooting algorithm fails to converge. The linear solution proves to be a good enough

initial guess for the short-maneuver regime in all the test cases, and also for the transition zone and

long-maneuver regime in problems with small ∆r (small contribution of the nonlinear terms).

Figure 2 shows the evolution of the maneuver time ∆τ with χ for an orbit raise of 200 km depart-

ing from GEO (42164.1 km). Because the relative displacement is very small, ∆r = 4.7433×10−3,

the linear and nonlinear solutions are practically identical, and only the latter is included for clar-

ity. The two di�erent regimes predicted by the qualitative study of the equations can be clearly

identi�ed, with the transition between them taking place for values of ∆τ around one orbit of the

reference, that is, ∆τ/2π ≈ 1. This supports the hypothesis that one of the key di�erences between

both regimes is whether the maneuver can be completed in one revolution of the reference orbit or

not. The �gure also represents the di�erent approximations of ∆τ previously obtained for the short-

and long-maneuver regimes, showing a great correspondence with the numerical results. Both the

�rst and re�ned approximations remain very close to the exact solution except for a small region
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Fig. 2 Time of �ight as a function of χ for an orbit raise of 200km departing from GEO (initial

orbit is taken as reference).

corresponding to the transition zone. It is interesting to note how the re�ned approximation for the

long-maneuver regime holds even for values of χ corresponding to less than one revolution of the ref-

erence orbit (inside the transition zone), whereas the re�ned approximation for the short-maneuver

regime diverges rapidly as the transition zone is approached. This breakdown of the re�ned short-

maneuver approximation was already predicted from the equations, because some of the hypothesis

used for its derivation lose validity as the time of �ight approaches one revolution. Focusing again

on the long-maneuver regime, the oscillations in ∆τ predicted by the re�ned approximation can be

clearly identi�ed, with the �rst approximation corresponding to the secular behavior.

The e�ect of nonlinearities can be clearly appreciated in Figure 3, corresponding to two LEO to

LEO transfers with the same arrival orbit at an altitude of 650 km. The altitudes of the departure

orbits are 850 km and 1400 km, corresponding to ∆r = 2.7670×10−2 and 9.6424×10−2, respectively.

As expected, the higher the value of ∆r the more the exact solution separates from the linear one

(common to both cases) due to the nonlinear contributions. However, this separation only appears

in the transition zone and the long-maneuver regime, whereas both solutions remain close to the

linear case for the short-maneuver regime. This is due to the nonlinear e�ects not having enough
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Fig. 3 Time of �ight as a function of χ for two LEO to LEO transfers (the �nal orbit is taken

as reference). Note that the linear solution is common to all cases.

Table 1 Data for the interplanetary test cases. Orbits are assumed to be circular and coplanar,

and all transfers depart from Earth's orbit. Orbital radii are taken from [18] and [19].

Body Radius [106 km] ∆r [−]

Mercury 57.91 0.6130

Venus 108.21 0.2767

Earth 149.60 �

Mars 227.92 0.5235

Ceres 414.09 1.7680

Jupiter 778.57 0.8078

Saturn 1433.53 8.5824

Uranus 2872.46 18.2009

time to fully develop for transfers in the short-maneuver regime, characterized by relatively shorter

transfer times.

The previous conclusions about the e�ect of nonlinearities are reinforced by the results obtained

in Figure 4 for several interplanetary test cases. All departure and arrival orbits are coplanar and

circular, with radii corresponding to the semimajor axis of several planets and an asteroid in the
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Fig. 4 Time of �ight as a function of χ for several interplanetary test cases departing from

Earth (Earth's orbit is taken as reference). The curve for each planet corresponds to the

exact nonlinear solution, whereas the linear one is common to all cases.

Solar System as reported in Table 1. In all cases, the departure orbit is the one corresponding to

Earth, which is also taken as reference. The results show that the separation between the linear

and nonlinear solutions grows with ∆r, with negative radial variations increasing the time of �ight
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Fig. 5 Time of �ight as a function of χ for several interplanetary test cases departing from Earth

(each case has a di�erent reference orbit, determined following the procedure in Section III E).

The curve for each planet corresponds to the exact nonlinear solution, whereas the linear one

is common to all cases.

for a given χ and positive radial variations decreasing it. Additionally, the oscillations in ∆τ for the

long-maneuver regime decrease as ∆r increases, completely disappearing in the Saturn an Uranus
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examples. Furthermore, it is also observed that those cases present a larger transition zone until

the long-maneuver asymptotic evolution of ∆τ is reached.

A clear takeaway from Fig. 4 is that the linear solution underestimates ∆τ when the radius

of the �nal orbit is smaller than that of the reference, and overestimates it when the �nal orbit is

larger. This e�ect can be removed by setting an intermediate reference orbit radius for each test

case using Eq. (40). Figure 5 shows the results for the same interplanetary transfers as Fig. 4, each

one expressed in its corresponding intermediate reference orbit (note that it changes from curve

to curve). One can notice that this choice for the reference orbit causes all the curves to collapse

together, except for some di�erences in the transition zone. However, this change of reference

orbit does not improve the performance of the linear solution as initial guess for the nonlinear

one, as the qualitative changes between both remain (especially in the transition regime or under

strong nonlinearities). That means that it is not advisable to refer to an intermediate orbit when

implementing a numerical optimization scheme.
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Fig. 6 Percentaje of cases for each interplanetary transfer for which the linear solution worked

as initial guess for the nonlinear one.

The validity of the linear solution as initial guess for the nonlinear case is characterized in Figs. 6

and 7. The former shows how the number of cases that can be solved using the initial solution as

33



10-4 10-2 100 102 104

C
on

tin
ua

tio
n

Li
ne

ar
 i.

g.

In
iti

al
 g

ue
ss

 s
tr

at
eg

y 
fo

r 
no

nl
in

ea
r 

so
lu

tio
n

Mercury
Mars
Saturn
Neptune

Fig. 7 Sucesfull initial guess strategy for the nonlinear solution as a function of χ, for several

interplanetary transfers.

initial guess decrease with the separation between the initial and �nal planets, which corresponds

to stronger nonlinearities. On the other hand, the results in Fig. 7 for four di�erent transfers reveal

that the linear solution is always a good initial guess in the short-maneuver regime, with the �rst

failed cases appearing close to the transition zone (and the sooner the higher the nonlinearities).

More detailed information for the Earth-Mars case including the time estimates is given in Fig-

ure 8. The re�ned long-maneuver approximation perfectly reproduces the time of �ight for the linear

solution, but both separate appreciably from the exact solution due to the e�ect of the nonlineari-

ties. On the other hand, the ∆τ estimate by Edelbaum, which is based on the nonlinear equations,

properly captures the secular behavior but fails to reproduce the small oscillations. Interestingly,

the �rst long-maneuver approximation and the Edelbaum's solution are parallel lines in logarithmic

scale.

Figures 10-12 present three representative cases taken from both regimes and the transition

zone, for the Earth-Mars test case using Earth's orbit as reference. The qualitative features shown

for each regime are common to all test cases, keeping in mind that the separation between the linear

and nonlinear solution increases with ∆r. Figure 10 shows the thrust orientation angle, curvilinear
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Fig. 8 Time of �ight as a function of χ for the Earth to Mars test case (Earth's orbit is

taken as reference). Curves corresponding to the time of �ight estimations for the short and

long-maneuver regimes, as well as the classic solution by Edelbaum, are included.

position and costate of the velocity for a transfer in the short-maneuver regime, with χ = 0.2405

and a dimensionless thrust acceleration of 2.1764. Times of �ight are 0.9644 for the linear solution

and 0.9619 for the exact one (corresponding to 0.1534 and 0.1530 revolutions of the reference orbit,
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Fig. 9 Time of �ight as a function of χ for the Earth to Mars test case (with intermediate

reference orbit as de�ned in Section III E). Curves corresponding to the time of �ight estima-

tions for the short and long-maneuver regimes, as well as the classic solution by Edelbaum,

are included.

respectively). The control variable γ resembles a bang-bang control as predicted, with the switch

located at the middle of the maneuver. Thrust is oriented close to the positive radial direction

36



0 0.2 0.4 0.6 0.8 1

τ̂ [-]

50

100

150

200

250

300

γ
[d
eg
]

linear
nonlinear

0 0.2 0.4 0.6 0.8 1

τ̂ [-]

0

0.2

0.4

0.6

0.8

1

1.2

ρ̂
[-
]

linear
nonlinear

0 0.2 0.4 0.6 0.8 1

τ̂ [-]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

θ̂
[-
]

linear
nonlinear

0 0.2 0.4 0.6 0.8 1

τ̂ [-]

-1

-0.5

0

0.5

1

λ̂
u
[-
]

-0.6

-0.4

-0.2

0

0.2

λ̂
v
[-
]

λ̂u linear

λ̂u nonlinear

λ̂v linear

λ̂v nonlinear

Fig. 10 Earth to Mars transfer for a non-dimensional thrust acceleration of 2.1764 (correspond-

ing to χ = 0.2405).

during the �rst half of the maneuver, and in the second half it reverses to point opposite to it.

Interestingly, the linear and nonlinear γ pro�les are very similar at the beginning but appreciably

separate towards the end of the transfer. This is also re�ected in the curves for the costate elements

involved in the control equation, λ̂u and λ̂v. However, the most notable di�erences are observed

in the �nal values of the angular position. The main reason behind this is the di�erent value of

the boundary condition for the �nal angular velocity for the linear and nonlinear problems. On the

other hand, the pro�les for the radial position are almost identical in both cases. In general, the

linear solution for γ, ρ̂ and the costates �t very well with the behaviors predicted by the approximate

analytic solutions. Also noteworthy is that the symmetry properties of the linear solution are not

preserved for the complete nonlinear model.

The solution has a completely di�erent structure in the long-maneuver regime, as shown in

Figure 11 for χ = 1.2869×102 and a dimensionless thrust acceleration of 4.0680×10−3. Time of �ight
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Fig. 11 Earth to Mars transfer for a non-dimensional thrust acceleration of 4.0680×10−3 (cor-

responding to χ = 1.2869×102).

is 64.4812 for the linear case and 47.3139 for the nonlinear one (10.2625 and 7.5302 revolutions of the

reference orbit, respectively). Contrary to the short-maneuver example, the separation between the

linear and complete models due to the e�ect of the nonlinearities is clearly observed in all variables.

The thrust control angle is now oriented along the transversal direction, describing small oscillations

about it both in the linear and nonlinear cases. However, the amplitude of the oscillations in the

linear solution is constant, whereas for the exact model it increases with time. Similar oscillatory

behaviors can also be found for the rest of variables, except for θ̂. Interestingly, the secular evolution

of ρ̂ has changed from quadratic to linear, justifying the di�erent slopes showed in Figure 8 for

∆τ (χ). Same as with the short-maneuver example, the nonlinear solution does not preserve the

symmetry properties of the linearized model.

Finally, Figure 12 corresponds to a transfer maneuver in the transition zone, with χ = 1.6017×

101 and dimensionless thrust acceleration 3.2684×10−2. Resulting times of �ight are 9.1327 for
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Fig. 12 Earth to Mars transfer for a non-dimensional thrust acceleration of 3.2684×10−2 (cor-

responding to χ = 1.6017×101).

the linearized maneuver and 6.9437 for the complete equations (corresponding to 1.4535 and 1.1051

revolutions of the reference orbit, respectively). The γ pro�le re�ects the transition between both

limit cases, showing an approximately one-period oscillation with large amplitude and characteristic

features about the middle point of the maneuver. The radial distance pro�le is still similar to the

short-maneuver case, but its secular behavior is transitioning from quadratic lo linear. The curves

for λ̂u and λ̂v also present clear di�erences from the short-maneuver regime, beginning to develop

the oscillatory behavior which characterizes the long-maneuver regime. Interestingly, the features

observed for the linearized solution are more similar to the ones of the long-maneuver limit case,

indicating that the nonlinearities increase the size of the transition zone in χ.
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V. Application Examples

A. GEO Disposal

As a �rst application example we can consider an end-of-life disposal of a geostationary satellite

(R = 42164.14 km) using an optimal low-thrust control strategy. Using Figure 2 as a reference, let

us suppose the spacecraft is moved by ∆R = 200 km above the GEO protected region and let us

assume a total mass m = 1000 kg with 3 di�erent low-thrust propulsion systems having maximum

thrust F of 10mN, 35mN and 100mN, respectively.

The value of the dimensionless radial change, ∆r = ∆R/R = 4.74×10−3, corresponds to a

virtually linear problem, as it appears clearly in Figure 2. The corresponding non-dimensional thrust

acceleration ε = FR2/ (µm) for the three cases results in 4.46×10−5, 1.56×10−4 and 4.46×10−4,

respectively. In turns, the parameter χ = ∆r/ε for the three cases yields 106.35, 30.39 and 10.63,

respectively.

The �rst case falls well in the long-maneuver regime, which implies a virtually tangential thrust-

ing strategy with duration ∆τ ' χ/2 = 53.17 corresponding to χ/ (4π) = 8.46 orbits or 8.44 solar

days.

The second case still belongs to the long-maneuver regime but is closer to the transition zone,

which brings non-negligible oscillations (at the orbital frequency) of the optimal thrust direction

with respect to the tangential direction. The maneuver duration can be best predicted with the

re�ned long-maneuver approximation [Eqs. (34-36)] as ∆τ ' χ/2C̄ = 16.0 corresponding to 2.55

orbits or 2.54 solar days. As the maneuver duration is far from being a multiple of the orbit period

part of the thrust resources are spent to meet the boundary conditions, which results in a larger

duration compared to a nearly tangential strategy as discussed in Section III B.

The third case lies within the transition zone, as shown in Figure 2. A good estimate for the du-

ration of the maneuver can still be obtained with the re�ned long-maneuver approximation, yielding

∆τ ' χ/2C̄ = 5.32 corresponding to 0.846 orbits or 0.844 solar days. Because the maneuver takes

less than one orbital revolution to complete the optimal thrust orientation will strongly separate

from the tangential direction.
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B. Simpli�ed Earth-Mars Transfer

Another relevant application example is an Earth-to-Mars low-thrust transfer. As a very crude,

but still useful approximation one can model both Mars and Earth orbits as circular and coplanar,

assume the spacecraft departs from the same circular orbit as the Earth and neglect mass variations

due to propellant consumption. In this case let us �rst consider a �xed trip time of 3 years to

get a cargo spacecraft of masses 2000, 5000 and 10000 kg to Mars as a support for a subsequent

human exploration mission. Let us employ the results of this article, and in particular the ones

shown in Fig. 9, to estimate the required thrust force (assumed constant) and control strategy.

The value of the dimensionless radial change, taking Earth semimajor axis (R = a0 =1 AU) as

reference radius and the semimajor axis of Mars orbit as arrival radius (R+ ∆R = af =1.524 AU),

is ∆r=0.524, which highlights that that this transfer problem is far from linear. It is therefore

recommended to adopt an intermediate orbit reference radius R′ =
[√
a0af

(√
a0 +

√
af
)
/2
]2/3

=

1.239 AU, to minimize the error associated to the nonlinearities as discussed in Section III E. The

new dimensionless radius change becomes ∆r′ = 0.524/1.239 = 0.423.

Since the period of the reference orbit is 1.379 years the required dimensionless transfer time

is 2.175 revolutions or ∆τ = 4.35π, which implies we are in the long-maneuver regime. Following

Eq. (32) we obtain χ ≈ 2∆τ =27.33 leading to ε = ∆r′/χ = 0.0155 thus requiring a thrust

F = µεm/R′2 of 120, 300 and 600 mN, respectively.

The exact solution provided by Fig. 9 is χ = 25.91 , requiring a thrust magnitude of 126, 315

and 630 mN, respectively.

If the required trip time is now reduced to two years (corresponding to 1.45 revolutions or

∆τ = 2.9π) the optimization problem falls in the transition regime. From Fig. 9, one has χ ≈ 15.7

�nally resulting in a required thrust magnitude of 208, 519 and 1038 mN, respectively, with, ex-

pectedly, a strongly non-tangential optimum thrust vector. Here Edelbaum's solution would largely

underestimated the required thrust (Fig. 9). On the other hand the re�ned long-maneuver approx-

imation ([Eqs. (34-36)]) provides quite accurate results with an estimated χ ≈ 15.55 corresponding

to 206, 514 and 1028 mN of required thrust magnitude.
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C. Hayabusa-2

The ∼ 600 kg Hayabusa-2 spacecraft will arrive at the ∼ 1 km diameter asteroid 162173 Ryugu

in July 2018. According to (nominal) mission operations, the spacecraft will hover above the asteroid

surface in a similar way as the Hayabusa-1 mission did [20]. Nevertheless, it is interesting to look

at the case of a hypothetical orbiter and the requirements to change its altitude in an optimum way

using the nominal ∼ 28mN ion engine of the Hayabusa-2 mission. For a preliminary analysis, let

us neglect all perturbations, assume an initial circular orbit of 20 km radius and optimize a 1 km

radius change maneuver. Because ∆r = 0.05 the maneuver can be considered linear. Assuming an

average density of 2.0 g/cm3 and a spherical shape for Ryugu one obtains µ ≈ 560 m3s−2, which

corresponds to a period of roughly 9 days. In turns ε ≈ 33.3 and χ = 1.5×10−3 which falls well

in the short-maneuver regime. This indicates that the optimum thrust orientation is practically

bang-bang along the radial direction and the expected maneuver time is ∆τ ' 2
√
χ = 7.7×10−2,

which corresponds to about 2.57 hours.

VI. Conclusions

The minimum-time constant-thrust acceleration transfer between two coplanar, circular orbits

has been studied in great detail, using a relative motion formulation in curvilinear coordinates and

the indirect method. Together with a previous paper on the same-orbit rephasing problem, this

work completes the study on the minimum-time constant-thrust control between circular orbits

in curvilinear coordinates. Results show that the time-optimal transfer undergoes fundamental

qualitative changes with the required time of �ight, being possible to identify two limit cases, a short-

maneuver and a long-maneuver regime, separated by a transition zone. This structure is similar

to the one found for the rephasing case. The short- and long-maneuver limit regimes correspond,

respectively, to transfers requiring much less or more than one revolution of the reference orbit to

complete, whereas transfers in the transition zone present times of �ight of approximately one period

of the reference orbit. The qualitative characteristics of each region have been studied in detail using

analytical and numerical techniques, both for the linearized and complete equations of motion, and

three representative examples have been presented to illustrate them. For transfers in the short-
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maneuver regime the thrust orientation control law is nearly bang-bang along the radial direction,

being initially oriented along the desired radial displacement and changing direction halfway through

the maneuver. Conversely, in the long-maneuver regime the optimal thrust orientation oscillates with

small amplitude about the transversal direction, oriented along it for positive radial displacements

and opposite to it for negative radial displacements. It is important to highlight that the whole

spectrum of maneuvers (in terms of number of revolutions) has been characterized using a uni�ed

formulation which naturally led to the identi�cation of the three regions, without additional a priori

hypothesis.

The ratio of the required radial displacement and the available thrust acceleration is identi�ed as

the main parameter of the problem and a clear relation between this parameter and the time of �ight

is observed for both regimes. An approximate analytical study of the �rst order optimality conditions

for the linearized equations of motion leads to explicit expressions for the time of �ight depending

only on the displacement-thrust ratio, as well as other estimations and qualitative information

about the evolution of state and costate. Particularly, a suboptimal analytical solution ful�lling

all the linearized di�erential equations and constraints is reached for the long-maneuver regime.

Compared to Edelbaum's method, this re�ned solution is more complex to evaluate but provides

more detailed information on the evolution of time of �ight, state and costate. For the complete

equations of motion, nonlinear e�ects make the solution dependent on two parameters (the radial

displacement and the displacement over thrust ratio). The e�ect of the nonlinearities depends

mainly on the required radial displacement, and it is especially important in the transition zone and

the long-maneuver regime. Related to this, the choice of the reference orbit has a key impact in

the deviation between the times of �ight for the linear and nonlinear representations of dynamics,

especially in the long-maneuver regime. By choosing an adequate reference orbit between the initial

and �nal ones, it is possible to close the gap and make both coincide.

These approximate analytical solutions can be very useful to construct the initial guesses re-

quired by iterative numerical solvers for both the direct and indirect methods. Particularly, all the

test cases for the linearized equations of motion were successfully solved using their approximate

analytical solution as initial guess. Furthermore, the linearized solution can be used as initial guess
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for the complete problem in many practical cases, especially for the short-maneuver regime or when

the required radial displacement is small.
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