
On the Timed Analysis of Big-Data Applications

Francesco Marconi, Giovanni Quattrocchi,
Luciano Baresi, Marcello M. Bersani, and Matteo Rossi

DEIB, Politecnico di Milano, Milan, Italy
{firstname.lastname}@polimi.it

Abstract Apache Spark is one of the best-known frameworks for exe-
cuting big-data batch applications over a cluster of (virtual) machines.
Defining the cluster (i.e., the number of machines and CPUs) to attain
guarantees on the execution times (deadlines) of the application is indeed
a trade-off between the cost of the infrastructure and the time needed
to execute the application. Sizing the computational resources, in order
to prevent cost overruns, can benefit from the use of formal models as a
means to capture the execution time of applications.
Our model of Spark applications, based on the CLTLoc logic, is defined by
considering the directed acyclic graph around which Spark programs are
organized, the number of available CPUs, the number of tasks elaborated
by the application, and the average execution times of tasks. If the
outcome of the analysis is positive, then the execution is feasible—that is,
it can be completed within a given time span. The analysis tool has been
implemented on top of the Zot formal verification tool. A preliminary
evaluation shows that our model is sufficiently accurate: the formal
analysis identifies execution times that are close (the error is less than
10%) to those obtained by actually running the applications.

Keywords: Big-Data Applications, Metric Temporal Logic, Formal Verification,
Apache Spark

1 Introduction

Many software systems produce huge quantities of data and their process-
ing has been studied widely over the last years. Frameworks like Hadoop
(hadoop.apache.org), Spark (spark.apache.org), and Flink (flink.apache.org), have
been proposed to automate and ease the computation. These frameworks allow
users to carry out batch processing over a cluster of (virtual) servers. The actual
size of supplied data and the number of machines used impact the execution time
by which the framework provides results. Unfortunately, the actual execution
time is only known at the end of the computation, and estimations are mainly
based on experience and domain-knowledge. In this context, guarantees over the
quality of service are often stated as deadlines—i.e., the maximum acceptable
response times for single executions of the applications. The availability of tools
that can foresee execution times, and thus help sizing the cluster, would greatly

http://hadoop.apache.org
http://spark.apache.org
http://flink.apache.org

2 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

ease the adoption of these frameworks in contexts where time and costs are key
drivers: the higher the cost (hence the more machines are available), the lower
the overall response time.

The work presented in this paper is part of a larger research on a model-driven
approach to the formal verification of Big Data frameworks carried out within
the DICE project (www.dice-h2020.eu). In [15] we tackled the formal verification
of data streaming applications based on the Storm framework. This paper focuses
instead on Apache Spark, one of the best known frameworks for batch processing.
Spark programs are internally represented as directed acyclic graphs (DAG) of
operations. We propose the definition of formal models of Spark programs based
on the CLTLoc [6] logic to allow for the validation of the required resources
(virtual machines and CPU cores) given a deadline. A suitable formalization
of the problem requires that the execution times of the different tasks—that
is, of the different computation units—are properly modeled. Hence, we based
the formal model on CLTLoc, a metric temporal logic over dense time that
extends LTL with atomic constraints on clock variables. CLTLoc is supported by
formal verification tools which allow users to analyze formulae in an automated
manner [6,3]. CLTLoc was also used—and extended—to model Storm topologies
in [15]; this unified modeling and verification approach opens the possibility to
analyze applications that are built upon heterogeneous building blocks, some
tailored to stream processing, and others to batch processing.

The proposed solution builds the DAG-based representation of the program
and automatically translates it into the corresponding CLTLoc model. The user
then must provide the deadline, the number of available CPUs, the number
of tasks elaborated by the application, and the average execution time of the
different task types (e.g., obtained by profiling the program of interest). If the
outcome of the analysis is positive, then the execution is feasible—that is, it can
be completed by the given deadline. The prototype tool is implemented on top
of Zot1, our verification tool for solving the bounded satisfiability problem for
CLTLoc, and a first evaluation witnesses good prediction capabilities with an
error that is usually less than 10%.

The rest of the paper is organized as follows: Sect. 2 introduces Spark and the
CLTLoc logic; Sect. 3 presents the formal model; Sect. 4 discusses an experimental
evaluation of the approach; Sect. 5 surveys related solutions, and Sect. 6 concludes.

2 Background

2.1 Apache Spark Framework

Spark is usually deployed on a cluster of servers and exploits a master/worker
architecture. The master schedules operations for execution in the cluster by
assigning part of the computation to each worker. The main programming
abstraction in Spark is the RDD (resilient distributed dataset), i.e., immutable
and fault-tolerant collections of homogeneous objects. An RDD is distributely

1 github.com/fm-polimi/zot

http://www.dice-h2020.eu
https://github.com/fm-polimi/zot

On the Timed Analysis of Big-Data Applications 3

spark.textFile(“path/to/file”)
.map(x => x.split(“:”))
.filter(x => x(2) != “false”)
.map(x => (x(0), x(1).toInt))
.reduceByKey(_ + _)
.collect()

(a) Code

Job0

textFile

map

Stage0

filter

map

Stage1

reduceByKey

(b) DAG

 ‘a:2:true’
 ‘e:3:true’
 ‘a:3:false’
 ‘u:1:true’
 ‘o:4:false’
 ‘u:5:true’
 ‘a:5:true’

 [‘a’,’2’,’true’]
 [‘e’,’3’,’true’]
 [‘a’,’3’,’false’]
 [‘u’,’1’,’true’]
 [‘o’,’4’,’false’]
 [‘u’,’5’,’true’]
 [‘a’,’5’,’true’]

 [‘a’,’2’,’true’]
 [‘e’,’3’,’true’]
 [‘u’,’1’,’true’]
 [‘u’,’5’,’true’]
 [‘a’,’5’,’true’]

 (‘a’, 2)
 (‘e’, 3)
 (‘u’, 1)
 (‘u’, 5)
 (‘a’, 5)

 (‘a’, 7)
 (‘e’, 3)
 (‘u’, 6)

 textFile map filter map reduceByKey

(c) Data

Figure 1: Example of Spark application.

stored into workers by means of multiple redundant partitions to facilitate parallel
computation. The act of a worker to read from another worker’s memory or storage
is called data shuffling. RDDs can be persisted in memory to improve performance
through reuse. This makes Spark particularly efficient when executing iterative
algorithms (e.g., machine learning and graph computations).

RDDs support two kinds of operations: transformations (e.g., map, filter)
create new RDDs, while actions (e.g., count, collect) perform computations to
generate values. The former are lazy: they are chained together for optimiza-
tion purposes, and are performed only when an action is encountered. Spark
distinguishes between narrow and wide transformations, where the former do not
reshuffle data (e.g., map, filter), whereas the latter do (e.g., reduceByKey).

To fully comprehend how Spark works one must first understand how the
logic of a particular application is broken down into parallelized tasks. Figure 1a
shows the code (in Scala) of an example Spark application that performs a simple
aggregation over a dataset read from a text file containing in each line a vowel, a
number and a Boolean separated by colons. The goal of the program is to sum
the numbers that are labeled with the same vowel which are also not marked as
false. To do that the program chains different operations: i) a map transforms
each line in an array of strings by splitting it when a colon is encountered; ii)
a filter discards the unnecessary lines (those labeled with false); iii) a second
map converts the remaining arrays into key-value pairs, each one composed of
a vowel (the key) and a number (the value); iv) a reduceByKey is used to sum
the numbers that share the same key; finally v) the dataset is returned using
function collect. Figure 1c shows how an example dataset is transformed at each
step. As soon as an application is submitted to Spark it is divided into multiple

4 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

jobs. A job is a group of operations delimited by the presence of Spark actions
within the code. When a job is scheduled for execution, a directed acyclic graph
(DAG) of stages is created. Stages are delimited by operations that would require
data shuffling, thus breaking data locality. Spark DAGs define the order among
the stages of a job: two stages are connected if the second stage must read the
data produced by the first, thus a stage can be executed if and only if all of its
predecessors are completed. Once a stage is scheduled by the master, Spark defines
the set of parallel tasks that need to be executed for the stage. A task executes
all the trasformations that compose a stage over a single partition of its input
RDD. Tasks are executed in parallel and are considered units of computation.
Therefore, each task is executed by a single core and it is scheduled only when a
core of a worker becomes free.

Figure 1b shows how logically the example program of Figure 1a is executed
by Spark. Each rectangle inside a stage is an RDD that is produced by performing
the associated operation; the arrows define the ordering relation between stages
Stage0 and Stage1 (i.e, a DAG made of two nodes executed in sequence). Due to
the lazy evaluation of transformations nothing happens until collect is executed;
at that moment Spark allocates a job by creating a DAG of stages. Because map
and filter do not require data shuffling, the first four operations are grouped in
a single stage (Stage0). Conversely, reduceByKey requires an exchange of data
among workers since tuples with the same key are not guaranteed to be all in the
same data partition. For this reason Stage1 is created. Stage1 depends on Stage0
and so it can be scheduled only when the first has completed its execution.

2.2 Constraint LTL over-clocks

The temporal logic model of Sect. 3 is expressed in terms of the CLTLoc logic [6]
augmented with discrete counters, an extension of LTL allowing clock variables
and arithmetical variables to occur in atomic formulae.

Atomic formulae over (R, {<, =}) contain arithmetical variables, called clock
variables (or simply clocks), which behave as clocks of Timed Automata [2]. A
clock x measures the time elapsed since the last “reset” of x, which occurs when
x = 0 holds. Since the values of clocks can be compared with constants in formulae
of the form x ∼ c (where c ∈ N and ∼∈ {<, =}), clocks are used to constrain the
time elapsing between the events that characterize Spark computations.

Atomic formulae over (N, {<, =}, +, 0, 1) predicate over arithmetical variables,
called counters, that have no semantic restrictions. For instance, an atomic formula
is y + z < 4, where both y and z are in N. A counter stores a value that can be
incremented, decremented and tested against a constant value. The logic exploits
a special modality X applied to counters, that has been already introduced
in [11], with the following meaning: if y is a counter, Xy is the value of y in the
next position of time. Using modality X the increment of y by 1 is expressed
by the formula Xy = y + 1 whereas y = Xy + 1 indicates a decrement of y by 1.
Counters are used in the model of Sect. 3 to represent the amount of tasks that
are elaborated by Spark applications.

On the Timed Analysis of Big-Data Applications 5

Let V be a finite set of variables over N, C a finite set of clock variables over
R and AP a finite set of atomic propositions. Atomic formulae θ over V are
quantifier-free Presburger formulae over terms α of the form y or Xy, with y ∈ V .
CLTLoc formulae ϕ with counters are defined as:

ϕ := p | x ∼ c | θ | ϕ ∧ ϕ | ¬ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ

where p ∈ AP , x ∈ C, c ∈ N, ∼∈ {<, =}, and X, Y, U and S are the usual
“next”, “previous”, “until” and “since” operators of LTL. Operators F (“eventu-
ally”), G (“globally”), and P (“previously”) are defined through the customary
abbreviations: Fϕ = ⊤Uϕ, Gϕ = ¬F(¬ϕ), and Pϕ = ⊤Sϕ.

An interpretation of a formula is a pair (π, σ), where π : N → ℘(AP), and
σ : N×{C ∪V } → R is a mapping associating every variable in C ∪V with a value
in R, but restricting values of the elements in V to N. The semantics of CLTLoc
is defined as for LTL, except for formulae x ∼ c and θ. Let AV be the ordered
set of all terms of the form y and Xy, with y ∈ V , and let n be its cardinality;
for each αj ∈ AV , its depth |αj | is such that |αj | = 0 if αj = y, and |αj | = 1 if
αi = Xy for some y ∈ V . Given a mapping v : AV → N, θ[v(α0), . . . , v(αn−1)]
is the valuation of θ through v, which is obtained by replacing each term αj

occurring in θ with value v(αj). If θ[v(α0), . . . , v(αn−1)] holds, we write v |= θ.
Let t(αj) = y if αj is either y or Xy. The following properties hold for each i ∈ N:

(π, σ), i |= x ∼ c iff σ(i, x) ∼ c

(π, σ), i |= θ iff θ[σ(i + |α0|, t(α0)), . . . , σ(i + |αn−1|, t(αn−1))]

If ϕ is a formula, interpretation (π, σ) is a model for ϕ if (π, σ), 0 |= ϕ holds.
The satisfiability problem CLTLoc is decidable [6] and can be practically

computed through a Bounded Satisfiability Checking approach [6,3]. Conversely,
CLTLoc with Presburger arithmetics is undecidable, since so is its subset without
clocks, CLTL [11], as the unboundedness of the domain of the counters and
modality X allow the logic to encode the computations of 2-counter machines.
Even if our formal model of Spark computations is based on CLTLoc with
counters, the value of arithmetical variables occurring therein is bounded by
some value that depends on the problem instance (see Sect. 3). Therefore, the
technique introduced in [6,3] can still be exploited to solve the satisfiability
problem for any instance of the model.

3 Modeling Spark Applications

This section presents the formal definition of the problem that we consider for
the analysis of Spark applications and the temporal model that has been devised
to solve it. Some assumptions are needed to abstract the Spark computation
from details that are related to the physical infrastructure running the Spark
framework and that depend on implementation aspects of the applications.

6 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

Assumptions and level of abstraction We make the following assumptions.

The cluster running the Spark application is composed of homogeneous machines.
The workload of the cluster executing the application is not subject to
oscillations that might alter the execution of the running jobs; hence, the
performance of the cluster is stable and does not vary over time. The number
of nodes in the cluster and the network latency are not explicitly represented
in the model. However, they are strictly correlated as the more nodes are
in the cluster, the higher the latency will be. For this reason, we decided to
synthesize their effect as a single term to be included as an overhead to the
task durations.

Some features of the runtime environment of Spark are simplified; for instance,
the interaction among master and workers is not taken into account. The
latency generated by the execution of services managing tasks is considered
negligible with respect to the total execution time of the application.

The input dataset provided to the application is homogeneous; that is, the possible
skewness of data is not taken into account. All tasks constituting a stage
have durations that can vary non-deterministically by at most a fraction of a
nominal value.

The number of CPU cores that are available to the application is known before
starting the execution of the job and it does not vary over the computation.

The functional aspects of executed operations are not directly considered in the
model; only their effect in terms of temporal behavior is represented.

The model is focused on the execution DAG underlying the application and it
is based on an abstraction of the temporal behavior of stages and the tasks they
are composed of. As explained in Sect. 2.1, the sequence of operations included in
each stage is applied (possibly in parallel) on all partitions of the input dataset
of the stage by means of a set of homogeneous tasks.

Problem statement Let D be a DAG (S, E) where S is a finite set of N stages
{S0, . . . , SN−1} and E is a subset of S × S representing the precedence relation
among stages. Let T̄i be a finite set of homogeneous tasks associated with Si

such that any pair of tasks (T̄i, T̄i′) are disjoint for any 0 ≤ i, i′ < N (with i ̸= i′)
and let T̄ be the set

⋃
i T̄i. Hereafter, variables i, j are such that 0 ≤ i < N and

0 ≤ j < K hold.
An execution η of D with tasks in T̄ is a finite sequence of K tuples

t0, t1, . . . , tK−1 of the form tj = (T j
0 , . . . , T j

N−1), called execution steps, where
each set of active tasks T j

i is a—possibly empty—subset of T̄i satisfying the
following constraints: (i) for every stage Si, each task in T̄i appears in the exe-
cution sequence exactly once; also, if some task of T̄i occurs at step j, then all
tasks associated with all stages S′

i preceding Si with respect to E occur before j;
(ii) for each step there is at least one set of active tasks. A non-empty set T j

i of
tasks is called a batch of active tasks.

For any stage Si in S, let τi be a strictly positive constant in R defining the
time needed to compute a generic task of Ti. Let I and I ′ be two convex and

On the Timed Analysis of Big-Data Applications 7

bounded sets in R. We say that I precedes I ′ when all the elements in I are
strictly smaller than all the elements in I ′. Given an execution η for D, define
function active(t) specifying the set of active tasks of T̄ at any time instant
t, such that for every t ∈ R: (i) if a batch T j

i is active at t, then there is an
interval I of τi time units, including t, where T j

i is active and no task of T j
i is

active in any time instant t′ not belonging to I; (ii) every batch T j
i is eventu-

ally active; (iii) if batch T j
i occurs before batch T j′

i in η (i.e., j < j′), then the
interval of time where T j

i is active precedes the interval of time where T j′

i is active.

Given an integer p > 0, an execution η = t0, t1, . . . , tK−1 for D is feasible if
|active(t)| ≤ p, for all t ≥ 0. The time span ts(η) of η is defined as the maximum
time instant where at least one task in active.

The feasibility problem for a Spark application is defined as follows. Let D be
a DAG (S, E) of N stages, let T̄i, τi and p be defined as before and let d be a
strictly positive integer. A solution of the feasibility problem for D with tasks in
T̄ is a feasible execution η = t0, t1, . . . , tK−1 such that ts(η) < d. Let FD be the
set of values {d : ∃η ts(η) < d} of the feasible deadlines, i.e., the set of all the
possible deadlines d such that there exists a feasible execution whose duration is
less than d. The minimum feasible deadline (mfd) is the minimum of FD.

Figure 2 shows a possible execution η for the DAG depicted in Fig. 2b whose
stages S1, S2 and S3 execute, respectively, 10, 21 and 15 tasks, grouped into the
sets T̄1, T̄2 and T̄3. Every rectangle represent a batch of running tasks and the
number written therein is the size of the batch, i.e., the cardinality |T j

i |. Stage 1
and 3 consists of two batches while Stage 2 is executed by means of 4 batches.
The number of cores p is equal to 10, hence, in every time instant, the number of
running tasks is limited by 10. Assuming that the time delay between T 1

1 and T 2
1

is 1.3 time units (τ2 is 1 time unit), then the duration of the computation ts(η)
is 26.3 time units.

6 4

4 3
10

4

S1

S2

S3 8 7

time

T 2
2

T 1
2

T 3
2

T 4
2

T 1
1

T 2
1

T 1
3 T 2

3

(a) Execution

S1 S2

S3
|T̄3| = 15

⌧3 = 2

|T̄2| = 21

⌧2 = 1

|T̄1| = 10

⌧1 = 3

(b) DAG

Figure 2: Possible execution (2a) of the DAG in (2b).

8 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

endT1 endT1startT1 startT1

runT1 runT1

runTC1 = 6 runTC1 = 4

startS endS

Figure 3: Atomic propositions and discrete variables used to model the running
batches and the overall computation of stage S1

Temporal Logic Model of Spark Applications Consider a Spark execution
DAG (S, E). Suppose that the application is running on a cluster with p available
cores, and each stage Si is executed by running |T̄i| tasks. To represent the set
of possible executions of the system, the CLTLoc model makes use of finite sets
of atomic propositions, of discrete counters and of clocks. Atomic propositions
are used to model the current status of stages and their tasks (i. e., whether they
are started, running or completed), whereas the counters are used to keep track
of the number of CPU cores that are either available, or are allocated to run the
active tasks. Finally, the temporal constraints on the different tasks are expressed
thanks to clocks.

Figure 3 shows the atomic propositions that are used to model the computation
of the stage S1, that is part of the DAG in Fig. 2b, according to the execution
shown in Fig. 2a. Atoms startS1 and endS1 indicate the beginning and the end
of the computation entailed by stage S1, that is, the time instant where the
first batch starts and the time instant where the last batch terminates. Batches
of tasks are represented by means of startT1, endT1 and runTC1 that indicate,
respectively, the beginning and the end of a batch and that the batch is currently
active. The value of variable runTC1 is the number of tasks that are currently in
execution, hence it corresponds to the value |T j

1 |, for j ∈ {1, 2}, representing the
cardinality of the active batch.

Corresponding to the three kinds of variables mentioned above, three groups
of formulae can be identified in the model: those capturing the evolution of the
state of stages and tasks; those constraining the number of tasks in execution
with respect to the available cores; and the set of constraints on clocks. The
three groups of formulae are presented in the rest of this section. Notice that all
formulae presented in this section are implicitly universally quantified over time
through the G temporal operator.

State formulae for stages A stage Si can be either running (i. e., the atomic
proposition runSi holds) or not running. A stage becomes running—i.e., startSi

holds—when there is at least one task that starts the execution and no task has
been executed so far. If no tasks were executed then the number of tasks still
to be processed, represented by discrete integer variable remTCi, is equal to the
total number of tasks that the stage has to elaborate (||T̄i||). This situation is

On the Timed Analysis of Big-Data Applications 9

¬runTi¬runTi processingTiprocessingTistartTistartTi endTiendTi

runTirunTi

Figure 4: Finite state machine representing the state evolution of a set of tasks.

modeled through the following Formula (1).∧
Si∈S

(startTi ∧ remTCi = ||T̄i|| ⇐⇒ startSi) (1)

A stage terminates—i.e., endSi holds—when there are no more tasks to be
processed—i. e., when remTCi is equal to 0. This is defined by Formula (2) below.∧

Si∈S

(endTi ∧ remTCi = 0 ⇐⇒ endSi) (2)

A stage is completed (i.e., completedSi holds) when it has been terminated
in the past (i.e., there is a position before the current one where endSi held); it
is enabled (i.e., enabledSi holds) when all the predecessor stages Sj , such that
(Si, Sj) belongs to E, have been completed.∧

Si∈S

(completedSi ⇐⇒ P(endSi)) (3)

∧
Si∈S

(enabledSi ⇐⇒
∧

Sj∈S, (Si,Sj)∈E

completedSj) (4)

State formulae for tasks The behaviour of each batch of tasks is summarized in
Fig. 4. Initially, for each stage Si, the corresponding batch of tasks is not running
(¬runTi holds). In order for the batch to start processing (runTi becomes true),
the stage must be enabled (i. e., enabledSi holds), and some conditions on the
resources (which are explained later, when describing counter-related formulae)
must hold. Every execution of a batch is characterized by an initial state (in
which startTi holds) and a final state (in which endTi holds). processingTi
is true in all time instants strictly included between the start and the end of a
batch processing, and corresponds to runTi ∧ ¬startTi ∧ ¬endTi. This execution
cycle can be repeated many times depending on the available resources and the
number of tasks to be executed. Being the batches of a stage sequential, they
never overlap. Hence, atoms runTi, startTi and endTi are used to model any
active batch T j

i , as they can be safely reused to model all the batches required
to complete a stage. For brevity, the CLTLoc formulae capturing the behavior of
the state machine of Fig. 4 are not shown here.

Counter-related Formulae Counter variables are used to define the constraints
on system resources and the evolution of the tasks that are executed within the

10 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

stage. For example, Formula (5) translates the constraint |active(t)| < p, for any
t, given in the problem statement. It limits the number of cores that are allocated
to execute the active tasks. In particular, the sum of the number of available
(avaCC) and allocated cores is always equal to p, the number of cores that is
assigned to the job. The number of the remaining tasks of a stage decreases
during its execution: Formula (6) imposes that the next value of remTCi (i.e.,
XremTCi) is not greater than the value of remTCi in the current position.∑

Si∈S

(runTCi) + avaCC = p (5)

∧
Si∈S

(remTCi ≥ XremTCi) (6)

The following formulae link the truth value of the events startTi and endTi

with the value of counters runTCi and remTCi. Formula (7) correlates variable
runTCi with proposition runT by imposing that a batch is running (i.e., runT
holds) when the value of runTCi of active tasks is strictly positive. The two
formulae (8) and (9) determine the value of runTCi and remTCi during the
execution of the batch. Since the model is not designed to represent core re-
balancing operations, the formulae enforce a variation of runTCi or remTCi to
occur when a batch starts or terminates. In particular, Formula (8) imposes that
a variation of the value of runTCi between two adjacent positions is a sufficient
condition to make startTi or endTi true. Therefore, between startTi and endTi

runTCi cannot vary. Similarly, Formula (9) imposes that a variation of the value
of remTCi is the sufficient condition to activate the execution of a batch (i.e.,
startTi holds). Finally, Formula (10) defines the relation between the variables
runTCi and remTCi. It states that, if the execution of a batch of tasks is starting,
the number runTCi of running tasks in the batch is the difference of the (number
of) remaining tasks at the beginning of the batch (i.e., value remTCi) and the
remaining tasks in the preceding position (i.e., value YremTCi).∧

Si∈S

(runTi ⇔ runTCi > 0) (7)

∧
Si∈S

((runTCi ̸= XrunTCi) ⇒ (XstartTi ∨ endTi)) (8)

∧
Si∈S

(remTCi ̸= XremTCi ⇒ XstartTi) (9)

∧
Si∈S

(startTi ⇒ (runTCi = YremTCi − remTCi)) (10)

Constraints on clocks To represent the durations of events in the model, a clock
variable clockrunTi

has been defined for each stage Si. Specifically, clockrunTi

measures the duration of the runTi phases for each batch of tasks of stage Si.
The following formula defines the reset conditions for the clocks: clockrunTi is

On the Timed Analysis of Big-Data Applications 11

reset every time a new batch of tasks starts running for stage Si.∧
Si∈S

((clockrunTi
= 0) ⇐⇒ (orig ∨ startTi)) (11)

Formula (12) limits the duration of the execution of a batch of tasks by
imposing that the termination of the batch occurs when the value of clock
clockrunTi

is in interval [τi − ϵ, τi + ϵ], where τi is the average task duration of
stage Si which is given as a parameter to the model, and ϵ is a constant defining
the variability in the processing duration with respect to τi. If there is a batch
currently running (i.e., runTi holds) then runTi holds until an instant when the
value of clock clockrunTi is in [τi − ϵ, τi + ϵ] and endTi is true.

∧
Si∈S

(
runTi ⇒
(runTi ∧ ¬endTi)U((clockrunTi ≥ τi − ϵ) ∧ (clockrunTi ≤ τi + ϵ) ∧ endTi)

)
(12)

Initialization The initial condition of any modeled Spark application obeys
the following constraints: (i) no tasks are running in the origin; (ii) for each
stage Si, the number of remaining tasks is |T̄i|; (iii) the number of available cores
avaCC is the total number of cores p.

4 Implementation and Validation of the Model

The goals of this section are twofold. First, it briefly introduces the prototype tool
that automatically generates CLTLoc formal models from high-level descriptions
of Spark DAGs. Second, it presents a set of experiments carried out with real-life
Spark applications to evaluate the effectiveness of the approach. The validation
focuses on understanding the accuracy with which the model is able to identify
the actual deadline that can be met by an implemented application.

The implemented prototype tool, D-VerT2, takes as input a configuration file
describing the Spark application to be analyzed, and uses a templating mechanism
to automatically generate the corresponding formulae. The configuration file
contains all the relevant information for running the analysis: the structure of
the DAG, the number of tasks and the duration τi for each stage i, the deadline
against which the feasibility analysis has to be performed, the number of cores
in the cluster and the number of time positions to be considered for running
the verification. DAG structure and timing information can be either manually
provided or automatically generated by means of a benchmarking tool3 which,
as explained later in this section, allows for the profiling of running applications
and provides an estimation of the timing characteristics for different settings.

D-VerT produces the corresponding instance of the formal model of Sect. 3
in the input format of the Zot verification tool, which is able to analyze CLTLoc
2 github.com/dice-project/DICE-Verification
3 github.com/franco-maroni/xSpark-bench

https://github.com/dice-project/DICE-Verification
https://github.com/franco-maroni/xSpark-bench

12 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

S0S1
S2

(a) Sort-by-Key

S0

S1

S13

S2

S5

S3

S4

S6

S7

(b) PageRank

S0
<0>

S1
<0>

S10
<9>

S8
<9>

S11
<9>

S12
<4>

S13
<4>

S14
<3>

S15
<3>

S16
<1>

S17
<2>

S2
<0>

S3
<5>

S4
<0>

S5
<8>

S6
<0>

S7
<0>

S9
<10>

(c) KMeans

Figure 5: DAGs of selected applications.

formulae, and feeds the model to Zot. It then collects the outcome of the formal
analysis and provides, when possible, a graphical representation of the results
for better readability. The use of a declarative, logic-based modeling approach
facilitates this automatic process, since the formulae are easily generalizable to
any kind of DAG structure. Further details on the D-VerT toolchain can be found
in [5].

We selected three well-known applications to perform the analysis and evaluate
it against realistic use cases: the simple SortByKey operation; the graph processing
algorithm PageRank [8]; and the clustering procedure K-Means [14]. As depicted
in Fig. 5, the execution DAG of the three use cases have different size and level of
complexity. To evaluate the model with respect to a variety of scenarios, for each
one of these applications we selected six different settings in terms of both the
configuration of the underlying cluster (i. e., two different numbers of available
cores for each cluster node), and the configuration of the single application (i. e.,
three different dimensions of the input dataset and same number of partitions
used for each stage). Next, we performed a profiling activity that consisted in
launching several times the different applications using two different versions of
Spark: one, called from now on sequential Spark, was slightly modified by us and
the other was the regular version of Spark (i.e., vanilla Spark). For both cases we
collected the timing information of all the stages and tasks. Our modifications in
sequential Spark force the scheduler to launch all the stages sequentially (i. e., no
more than one stage can be simultaneously in execution), allowing us to cleanly
isolate the durations of each stage and its tasks, without the noise introduced
by the concurrent execution of multiple stages. These durations were used to
automatically generate the configuration files, therefore to instantiate the formal
model in its different settings. On the other hand, the average execution times

On the Timed Analysis of Big-Data Applications 13

mfdmfdavg(texec)avg(texec)

Figure 6: Times and outcomes of the verification tasks on the SortByKey use case
(22 cores, 100 tasks and 300M input records) by providing different deadlines.

of the entire applications collected on vanilla Spark (from now on avg(texec)),
were used as the reference against which to compare the results of the analysis.
We performed various verification tasks on each instance of the formal model to
identify, for each configuration, the estimated set of feasible deadlines FD. Once
the set was identified, we compared the minimum feasible deadline (mfd) found
with the corresponding avg(texec), and we used the difference between them to
evaluate the accuracy of the model (expressed as the percentage error err).

The first use case we considered is SortByKey. After an extensive analysis
by means of multiple verification runs (each of them with a different deadline),
we were able to identify the feasibility sets and the minimum feasible deadline,
considering the granularity of the milliseconds. Figure 6 shows a comprehensive
view of the verification tasks, performed on a single setting of the use case, with
their outcomes (feasible/unfeasible) and the corresponding verification times.
The mfd found was 84120 ms, therefore all the deadlines higher than that are
feasible. On the other hand, deadlines of 84119 and below resulted unfeasible.
Since, for this setting, avg(texec) was 82133 ms, the percentage error err is about
2.4%. This analysis highlighted a strong dependency of the verification time
on the closeness of the analyzed deadline to the minimum feasible deadline. As
reported in Fig. 6, verification time is in the order of the seconds for all deadlines
lower than 75000 ms or greater than or equal to 84120 ms (mfd), whereas it
grows exponentially for increasing deadline values between 75000 ms and 84119
ms, peaking at around 78 hours for 84117 ms. The notable growth is therefore
registered for those deadlines that resulted unfeasible, but close to mfd. This
pattern has been observed also for the other, more complex, applications we
analyzed. However, since the verification times grow significantly with the size of
the DAG (the analysis for feasible deadlines is generally completed in the order of
minutes for PageRank and in the order of hours for K-Means) the time needed to

14 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

Table 1: Experimental results4.
app cores tasks recordsin avg(texec) (ms) mfd (ms) err

SortByKey

12 100
260M 88386 91384 3.3%
280M 100769 98420 2%
300M 107054 105443 1.5%

22 100
260M 74919 72904 2.6%
280M 77884 78500 0.7%
300M 82133 84120 2.4%

PageRank

28 128
200M 60028 62500 4%
300M 87787 94000 7%
400M 116810 120000 2%

48 128
200M 48805 47000 3.6%
300M 66636 65100 2.3%
400M 88320 86000 2.6%

K-Means

24 18
80M 77651 79000 1.7%
120M 103492 107000 3%
160M 131600 140000 6%

32 24
80M 64565 63000 2%
120M 81299 82000 1%
160M 101483 103000 1%

perform the verification of some unfeasible deadlines becomes unmanageable in
practice. Therefore, since there is such a pronounced difference between the times
for feasible results and the times for unfeasible deadlines in the neighborhood
of mfd, we pursued the following heuristic approach: for each configuration we
started by running the analysis for trivially feasible deadlines and then proceeded
“backwards” (i. e., by lowering the deadline) until a strong discontinuity was
found in the verification time. Based on the times registered for each feasible
deadline, we defined some timeouts and concluded that a given deadline was
reasonably not feasible if no result was returned by the tool within those timeouts.
Table 1 shows the experimental findings of the validation activity for the three
applications. Each row represents a different application setting, characterized by
a specific number of cores in the cluster, a number of tasks (i. e., partitions) for
each stage, and a dimension of the input dataset in terms of number of records
(recordsin). The measures of interests are the previously defined avg(texec), mfd
and the related percentage error err.

Results show that adherence of the model to the actual execution times with
vanilla Spark (i. e., of mfd to avg(texec)) is not particularly affected by changes
in the use case type and configuration. In fact, err is at most 4% across all 6
settings of SortByKey, at most 7% for PageRank and at most 6% for K-Means.

5 Related works

To the best of our knowledge, no approaches exist in literature for the formal
verification of Spark applications. For this reason, we cannot directly compare
4 Full experimental data available at 10.5281/zenodo.1162853

https://doi.org/10.5281/zenodo.1162853

On the Timed Analysis of Big-Data Applications 15

against other works having the same focus. In the following, we present other
techniques, in some cases applied to distributed systems, that tackle problems
somewhat similar to ours, starting with general scheduling problems.

The analysis of temporal properties of scheduling algorithms and of distributed
systems has been addressed with positive outcomes by using Timed Automata
(TA, [2]) and Hybrid Automata (HA, [12]). In [10], TA are used for the analysis
of the task scheduling of Ada programs, in systems equipped with one CPU that
executes both the scheduler and the Ada code. Unlike in standard schedulability
analysis (e.g., [16]), the use of TA—and, similarly, the use of CLTLoc in the
present work—allows for capturing relevant properties of real implementations
(e.g., resource constraints), and for the relaxing of some restrictions on the software
structure, that are needed for the analysis. A timed analysis for distributed
systems has been addressed in [7] by means of HA. HA model the execution of
concurrent tasks on the available CPUs and the precedence relation among the
tasks, which is specified by a graph of dependencies. The tasks are indivisible
units of work with a fixed duration, they have a scheduling priority and can
be preempted. [13] also uses TA to model distributed real-time applications.
A distributed application in [13] consists of several concurrent tasks, each one
running on a single processor and communicating with the others via a network.
TA are used to model the interaction among the tasks, the network (sender and
receiver component) and the arbiter of the communication channel. Both the
schedulability of the tasks and the application response-time are analyzed by
using a state-of-the art model-checker for TA and for HA. Our model considers
DAG of stages similar to the graph of dependencies in [7]. However, whereas
tasks in [7] and in [13] are atomic and are executed on a single CPU each, the
execution of a Spark stage can be spread over different CPUs, complicating the
model.

Operations Research (OR) offers a wide range of techniques for scheduling
and planning problems. TA and their extensions are very effective tools to tackle
non-standard problems that cannot be solved by using standard OR techniques.
[4] presents Priced TA (PTA), which extend TA with costs and are suitable
for modeling scheduling problems with optimal goals. PTA allow for computing
the minimum optimal cost of reaching a target configuration. Three standard
problems of OR are dealt with PTA and the experimental results, comparing the
standard MILP-based approaches with the PTA algorithm, indicate that PTA are
competitive and, in some cases, faster. The Job-shop problem, that [4] addresses
by means of PTA, and the extension with bounded delay uncertainty are addressed
in [1] by using standard TA. The experimental results again demonstrate that the
TA-based procedures applied to the problem can provide better outcomes, that
is, more efficient schedules, than those produced with standard OR algorithms.

As shown in [6], CLTLoc has the same expressive power as TA. Hence, in
principle any problem solved through TA can also be solved through CLTLoc,
and vice-versa. The CLTLoc-based approach that we pursue in this work allows
for a high degree of modularity in the generation of the formal model from
its high-level description, as it is easy to focus on the various aspects of the

16 F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, M. Rossi

model (e.g., precedences among stages, timing and resource constraints) one
at a time—each aspect corresponding to a different set of logic constraints. In
addition, as mentioned in Sect. 1, CLTLoc is the basis for a unifying approach
to the modeling of Big Data frameworks which tackles applications of different
natures (stream vs. batch processing).

In the domain of the analysis of Big Data frameworks, simulation, rather
than formal verification is usually the approach of choice. For example, [17]
considers the problem of computing the response-time of a Spark application
through simulation of a Stochastic Petri Net (SPN) model. The experimental
results demonstrate that the error affecting the simulation is low (less than
10%) when the simulated application has a high number of tasks and cores
(e.g., more than 12 cores and 200 tasks). For some configurations, however, an
error bigger that 30% is possible. In [9] an ad-hoc fast event driven simulator,
called dagSIM, has been used to simulate applications modeled as DAGs of nodes
representing the execution of batches of tasks whose average duration is described
with a stochastic distribution. DagSIM predicts the application response time
by means of a resolution procedure which is faster than the one based on SPN.
However, simulation-based approaches—unlike verification-based ones—cannot
offer guarantees about the feasibility or not of a desired deadline, and in particular
they cannot be used to determine the unfeasbility of a deadline.

As already mentioned in the introduction, an analogous—temporal logic-
based—approach was followed in [15] for the analysis of Storm applications.
This work and [15] are based on the same automated mechanism implemented
in the D-VerT tool. However, the formal model presented in [15] represents a
different computation paradigm, namely, the stream processing, by means of
CLTLoc extended with discrete unbounded counters. The analyses performed in
the two works are different as well: [15] aims at finding ultimately periodic traces
witnessing the presence of bottlenecks in the application, while this work focuses
on finding finite traces proving the feasibility of given deadlines.

6 Conclusion

This work proposed an approach and a prototype tool to formally verify the
feasibility of satisfying constraints over the response time of Spark applications
given a fixed amount of computational resources. An experimental evaluation
shows promising results in terms of accuracy of the model with respect to real
Spark executions on different use cases and settings.

Possible future works include: (i) undertaking a thorough analysis of the
complexity of the model and its effects on the verification times; (ii) improvements
of the verification performance by optimizing the formal model; (iii) a refinement
of the profiling phase aimed at providing good estimates of the execution times
against changes in the number of cores and partitions of the input dataset.

Acknowledgment This work has been partially supported by the DICE project
(Horizon 2020 project no. 644869) and by the GAUSS national research project
(MIUR, PRIN 2015, Contract 2015KWREMX).

On the Timed Analysis of Big-Data Applications 17

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoretical
Computer Science 354(2), 272 – 300 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

3. Baresi, L., Pourhashem Kallehbasti, M.M., Rossi, M.: How Bit-vector Logic Can
Help Improve the Verification of LTL Specifications over Infinite Domains. In: Proc.
of the 31st Annual ACM Symposium on Applied Computing. pp. 1666–1673 (2016)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (Mar 2005)

5. Bersani, M., Erascu, M., Marconi, F., Rossi, M.: DICE verification tool - final
version. Tech. rep., DICE Consortium (2017), www.dice-h2020.eu

6. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

7. Bradley, S., Henderson, W., Kendall, D.: Using timed automata for response time
analysis of distributed real-time systems. In: 24th IFAC/IFIP Workshop on Real-
Time Programming. pp. 143–148 (1999)

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In:
Proc. of the Int. World-Wide Web Conference (WWW). pp. 107–117 (1998)

9. Brito, A., Ardagna, D., Blanquer, I., Evangelinou, A., Barbierato, E., Gribaudo, M.,
Almeida, J., Couto, A.P., Braga, T.: D3.4 eubra-bigsea qos infrastructure services
intermediate version. Tech. rep.

10. Corbett, J.C.: Timing analysis of ada tasking programs. IEEE Transactions on
Software Engineering 22(7), 461–483 (Jul 1996)

11. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Infor-
mation and Computation 205(3), 380–415 (2007)

12. Henzinger, T.A.: The Theory of Hybrid Automata, pp. 265–292. Springer Berlin
Heidelberg (2000), https://doi.org/10.1007/978-3-642-59615-5_13

13. Krakora, J., Waszniowski, L., Pisa, P., Hanzalek, Z.: Timed automata approach
to real time distributed system verification. In: Proc. of the IEEE Int. Work. on
Factory Communication Systems, 2004. pp. 407–410 (Sept 2004)

14. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proc. of the Berkeley symposium on mathematical statistics and
probability. vol. 1, pp. 281–297 (1967)

15. Marconi, F., Bersani, M.M., Erascu, M., Rossi, M.: Towards the formal verification
of data-intensive applications through metric temporal logic. In: Proc. of ICFEM.
pp. 193–209 (2016)

16. Palencia, J.C., Harbour, M.G.: Schedulability analysis for tasks with static and
dynamic offsets. In: Proc. of the IEEE Real-Time Sys. Symp. pp. 26–37 (Dec 1998)

17. Perez, D., Bernardi, S., Merseguer, J.Z., Requeno, J.I., Casale, G., Zhu, L.: DICE
simulation tools - final version. Deliverable, http://www.dice-h2020.eu/resources/

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/D3.7_DICE-verification-tools-Final-version.pdf
https://doi.org/10.1007/978-3-642-59615-5_13
http://www.dice-h2020.eu/resources/

