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The assessment of power system reliability is generally divided 
into two aspects: system adequacy and system security [2]. System 
n societies. Consumers power system, i.e., it gauges the ability of a power system to supply 

Systems of electric power genera

play an extremely important role in

upply and transmission adequacy deals with steady-state operation and planning of the 
have grown to expect electricity to be available instantaneously and deliver electric energy to satisfy customer demand. System 

“with a flick of a switch”, because their lives depend on seamless 
electric power supply as an essential resource for communication, 
transportation, heating and cooling systems, lighting, and the 
powering of computers and electronics.

Providing electricity in a reliable fashion is a complicated and 
technically challenging task. It involves real-time assessment, co-
ordination and control of thousands of generating units, the 
transfer of electric power over networks of transmission lines and, 
finally, the delivery of electric power to the consumers. The high 
degree of inter- and intra-connectedness of networks for energy 
supply makes them vulnerable to global disruptions when exposed 
to hazards of various nature, from random/mechanical/physical/
material failures to natural events, intentional malevolent attacks, 
and human errors [1].
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security gauges the ability of a power system to respond to sudden 
changes or disturbances such as the loss of generators or trans-
mission lines. Power system security involves two aspects. The first 
is related to the ability of the system to withstand internal failures 
and sudden natural disturbances, including network overload, 
voltage problems, and instability problems. The second aspect is 
related to the ability of the system to avoid external interference, 
attack, or coordinated physical assault on the system. Traditionally 
system planners deal only with the former security aspect, i.e., 
problems arising from system operation, random failures of system 
equipment and natural disturbances [3].

The overarching goal of electric resource planning is therefore 
to ensure that sufficient resources, delivery capacity, and reliability 
characteristics exist to meet future demand requirements in a 
reliable and economic manner [4]. All resource planners allow 
some percentage reserve margin of capacity above their demand 
requirements to ensure reliability following unexpected system 
conditions and to meet state regulatory and regional requirements. 
Reserve margins are determined by calculating the capacity of 
supply resources, discounted to reflect the potential unavailability 
of the resources at high risk times [3].
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The analytical processes used by resource planners range from 
relatively simple calculations of planning reserve margins to 
rigorous reliability simulations that quantify system Loss of Load 
Expectation (LOLE) or Loss of Load Probability (LOLP) values. In the 
latter case, planners periodically check resource adequacy indi-
cated by the evaluated reserve margins through detailed reliability 
simulations that compare expected demand profiles against forced 
outage rates of generating units and maintenance schedules to 
yield LOLE or LOLP values [2,5]. Moreover, reliability calculations 
typically include probabilistic production cost simulations for 
meeting a specified demand (or chronological) curve from a spec-
ified generation fleet while incorporating the forced and unforced 
outage rates over the simulation period.

Deterministic approaches to power system security usually 
consider worst-case scenarios. The result of the analysis is most 
often qualitative and therefore difficult to use in a decision-making 
process. Deterministic methods also impose a hard limit on system 
operations. As a result, systems are often designed, planned or 
operated to withstand severe problems that have a low probability 
of occurrence.

Deterministic methods alone cannot adequately address the 
various transmission challenges such as the available transfer 
capability (ATC), long transmission and related voltage/reactive and 
security (stability) problems, transmission project ranking, trans-
mission congestion alleviation, uncertainty of weather, environ-
mental constraints and the competitive environment, uncertainty 
of customer load demand, uncertainty of equipment failure and 
operation.

Probabilistic approaches consider factors that may affect the 
performance of the system and provide a quantified risk assess-
ment using performance indices such as probability and frequency 
of occurrence of an unacceptable event, its duration and severity. 
These performance indices are sensitive to factors that affect sys-
tem reliability. Quantified descriptions of the system performance, 
together with external relevant factors such as environmental 
impact, social and economic benefits etc., enter into the decision-
making process and have an impact on operations, short-term 
planning and long-range planning [3]. These assessments are 
traditionally carried out by Monte Carlo simulation techniques [6e 
8], and by analytical methods [9]. Uncertainty and fast fluctuation 
of wind speeds strongly affect system planning and operation and 
call for effective reliability-based reserve expansion. With respect 
to this key issue, analytical methods are applied in Ref. [9], where 
universal generating functions are employed to quantify the impact 
of high wind power penetration on the system reserve and reli-
ability from long-term planning point of view. The impact of 
transmission network on customers’ reliabilities is also considered.

In this paper, the reliability of a power transmission network is 
addressed in the face of uncertainties related to consumption 
variability, ambient temperature variability, wind speed variability 
and the integration of large shares of electricity produced by wind 
energy. The proposed simulation framework combines classical DC 
power flow, sequential Monte Carlo sampling of the possible un-
certain system parameters, and a model for power line discon-
nection and reconnection due to line overloading beyond the rated 
capacity. Within this simulation framework, the uncertainties 
related to consumption, wind power generation, ambient temper-
ature and wind cooling of lines are identified, and they are quan-
titatively propagated to assess their impact on level II system 
adequacy [2] in terms of expected energy not served (EENS) and 
expected demand not supplied (EDNS). Based on the aforemen-
tioned modeling, it can be anticipated that the parameters whose 
uncertainty affects power system operations to a large extent, will 
have to be paid special attention during the design and manage-
ment of power systems. Finally, critical system states of wind
power generation and load request that may lead to a cascade of 
line disconnection and a large system blackout are pointed out.

The paper is organized as follows. In Section 2, the power grid 
DC load flow, the wind turbine and the line overload models which 
enter the stochastic simulation framework are detailed. In Section 
3, the uncertainties related to power system operations are iden-
tified and quantitatively represented. In Section 4, the developed 
framework is exemplified with respect to a modified version of the 
IEEE RTS 96 test network system [10], and reliability and vulnera-
bility considerations about network operations are provided. Con-
clusions are drawn in Section 5.

2. Stochastic modeling framework of a power transmission 
system

In order to study the effects of the uncertainties (related to the 
load and the renewable generation forecasts on one side, and to 
weather parameters on the other side) that introduce disturbances 
in the grid and may cause line outages due to overloads, an event-
based stochastic framework which simulates the operations of the 
electric network under variable conditions was developed. The 
proposed approach, inspired by the model introduced in Refs.
[11,4,12,13], combines: 1) a DC load flow algorithm that computes 
the distribution of power flow using a linear load flow approxi-
mation, 2) the contribution of wind generation power in a trans-
mission power grid, 3) a strategy for generation dispatch in order 
to balance the power production and consumption throughout the 
network, 4) the dynamics of line temperatures as function of the 
power flow and environmental conditions (wind speed and 
ambient temperature), 5) the event of automatic line disconnection 
when the rated line temperature is reached, and 6) the event of line 
reconnection.

The evolution of cascading events in their slow initiating stages 
is represented by transmission lines failures, caused by overheating 
due to excessive power flows. To describe this effect, the evolution 
of the line temperature and its dependence on electric flow re-
distributions was modeled using the model of heat conduction in 
rods of small cross section in which an electric current of constant 
intensity flows [12]. Further contributing to the evolution of cas-
cades is a line restoration model which prevents a damaged line to 
be put back in service before a fixed restoration time has passed. 
Random failures of transmission lines during normal operations 
may also contribute to the evolution of cascading events. The 
occurrence of a random failure can be straightforwardly introduced 
in the developed event-based stochastic model. However, given the 
small value of random failure rates for transmission equipment, 
multiple, independent line failures scarcely affect the evolution of 
the cascade process. At the same time, single line failures due to 
random events have little impact in an N-1 compliant transmission 
system. With no loss of generality, random failures of transmission 
lines during normal operations are not included in the model at its 
current stage for the sake of a clearer quantification of the other 
sources of uncertainty in the system.

The model of transmission line failure due to loading over their 
transmission capacity and following restoration, is part of the 
developed event-based stochastic framework which has also the 
ability to represent daily hourly changes in power requests at 
customer side of the system, ambient temperature and wind speed 
variations.

The stochastic framework is based on sequential Monte Carlo 
Simulation (MCS) in which the combination of load requests, 
ambient temperature, wind power generation, wind speed and 
network topology is a system realization. Due to the yearly peri-
odicity of the load request and the room temperature average 
values, each year is considered to be statistically equivalent to one



j

another and the results are provided on the basis of yearly 
averages. The simulation begins by establishing the load demand, 
the room temperature and wind speed values. If no line 
disconnection due to excessive heating occurs, the next event 
corresponds to the occurrence of the next hourly time step (“next 
hour” event) with updated load demand, ambient temperature and 
wind speed con-ditions. If the temperature of a line exceeds the 
critical temperature set for that line, a “line disconnection” event 
may occur before the scheduled “next hour” event. A DC load flow 
is performed following the occurrence of each event. The “line 
reconnection” event occurs after a time chosen a priori for each line 
that is disconnected.

After each event, we solve the DC load flow equations in order to 
determine the line temperatures and the type of the next event. The 
change time to the next event is computed as the minimum between 
the time to the next hour change, the minimum failure time among 
all lines and the minimum time to reconnection of all lines.

2.1. Formulation of the DC power flow

The electrical transmission system is assumed to operate 
through steady-state conditions, also during the evolution of major 
disturbances in the system. This approximation does not hold 
during the late stages of major disturbance events and it can be 
relaxed if voltage dependent phenomena are modeled during these 
events.

In order to determine the steady-state operating conditions of 
the power grid, the full nonlinear power flow equations that pro-
vide information about the voltage magnitudes and phases and the 
active and reactive power flows along each transmission line 
should be solved. Unfortunately, since the simulations involve 
numerous power flow solutions for a power grid system that 
evolves in time, solving repeatedly the full non-linear power flow 
equations becomes computationally prohibitive. Moreover, the full 
nonlinear equations pose very difficult nonlinear optimization 
problems. Therefore, the power-flow equations are linearized into 
the so-called DC power flow equations that connect the flow of real 
power to the voltage phases of the system buses, which results in a 
completely linear, non iterative, power flow algorithm [14].

The DC power flow can only calculate real (MW) flows on 
transmission lines but it gives no answers to what happens to 
voltage magnitudes or reactive (MVAR) flows. Assuming that all 
bus voltages phasors are 1.0 per u t in magnitude, and defining theni

matrix B by Bij ¼ �bij and Bii ¼ 
P 

bij, where bij is the susceptance
of the transmission line joining buses i and j and the summation is
over all nodes j connected to node i, the voltage phases qi are the 
solution of the linear power flow equation P ¼ BQ. Here, P is the 
vector whose N�1 components are the real powers injected at each 
node, except a reference node (slack node) for which the injected 
real power is computed from the power balance between total 
generation and total load. The vector Q is the vector whose com-
ponents are the voltage phases at each node in the network except 
the slack node which has phase zero. After solving the power flow 
equation for the vector Q, the flow of real power along each 
transmission line is computed from Pij ¼ bijðqi � qjÞ [15].

2.2. Line temperature model and overloaded-line failure

In order to model the failure of transmission lines due to loading 
beyond the rated transmission capacity, the problem of heat con-
duction is analyzed for rods of small cross-section [16] in which an 
electric current of constant intensity flows. For simplicity, the 
transmission line is assumed to be so thin that the temperature at 
all points of its cross-section is uniform. The transmission line is 
supposed to have constant cross-section area u, perimeter p, 

thermal conductivity K, electrical conductivity s, density r, specific
heat c, diffusivity k. It is also assumed that the heat flux across the
surface of the line is proportional to the temperature difference
between the surface and the surrounding medium and is given by
H(T�T0), where T is the temperature of the line, T0 is the temper-
ature of themedium andH is the surface conductance. The problem
of heat conduction, then, becomes one of linear heat flow in which
the temperature is specified by the time t and the distance x
measured along the transmission line. Balancing the total heat
generation in an element of volume bounded by the cross sections
at x and x þ dx and the heat in flow across the surface minus the
heat loss at the surface, we write the following heat equation,

vTðx; tÞ
vt

¼ k
v2Tðx; tÞ

vx2
þ aI2 � nðTðx; tÞ � T0Þ (1)

where n ¼ Hp=ðrcuÞ, a ¼ 0:239=ðrcu2sÞ, k ¼ K=ðrcÞ and I ¼ P/V is the 
current in the line measured in Amperes [16]. In order to esti-mate 
the surface conductance H, it is assumed that the loss of heat across 
the surface of the line is due to forced convection. When fluid (gas 
or liquid) at temperature T0 is forced rapidly past the surface of the 
line, it is found experimentally that the rate of loss of heat from the 
surface is given by H(T � T0), with a value of the coefficient H which 
depends on the velocity and the nature of the fluid and the shape of 
the surface [16]. For turbulent flow of air with velocity u 
perpendicular to a circular cylinder of diameter d, H ¼ 8 � 10�5(u/
d)1/2 cal/(cm2sec K).

Assuming that fluctuations in power flows along the trans-
mission lines propagate much faster than any heat flow transients, 
and since the heat source is equally distributed along the line, we 
can neglect the spatial variation in temperature along the line in 
order to get this simple equation describing the time evolution in 
the temperature of the line with the time evolution of the power 
flowing through the line:

vTðx; tÞ
vt

¼ aI2 � nðT � T0Þ (2)

If the line is initially at temperature T(0) and the power flowing
through the line has the constant value P, the line temperature
evolves according to this simple equation:

TðtÞ ¼ e�ntðTð0Þ � TeðPÞÞ þ TeðPÞ; (3)

where

TeðPÞ ¼ a

n

P2

I2
þ T0; (4)

is the equilibrium temperature that the line reaches at t / N. If at
some moment the power flow changes, we reset the clock and the
initial temperature, and use the same equation to describe the
evolution of line temperature starting from this moment on.

A transmission line failure due to excessive heating, followed by
line sagging and tripping, will occur if the power flow through it
exceeds the maximum line rating. For each line l, we denote by Tcl
the equilibrium temperature corresponding to a constant power
flow equal to the line rating Pmax

l , i. e. Tcl ¼ TeðPmax
l Þ. When the

power flow Pl through the line changes up to exceeding Pmax
l , the

line will start heating, with the temperature increasing towards
the equilibrium temperature corresponding to the new power
flow. Since this equilibrium temperature exceeds Tcl, at some time
tcl the line temperature will reach Tcl and the line will fail. The
failure time, tcl, measured from the moment when the grid to-
pology and the line flow has changed, can be easily deduced from
Eq. (3) and is given by



tcl ¼ 1
n
ln

Tcl � TeðPlÞ
Tð0Þ � T ðP Þ (5)
e l

Finally, in order to keep the heat equation linear, we have 
omitted on the right-hand side of Eq. (1) a cooling term that takes 
into account that each element of the surface of the road loses heat 
by radiation to the surrounding medium e and provides cooling 
when the wind is absent.

Fig. 1 shows the dynamics of the power flows (thin curve) and 
temperatures (thick curve) for one transmission lines during the 
simulated operations of a power grid. We can see that line temper-
ature reaches its threshold value at about t ¼ 8467 h due to 
excessive line flow (beyond scale in Fig. 1). When the threshold 
temperature is reached, the line is isolated and the electric flow 
rapidly drops to 0 MW, followed by line temperature decay to the 
room temperature by heat convection through the line surface. The 
line is assumed to be put back in service after 10 h and the electric 
flow is restored.

2.3. Wind turbine model

The power output from a wind turbine generator (WTG) is 
determined using the functional relationships linking the charac-
teristics of a WTG and the wind speed field [13]. This function is 
described by the operational parameters of the WTG. The parame-
ters commonly used are the cut-in wind speed Vci (at which the WTG 
starts to generate power), the rated wind speed Vr (at which the 
WTG generates its rated power) and the cut-out wind speed Vco (at 
which the WTG is shut down for safety reasons). Equation (6) [13] is 
used to obtain the power output of a WTG from wind speed (SWt):

PðSWtÞ ¼

8>><
>>:

0 0�SWt �Vci�
AþB*SWtþC*SW2

t

�
*Pr Vci�SW�Vr

Pr Vr �SWt �Vco
0 SWt �Vco

(6)

The constants A, B, C depend on Vci, Vr and Vco as expressed in
Eq. (7):

A ¼ 1
ðVci�VrÞ2

n
VciðVci þ VrÞ � 4VciVr

h
VciþVr
2Vr

i3o

B ¼ 1
ðVci�VrÞ2

n
4ðVci þ VrÞ

h
VciþVr
2Vr

i3 � ð3Vci þ VrÞ
o

C ¼ 1
ðVci�VrÞ2

n
2� 4

h
VciþVr
2Vr

i3o
(7)

Fig. 1 presents the output power of a WTG:
Fig. 1. Dynamics of power flow and temperature for a transmission line during
network operations.
The wind turbine generating unit operates in four phases: a first 
standby phase in which wind speed is lower than Vci ¼ 3 ms�1 and 
there is no power production; a second phase in which power 
production increases with a nonlinear trend in the wind speed 
range from Vci ¼ 3 ms�1 to Vr ¼ 12 ms�1; wind turbines usually 
reach the rated power at a wind speed between 12 ms�1 and 
16 ms�1, depending on the design of the individual turbine; finally, 
when the wind speed exceeds the rated wind speed, the wind 
generator is disconnected for protection purposes and the power 
production stops (cut-off phase). Hence, a wind turbine produces 
its maximum power, i.e. the rated power, within a certain interval 
that has its upper limit at the cut-out wind speed. Typical values of 
the cut-out wind speed range between 20 ms�1 and 25 ms�1 [17].

3. Identifying and classifying uncertainties in power 
transmission systems

One of the main purposes of a power system is to satisfy the 
demands of customer loads in a reliable and economical manner. 
Failing to properly address planning problems and constraints will 
eventually yield operation problems and, therefore, will affect po-
wer system reliability. Variability in demand, transmission and 
generation parameters, line ratings, extreme weather, and other 
environmental factors, introduce uncertainty in operation and 
planning of electric networks. In general, the degree of uncertainty 
increases significantly from a shorter time frame in system plan-
ning to a longer time frame in system operation. Failing to incor-
porate uncertainties in system planning may lead to an 
overestimation of safety margins and of system capabilities to 
maintain acceptable levels of reliability. Therefore, it is of para-
mount importance to identify and quantify the sources of uncer-
tainty in electric networks.

Indeed, the appropriate incorporation of the uncertainty and the 
presentation of its implications are widely recognized as funda-
mental components in the analyses of complex electric systems 
[18]. There are two different forms of uncertainty in power system 
reli-ability assessment [19]. On the one hand, aleatory uncertainty 
arises because the system can stochastically behave in different 
ways. Components’ failures and repair processes are random and 
are sources of aleatory uncertainty. On the other hand, uncertainty 
enters the system reliability assessment due to incomplete knowl-
edge and information on the system and its related phenomena, 
which leads to imprecision in the model representation of the sys-
tem and in the evaluation of the system parameters. This latter type 
of uncertainty is often referred to as subjective, epistemic, state-of-
knowledge [20]. For example, in the field of power system research, 
epistemic uncertainty has been dealt within the fuzzy power flow 
analysis [21,22], where the power injections of all loads and gen-
erations are regarded as fuzzy variables.

Table 1 summarizes the uncertainties identified in the electrical 
transmission system. In this study, we represent and propagate the 
uncertainties related to (I) consumption variability, (II) ambient 
temperature variability, (III) wind speed variability and (IV) wind 
power generation.

When the uncertainty in the variables is mainly due to their 
inherent randomness (aleatory uncertainty) and there is sufficient 
information to assign probability distributions and estimate 
their parameters, probabilistic modeling is embraced. The model 
output is represented by a function of n random variables, 
Y ¼ f ðX1; :::; Xi; :::; XnÞ, where Xi denotes the i-th probabilistic input 
variable with PDF pXi ðxÞ. The probabilistic model defines the 
probability distribution of the output random variable Y as a 
function of the probability distribution of the inputs. Such distri-
bution is evaluated analytically in simple cases, or by Monte Carlo 
Simulation (MCS) for more realistic settings.



Table 1
Uncertainty sources and their representation in the electrical transmission system.

Element Parameter Source of uncertainty Type of available information Uncertainty representation

Load bus Load value Consumption variability Historical data Probabilistic (Normal pdf)
Wind generating

unit
Output power Wind speed Wind speed variability Historical data Probabilistic (Weibull pdf)

Operation
parameters

Wind power variability Experimental data Probabilistic
(Normal pdf)

Weather Wind speed Wind speed variability Historical data Probabilistic (Weibull pdf)
Ambient temperature Temperature variability Historical data Probabilistic

(Normal pdf)
Transmission Line Line temperature Material properties incomplete

knowledge
Experts’ judgment Possibilistic
In power system studies, the MCS is typically embraced, given 
the large number of variables involved and their complex 
relationships, which make analytical models difficult or even 
impossible to derive [23,24]. The operative procedure of MCS calls 
for a large number m of iterations: at each e-th iteration, an input 
vector of values ðxe1; xe2; :::; xenÞ is sampled from the probabilistic 
density functions (PDFs) of the input variables and a realization of 
the output value ye is computed solving the system model. After m 
repetitions, an empir-ical estimate of the distribution of the 
system output is obtained.

3.1. Uncertainty representation of the power demand at load buses

The average hourly peak power demand follows the hourly load 
curve based on data from Ref. [10]. The curve accounts for customer 
power need variations from day to night and from season to season. 
An example of a daily load peak curve, in different days and sea-
sons, is given in Fig. 3.

Variability in the hourly peak power demand arise because power 
consumption by users is not exactly uniform and simulta-neous, i.e. it is 
assumed that the power needed at the customers side may experience 
stochastic fluctuation from the average hourly peak power demand. 
Following [2], it is assumed that load uncer-tainty is well described by a 
normal distribution. Therefore, the load hourly values are sampled from 
a normal distribution Nðm; s2Þ with mean m equal to the hourly peak 
load considered in the deter-ministic case (Fig. 3) and standard 
deviation s assigned according to the perceived load forecast 
uncertainty, such as 10% of the mean value, s ¼ 0:1 m [2].

3.2. Uncertainty representation of the ambient temperature

In order to compute the annual ambient temperature curve
(Fig. 4), the daily minimum and maximum values during one year
Fig. 2. Power curve of a WTG with the following parameters: rated power Pr of 3 MW,
cut-in speed, Vci, of 3 ms�1, rated speed, Vr, of 12 ms�1 and cut-out wind speed, Vco, of
25 ms�1.
in a specific location of the United States were collected and 
analyzed. A linear variation of the temperature values between the 
daily minimum and maximum values is assumed, with the mini-
mum and maximum peak registered at 5 a.m. and 4 p.m., 
respectively.

The uncertainty associated with the ambient temperature is 
assumed to be well described by a normal distribution. Therefore, 
the temperature hourly values are sampled from a normal distri-
bution Nðm; s2Þ with meanm equal to the hourly value from the 
annual ambient temperature curve (Fig. 4) considered in the 
deterministic case and standard deviation s equal to 5% of the 
mean value, s ¼ 0:05 m. This value has been identified by 
computing the standard deviations of the minimum of the median 
and of the maximum temperature values that are recorded within 
each month of the year by choosing the maximum among them.

3.3. Uncertainty representation of the wind speed

In order to compute the annual wind speed curve, the hourly 
values during a year in a specific location were collected and 
analyzed. In the deterministic case it is assumed, for each day of the 
year, that the wind speed is constant throughout the day and it is 
equal to the daily average value.

Following [25,26], the Weibull distribution has been used to 
represent the wind speed variability within a yearly time frame. It is 
shown that data collected at many locations around the world can be 
reasonably well described by the Weibull PDF if the collection time 
frame is not too short, i.e. longer than several weeks. Fig. 5 shows the 
distribution of the hourly wind speed collected at Bakersfield, CA, 
USA, and the Weibull distribution whose parameters are calculated 
by maximum likely estimation [25] based on the hourly values. From 
the collected data, it can be noticed that either the used anemometer 
has a lower bound of measuring at about roughly 6 ms�1, or a wind 
speed below 6 ms�1 is an unlikely event
Fig. 3. 24-h load curve [10]. First hour corresponds to 12 a.m.e1 a.m. interval of each 
day.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Ambient temperature curve used in the deterministic case. The maximum and 
minimum data values have been collected at the location of Bakersfield, CA, USA.

Fig. 5. Distribution of the wind speed values collected at Bakersfield, USA, and the 
corresponding Weibull distribution evaluated through maximum likelihood estima-
tion of the distribution parameters.

Fig. 6. Power output realizations for the wind regime described by the Weibull dis-
tribution of Fig. 5, and the performance characteristic and efficiency of the generator.
PdðxÞ ¼ PðxÞ þ ε (8)

where PdðxÞ represents the actual WTG power output, PðxÞ repre-
sents the deterministic output governed by the Eq. (6) and ε rep-
resents the variation of the power output with εwNð0; s

ε

2Þ. 
Following [30], sε ¼ 0:1 Pr, i.e. 10% of the rated power output. Since 
the uncertainty in wind speed is also modeled, the function for 
power curve actually contains two random parameters: the wind 
speed xwWeibull and the variation of the power output εwNð0; 
s
ε

2Þ.
Fig. 6 shows the power output realizations (gray points) of the 

WTG of Fig. 2 for the wind regime described by the Weibull 
distribution of Fig. 5, and the performance characteristics and

at the considered location. Moreover, it can be noticed that the 
Weibull approximations holds beyond the maximum of the dis-
tribution while it is a rough approximation for lower speed values 
[27]. Therefore, it may be expected that the wind speed values 
sampled from the Weibull distribution will be biased towards lower 
values if compared to the collected data. Nonetheless, this bias does 
not affect the modeling framework that is the main objective of the 
work.

3.4. Uncertainty representation of the wind power generation

Finally, the variability of wind speed propagates to the power 
output of wind generators. The power output of a WTG depends 
strongly on the wind regime as well as on the performance char-
acteristics and the efficiency of the generator. A fundamental 
assumption is made when considering the deterministic power 
curve (Fig. 2): the relationship between the wind speed and the 
output power is fixed, given the same type of WTG systems. In 
other words, the output power of the WTG is always the same at a 
specific wind speed. In reality, the output power for a fleet WTG of 
the same type always exhibits considerable variations even when 
they are operating at the same wind speed [28]. Moreover, Thir-
inger and Linders [29] analyzed the relationship between the wind 
speed and the output power based on a group of wind turbines. 
They found that the powers generated from individual wind tur-
bines of the same type actually vary even at the same wind speed. 
These research findings suggest that a probabilistic model incor-
porating the power variations may be more appropriate to char-
acterize the relationship between the wind speed and the actual 
output powers. Following [30], the actual output power Pd is pro-
posed as a random variable, which is characterized by the mean 
power output and its standard deviation:
efficiency of the generator described by Nwð0; s
ε

2Þ [29]. The wind 
turbine starts producing power when wind speed equals the cut-in 
speed of 3 ms�1: the majority of wind power generation 
concentrates during the nonlinear part of the output curve. This 
effect is consistent with the uncertainty in wind speed distribution.
4. Application to a modified version of IEEE RTS 96 [10]

The composite test system IEEE-RTS (Fig. 7) was modified to
exemplify the stochastic framework in Section 2 with respect to a
test system that reproduces the general conditions that exist in
actual power systems. The original RTS has a very strong trans-
mission network and a weak generation system. Following [31], in
this paper the original RTS is modified to create a more practical
system with a relatively weaker transmission network and a rela-
tively stronger generation system with respect to the original IEEE-
RTS test system.

The total installed capacity in the original RTS is 3405 MW in 32
generating units and the peak load is 2850 MW. In the modified
version of RTS, henceforth designated as the MRTS, the lengths of all
the 138-kV lines (lower part of the system in Fig. 7) are doubled
except for line 10 which is 25.6-km cable. The 230-kV lines (the
upper part of the system in Fig. 7) are extended as follows: the
lengths of lines L21, L22, L31, L38 are increased by a factor of three;
the lengths of lines L18 to L20, L23, L25 to L27 are increased by a
factor of four; the lengths of lines L24, L28 to L30, and L32 to L37 are
increased by a factor of six. To increase the utilization of the
transmission network, the load levels at all delivery points were



Fig. 7. The single line diagram of the IEEE RTS 96/MRTS scheme [10,31].
increased from 1.3 p.u. to 1.5 p.u. of the original values. The in-
crease of the load levels is balanced by doubling the generating 
systems capabilities at Buses 16, 18, 21, 22 and 23. The total 
number of generating units is now 44. The total system capacity is 
5320 MW and the peak load for the different load levels is given in 
Table 2.

The single line diagram of the MRTS is the same as that of the 
unmodified version of RTS shown in Fig. 7. Following the afore-
mentioned modifications, the transmission utilization in the MRTS 
is significant, as a considerable amount of power is transferred 
from the northern to the southern portion of the system. The 
modified system is used as a test bed to examine also the effects of 
uncertainties introduced by adding wind energy conversion 
systems (WECS) in two points of the transmission network: two 
additional 300 MW WECS are added through transmission lines at 
Buses 1 and 3 in the southern portion (138 kV) of the MRTS (Fig. 8).
Table 2
Load levels and corresponding peak loads for themodified power
grid MRTS.

Load level (p.u.) Peak load [MW]

1.3 3705
1.4 3990
1.5 4275
For each load level in Table 2, four different scenarios are 
assessed in order to observe the effects of uncertainties, and 
compared to the deterministic base case scenario in which uncer-
tainty is neglected. In order to keep the comparisons consistent, the 
deterministic base case scenario is characterized by hourly vari-
ability of load, hourly variable ambient temperature, and a mean
Fig. 8. The two 300 MW WECs at Buses 1 and 3 in the MRTS [31].



Table 3
Mean and standard deviation of the EENS for the deterministic base case and the 
four uncertain scenarios for the three load levels in Table 2.

Load level ¼ 1.3 (p.u.) Annual Energy Loss EENS [MWh]

Mean Standard deviation

Base case e e

Uncertainty in load demand 85.217 11.523
Uncertainty in ambient temperature 61.574 5.779
Uncertainty in wind speed and power 393.50 19.57
Uncertainty 438.99 17.52

Load level ¼ 1.4 (p.u.) Annual energy loss EENS [MWh]

Mean Standard deviation

Base case 2.0872eþ003 e

Uncertainty in load demand 2.6895eþ004 3.7602eþ003
Uncertainty in ambient temperature 3.6079eþ003 3.9286eþ001
Uncertainty in wind speed and power 1.0116eþ004 8.6805eþ001
Uncertainty 9.8776eþ003 7.4779eþ001

Load level ¼ 1.5 (p.u.) Annual energy loss EENS [MWh]

Mean Standard deviation

Base case 2.6769eþ004 e

Uncertainty in load demand 1.4636eþ005 1.5323eþ004
Uncertainty in ambient temperature 4.8056eþ004 2.2806eþ003
Uncertainty in wind speed and power 6.5395eþ004 1.9002eþ002
Uncertainty 6.6566eþ004 6.7159eþ002
wind speed value which follows the hourly average values, with no 
associated uncertainty; the additional generators of 300 MW each, 
are supposed to have no uncertainty associated to their power 
production.

Following the uncertainty models described in Section 3, the 
first three scenarios deal separately one uncertainty at a time, with 
uncertainties in load demand (scenario I), uncertainty in ambient 
temperature (scenario II), and uncertainties in wind speed and 
power generation (scenario III). The fourth scenario combines the 
effects of all the uncertainties (scenario IV). The sensitivity of the 
annual energy loss with respect to customers power requests, 
ambient temperature, wind speed, and wind power generation 
were quantified and reported in Table 3.

The annual energy loss is quantified by the Expected Energy Not 
Supplied, i.e. the average EENS index. The EENS index is an ade-
quacy index for the transmission level of the electric infrastructure 
[2]. It quantifies the annual electric energy that could have been 
provided by the generating system but that could not reach the 
customers due to bottlenecks in the transmission network.
Fig. 9. Representation of the hourly average loss of power due to uncertainties for the
load level ¼ 1.5. The average is considered over a period of 100 years. The inset rep-
resents the hourly peak load curve: the highest losses correspond to the highest de-
mand from the consumers.
Table 3 shows that the increase of the load level produces an 
increase in the system annual energy losses, both for the 
deterministic base case scenario and for scenarios that include 
uncertainties. When the load level is less than or equal to 1.3 p.u., the 
system experiences no power loss in the deterministic base case 
scenario. In particular, when the system assumes the lowest load 
level (1.3 p.u.), the major contribution to the annual power losses is 
determined by uncertainties in wind speed and wind power 
production. For larger load level values, i.e. 1.4 p.u and 1.5 p.u., 
uncertainties in the load demand cause the largest losses. Since 
stochastic simulations are considered over 100 years, it can be 
expected that the size of the energy losses that are registered in each 
year may vary consistently. Nonetheless, in all the scenarios, the 
standard deviation value of the EENS is one to two orders of 
magnitude smaller than its mean value. It is worth noting that scenario 
IV, that combines the effects of all the uncertainties, experiences an 
average EENS smaller than the average EENS of scenarios in which the 
different uncertainties are propagated separately. This is an effect of 
compensation of the uncertainties that lowers the average energy 
not served to the customers when considering the simultaneous 
impact of all the different sources of uncertainty.

In the following analysis, attention is focused on the largest load 
level value (1.5 p.u) because it is a good paradigm for systems with 
a high degree of utilization which operate in stress conditions, and 
represents the worst-case scenario in terms of energy not supplied. 
Fig. 9 shows the impact that all the identified uncertainties have on 
the power grid when load level is 1.5 p.u., quantified in terms of 
power loss. These estimates are average values based on 100 
samples, i.e.100 years of system operations were simulated for 
each scenario that includes uncertainties. The power loss is 
quantified by the Expected Demand Not Supplied, i.e. the average 
EDNS index for each hour of the year. The EDNS index is an 
adequacy index for the transmission level of the electric 
infrastructure [2]. It quantifies the power not supplied to the 
network and it is a suitable index when dealing with events. From 
Fig. 9, it can be noticed that power losses occur in a burst fashion 
during the year, with two loss peaks occurring at the very 
beginning of the year and in summer; the highest peak load occurs 
in the week prior to the end of the year. In order to understand this 
behavior, the EDNS is compared to the hourly peak load curve 
(inset in Fig. 9), which represents the sea-sonal load profile of 
system users. In the simulation, it is assumed that the first hours in 
the hourly peak load curve correspond to the first hours of the 
calendar year. It can be noticed that the highest values in EDNS 
corresponds to the periods in the year where power requests reach 

the peak value.

Fig. 10. Average power loss as a function of the overall demanded load at all the buses.
Each point is an average value evaluated in 100 simulated years.



Fig. 11. Hourly power loss as a function of the overall demanded load at all the buses.

Fig. 12. Cdf of ambient temperature distributions in the 4 quadrants. The black points 
represent the 95th percentile of each cdf.
In order to understand the causes for the demand not supplied 
in Fig. 9 and to devise operational safety margins which could 
prevent the occurrences of these losses, the global system param-
eter that guides the flow pattern in the system, i.e., the total load 
requested at all the buses, is investigated. In Fig. 10, the EDNS index 
is expressed as function of the total load requested at all the buses. 
It shows that there are small power losses, on average, until the 
demanded load reaches a threshold value of 3600 MW. Above the 
threshold value, the system loses power proportionally to the 
increasing load demand (Fig. 10).

The EDNS index captures the average power losses. It may be 
expected that there will be years with very few losses and years 
where losses are significant; rare events, such as cascades, may 
pass unnoticed in an average analysis. Therefore, the contribution 
to power losses of every hour load of each year of simulation is 
considered (Fig. 11). The obtained Demand Not Supplied reveals 
that the majority of losses take place when hour loads values are 
around or exceed the threshold value of 3600 MW (bottom right of 
Fig. 11).

Nevertheless, the overall load requests alone cannot explain the 
magnitude of the demand not served. Indeed, some load demands 
may cause huge power losses as can be seen in Fig. 11 (points at the 
top left and right), some other parameter must also influence the 
magnitude of the losses. Power loss values and power request 
values seem to subdivide the plane into the four quadrants detailed 
in Table 4.

Quadrants 1 and 2 encompass the same hour load range, but 
different power loss range and so do quadrants 3 and 4. Quadrants 
1 and 4 register the highest losses.

In order to understand which uncertain parameters affect the 
power losses in the transmission network, the cumulative distri-
bution functions for ambient temperature, wind speed and wind 
power output in the four quadrants are represented in Figs. 12e14.

In Fig. 12, the 95th percentile of each cdf is represented by a 
black point. Three of the four cumulative distributions of ambient 
temperature concentrate at low temperatures values, between 8 �C 
and 11 �C. These cdfs correspond to quadrants 1, 2 and 4 (Table 4): 
the large power losses (quadrants 1 and 4) occur during winter
Table 4
Subdivision of the Cartesian plane in Fig. 11 into 4 quadrants.

DNS [MW] Hour load [MW]

Quadrant 1 >600 <3200
Quadrant 2 <600 <3200
Quadrant 3 <800 >3200
Quadrant 4 >800 >3200
season, when also small losses occur (quadrant 2). It seems 
reasonable to exclude that hot ambient temperature contributes to 
the overheating of the transmission lines. Indeed, the cdf of quad-
rant 3 includes the majority of small losses which occur throughout 
the year: the temperature values for the cdf range from typically 
winter ambient temperature values, next to 0 �C, to summer hot 
ambient temperature values above 35 �C.

Fig. 13 represents the cumulative wind speed distributions. The 
95th percentile values concentrate in a very small range of wind 
speed values, between 11.7 m-1 and 11.9 ms-1. The 
uncertainty associated to the cooling of the overhead line does not 
contribute to the power losses.

Fig. 14 shows the cumulative distribution for the wind power 
generation. The cumulative distributions related to wind speed and 
wind power distribution show similar trends in the four quadrants, 
although the 95th percentile value corresponding to quadrant 4 is 
larger if compared to the other three 95th percentiles.

From Figs. 12e14, it can be concluded that no single parameter 
affects the magnitude of the power losses. Therefore, the combined 
effects of multiple system parameters on the power losses are 
investigated.

Cascades in the grid are triggered by overloaded lines: once a 
transmission line reaches the limit temperature (Tcl), the line is 
disconnected from the grid for a fixed amount of time during which
Fig. 13. Cdf of wind speed distributions in the four quadrants. The black points
represent the 95th percentile of each cdf.



Fig. 14. Cdf of wind power generation distributions in the four quadrants. The black 
points represent the 95th percentile of each cdf.

Fig. 15. Cumulative distribution function of load demand at hour 8443.
i.e. bus 17, 18, 21, 22, with the rest of the network.

its temperature drops under the Tcl value. The transmission lines 
that disconnect with larger frequency are line 25, line 26 and line
28; as can be seen in Fig. 7, these lines connect the upper four buses,

If the unavailability of a transmission line is defined as the 
percentage of time during the year that the line is disconnected 
from the system, it can be seen from Table 5 that, on average, line 
disconnections last longer when load levels are higher.

The disconnection frequency analysis reveals that the modified 
system with load level ¼ 1.5 p.u. is highly stressed and it experi-
ences a random sequence of disconnections of lines 25, 26, 27. 
When they are simultaneously disconnected, the system divides in 
two parts: an upper island including buses 17, 18, 21, 23 and a 
lower island composed by the remaining 20 buses (Fig. 7).

In the first island, composed by the upper part of the network, 
there are two generating buses, i.e. bus 21 and bus 22, that supply 
the only load bus left, i.e. bus 18: no losses or further 
disconnections are registered and the generation dispatch 
guarantees a balanced power supply in the island.

On the other hand, the lower part of the network has many load 
buses and a generating system that is not fit to supply enough 
power in response to the variable load demand. When requested 
loads in the sub-system reach large values, the demand cannot 
always be supplied by the generating units and some power de-
mand cannot be served.

In 100 years of simulation, the behavior of the system has been 
analyzed and attention has been focused on the same hours of the 
years when cascades occur only in year 30 and year 98, and on the 
same hours of years when no contingencies take place; years 2, 14, 
31, 42, 54 were taken as examples.

The starting event for the cascades is the disconnection of line 
18 always occurring at hour 8443 of the year; then, lines 20, 21, and 
29 disconnect in sequence, subdividing the lower part of the MRTS 
system in two smaller islands where other disconnections occur 
propagating the cascade all through the lower sub-system. Fig. 15 
shows that load demand in the hour during which the cascade 
occur, i.e. hour 8443, is large in year 30 and year 98, when the
Table 5
Unavailability of the disconnected lines for the different load levels of demand.

Unavailability
(Load level ¼ 1.3)

Unavailability
(Load level ¼ 1.4)

Unavailability
(Load level ¼ 1.5)

Line 25 0.0795 0.2109 0.3452
Line 26 0.2557 0.4188 0.5664
Line 28 0.0790 0.1969 0.3262
cascade occurs, but the power request is large also for the same 
hour in year 14 and year 42 when no cascade takes place.

Yet, from Fig. 16, it can be noticed that in correspondence of 
years 14 and 42, wind power generation at buses 1 and 3 is larger 
than it is in years 30 and 98, when cascades occur.

By the same token, years 2, 31 and 54 record a lower wind 
generation output than years 30 and 98 (Fig. 16) but no contin-
gencies occur because the corresponding load demand is small 
(Fig. 15).

Therefore, uncertainties in the wind conversion system may 
prevent the transmission in the power grid causing cascades. The 
DNS values in quadrants 2 and 3 are due to the lack of adequacy of 
the lower island, i.e. the generation cannot match the demanded 
power in hours of large power requests. Conversely, the DNS values 
in quadrants 1 and 4 are due to the incapability of the generated 
power of reaching the load buses, due to a cascade of line discon-
nections that isolates almost completely every load bus in the 
lower part of the network. The cascade of line disconnections is 
triggered by spatial unbalance between power requests and power 
generation, namely the wind power generation at buses 1 and 3 is 
not capable of meeting the local power request and power has to 
flow from the upper right part of the lower island causing line 
disconnection.

The interplay between wind power generation and overall po-
wer request in the lower island constitutes a probabilistic safety
Fig. 16. Cumulative distribution function for wind power output at hour 8443.



margin which has to be monitored in order to avoid line discon-
nection cascade propagation and to limit the demand not supplied
by the customers.

5. Conclusions

The issue of the uncertainty in composite generation and
transmission networks incorporating large-scale wind energy fa-
cilities and developed a simulation framework of analysis has been
addressed. Wind speed variability, wind power variability, ambient
temperature variability and load variability have been considered.
As test-bed for the exemplification of the framework, a
transmission-deficient setting has been created in the MRTS by
increasing the system load level and the generating capacity, to
represent general conditions that exist in actual power systems.
The impact that the identified uncertainties have on the reliability
of the electric infrastructure has been quantitatively analyzed:
variability in load and in wind power generation have the biggest
impact on the system.

The following are some of the main findings of this application:

e The combined, simultaneous effect of all the different sources of
uncertainty has a smaller impact on system safety in terms of
expected energy not supplied, than individual uncertainty
sources: this is an effect of compensation of the uncertainties,
which lowers the average energy not served to the customers.

e The increase in the transmission system utilization can lead to
cascade events if wind power output cannot sustain the load
demand. Indeed, large power requests in the system cause the
disconnections of the lines that link the upper part of the
network, in which massive generating units are concentrated,
and the lower part of the network, thus preventing the power
transfer to the area with the highest concentration of buses.
When the system tears apart, power request must be supplied
by local power generation. In this situation, wind power gen-
eration may not be capable of satisfying the local power request
causing cascade events of power line disconnections.

e More generally, the interaction betweenwind power generation
and the overall power request serves as paradigm for the
assessment of the safety margins of the system, because no
single parameter affects the magnitude of the power losses.
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