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ABSTRACT

 run a comparative study of the results of flume experiments and several dynamic models reproducing the effects of streamflow 
iability on biofilm (i.e. periphyton) temporal dynamics. During the experiment, two contrasting flow regimes, characterised by 
onstant and a time-varying discharge temporal sequence, and four different light conditions (from 90% to 27% transmission of 
ident light) were performed to test the effects of availability and temporal variability of light and streamflows on biofilm 
wth. Several model formulations, describing growth and loss dynamics, have been explored in order to assess the relevant 
cesses that controlled biofilm temporal pattern. Model identification criteria were used to identify the most suitable model, in 
ich the growth rate is found to be dependent on density-limitation dynamics coupled with a saturating light effect, while the 
s rate is linearly proportional to the discharge conditions experienced in the flumes. This model formulation proved able to 
roduce remarkably well the observed biofilm dynamics. In order to analyse the stationary behaviour of the best-performing 
del reproducing biofilm biomass dynamics, we also run a long-term simulation, where no significant biomass differences 
tween the constant and stochastic flow regimes were detected. 
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INTRODUCTION

Stream biofilms are a key component of stream ecosystems,
where they significantly contribute to benthic primary
production and ecosystem respiration (Battin et al., 2008).
Biofilms are aggregations of microorganisms, algae and
protozoa embedded in an extracellular polysaccharide
matrix, attached to surfaces. Biofilms are at the base of the
stream food chain (Saravia et al., 1998), being the principal
food resource for macroinvertebrates (McIntire, 1973; Allan
and Castillo, 2007).
Biofilm development and temporal dynamics are mainly

controlled by two different classes of abiotic factors:
resources, such as light intensity, nutrient concentration
and water temperature that regulate biomass growth, and
disturbances related to hydraulic conditions that contribute
to biomass loss (Stevenson, 1983; Biggs, 1996; Biggs et al.,
1998; Tuji, 2000; Hondzo and Wang, 2002; Allan and
Castillo, 2007). Therefore, biofilm biomass depends at
any time on the balance between these controlling
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variables. Although nutrient concentration and water
temperature are commonly considered relevant factors
controlling the metabolic activity of benthic organisms
(Allan and Castillo, 2007), light availability and hydro-
dynamics, among all abiotic variables, exert a key role on
stream biofilm dynamics (Biggs and Close, 1989; DeNicola
and McIntire, 1991).

More specifically, light intensity, which typically
changes along the fluvial continuum (Vannote et al.,
1980) as a function of vegetation coverage and water
turbidity (Julian et al., 2008), is known to control primary
production (Hill et al., 1995). Light-limitation effects can
be found at low light intensity, because a minimum light
availability is needed for biomass accrual because of
photosynthesis, even though phototrophic biofilms may
acclimate to dark conditions, showing an increasing photo-
synthetic efficiency at low light levels (Stevenson et al.,
1996). On the other hand, extremely high light conditions
may also limit biomass growth because of photo-inhibition
(Hill et al., 1995).

Discharge influences biofilm biomass, by either enhancing
nutrient availability with increasing flow velocity or
mechanically inducing biomass detachment (Biggs, 1996;
Stevenson et al., 1996; Biggs et al., 2005). Discharge, flow
velocity, average bottom shear stress and shear velocity have



been interchangeably considered the controlling hydraulic
variables of periphyton biomass development (Biggs et al.,
1990; Horner et al., 1990; Jowett and Duncan, 1990; Power
et al., 1995a, 1995b; Biggs, 1996; Saravia et al., 1998;
Hondzo andWang, 2002). For example, Horner et al. (1990)
argued that important biomass losses usually take place in the
presence of flow velocities greater than the mean velocity
under which the biofilm grew. Similarly, Hondzo and Wang
(2002) proposed a threshold shear velocity value of about
0.7 cm s�1 for periphyton biomass to suffer from significant
shear-induced losses. In these circumstances, cascade
bottom-up effects may affect higher trophic levels of the
river food chain, whose length mainly depends on discharge
temporal variability (Marks et al., 2000; Sabo et al., 2010).
Indeed, streamflow is considered the master variable that
drives fluvial ecological processes (Power et al., 1995b; Poff
et al., 1997; Richter et al., 1996; Richter et al., 1997).
Streamflow is the outcome of form and function of the river
basin, blending rainfall, climate, land use and geomorpho-
logical processes (e.g. Rinaldo and Rodriguez-Iturbe, 1996;
Rinaldo et al., 2006), whose intrinsic stochasticity is driven
by natural heterogeneity and the time-variable rainfall
patterns. Climate change and human activity may influence
and alter discharge magnitude and frequency, with conse-
quent effects on fluvial ecosystem spatial extension and food
chain length (Jackson et al., 2001; Allan and Castillo, 2007;
Poff et al., 2007; Botter et al., 2010; Sabo et al., 2010;
Kupferberg et al., 2012).
Several simulation models, taking into account the

effects of the aforementioned environmental factors (or a
combination of them), have been developed in order to
reproduce periphyton biomass dynamics in experimental
flumes or natural streams. Momo (1995), for instance,
provided a logistic growth approach to describe biofilm
evolution, which accounted also for flow-induced detach-
ment, while Saravia et al. (1998) presented a model on the
basis of light intensity, nutrients and flow velocity.
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Figure 1. Schematic representation of the experimental setup, with details on p
McIntire’s (1973) model analysed growth dynamics in
terms of light availability, water temperature and nutrient
concentration, whereas loss dynamics were governed by
scouring, flow velocity, water temperature and grazing
activity. However, the analysis and the modelling of the
effects of a time-varying discharge sequence on biofilm
growth in a controlled experiment are still lacking.

Here, we analyse the effects of light availability and flow
regime on biofilmbiomass dynamics obtained from a 2-month
flume experiment, in which two contrasting flow regimes and
four different light conditions were explored. Specifically, all
measured data refer to ungrazed conditions (i.e. absence of
macroinvertebrate grazing activity). Respectively, eight and
five different models describing growth and detachment
dynamics (i.e. 40 model combinations in total) have been
tested against measured data.

The paper is organised as follows. The experimental
campaign, the different models for biofilm growth and loss
due to detachment, the parameter calibration and model
selection procedures are described in the Material and
Methods section. Modelling results are presented in the
Results section, while a discussion and final remarks are
reported in the Discussion and Conclusions section.
MATERIAL AND METHODS

Experiment description

Experimental equipment. The experiments were conducted
at the WasserCluster Lunz, Lunz am See (Austria), from
mid-July to mid-September 2011. In total, 24 outdoor
flumes, each 3m long, 0.1m deep and 0.05m wide, with a
slope of 0.3%, operated in a once-through flow mode, were
used to perform biofilm growth under two alternative
discharge treatments and four different light regimes, with
three replicates for each treatment combination (Figure 1).
Half (i.e. 12) of the flumes experienced a time-varying
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discharge sequence, Q(t), derived from a stochastic process
that reproduces relevant streamflow dynamics in a river basin
(Botter et al., 2007c, Section 2). The remaining 12 flumes,
characterised by a constant flow regime equal to the average
discharge of the stochastic process, were used as controls.
Light availability [L, expressed as photosynthetically active
radiation (PAR)], as a major control on biofilm growth, was
manipulated using four distinct lighting filters, which
provided different light intensities without changing light
colour. In particular, colour correction Neutral Density foils
226, 298, 209 and 210 were placed on the top of the flumes in
order to perform light levels equal to 90%, 65%, 50% and 27%
transmission of incident PAR, respectively. Flumes were thus
characterised by average (�standard deviation) dailymaximal
intensities of PAR of 1130� 220, 864� 195, 625� 141 and
359� 81mEm�2 s�1 in the respective light treatments, lying
within the range of maximal daily PAR values (from 131 to
1753 mEm�2 s�1, 1142� 384 mEm�2 s�1). The random
placement of lighting foils was identical for both discharge
treatments. Low-porosity unglazed ceramic tiles,
47.6� 0.2mm long and wide, were placed at the bottom
of each flume as a substratum for biofilm growth (Lamberti
and Resh, 1985).
Raw and unfiltered water was supplied through a

submerged pump, with temperature ranging from 10.5 to
13.9 �C. A header tank (4.3m3) received the pumped water
that flowed into two pipes, one for each discharge treatment
(external diameter 90mm – Diameter Nominal 80mm,
d90-DN80) placed at the bottom of the tank, and then
entered two intermediate tanks (each 0.35 m3) that supplied
the 12 + 12 flumes. The water levels of the intermediate
tank and corresponding flumes were equal in order to
guarantee identical hydraulic conditions for all flumes
belonging to the same discharge treatment. To enhance
uniform flow conditions and sustain water level, three nets
were located in correspondence to the flume inlet, 1.75m
downstream, and in correspondence to the flume outlet.
The flume outlet was open, and water freely flowed into a
small channel. All the components of the experimental
setup were covered to prevent incoming rainfall, leaves
and insects.

Streamflow probability distribution function and experi-
mental discharge treatments. The discharge sequence used
during the experiment is a Monte Carlo realisation of a
stochastic process, which has been chosen to mimic the
relevant streamflow dynamics in river basins. In particular,
the streamflow dynamics are assumed to be driven by
Poissonian random jumps representing the streamflow
increment produced by rainfall events capable of mobilising
the underlying drainage catchment and by exponential
decays representing the recessions in between the events
(Botter et al., 2007c). The above stochastic scheme is based
on the following assumptions:

1. Daily rainfall events are modelled as a Poisson process
with frequency lP (T�1);

2. daily rainfall depths are exponentially distributed with
mean a (L);
3. daily soil moisture dynamics in the near-surface soil
layer are governed by infiltration, soil moisture
dependent evapotranspiration and instantaneous deep
percolation events effectively contributing to streamflow
production;

4. the sequence of events contributing to streamflow
production are modelled as a Poisson process with
frequency l< lP (T�1);

5. the volumes released from the near-surface soil layer are
then released from the soil to the channel network
according to an exponential response function with
mean response time 1/k (T).

The probability distribution of streamflows, Q (L3 T� 1),
resulting from the above model can be analytically
expressed as (see Botter et al., 2007b, 2007c, for further
details):

P Qð Þ ¼ akAð Þ�1

Γ l
k

� � Q

akA

� �l
k�1

e�
Q
akA (1)

where A (L2) represents the catchment area and Γ(x) is the
complete gamma function of argument x. The streamflow
pdf given by Equation (1) has been proved able to
reproduce remarkably well the observed behaviour of
many catchments throughout the world, characterised by
different climatic and morphologic attributes (Botter et al.,
2007a, 2008; Ceola et al., 2010). For our experimental
campaign, conducted in a pre-alpine area (Oberer Seebach),
we selected the parameter values aiming at the reproduction
of typical features of pre-alpine streams. Therefore, we have
chosen the values l = 0.6 day�1 and k = 0.5 day�1. In
addition, given that streamflow magnitude depends on the
product aA (L3), we chose a plausible value of this quantity in
order to generate a discharge temporal sequence that fitted the
flume dimensions (i.e. that produced viable shear velocities
and a reasonable range of water depths that allowed proper
measure and avoided scale effects). A constant discharge
treatment, with magnitude equal to the average of the
stochastic flows, was used as a control. To measure and
implement the temporal discharge sequences, a propellerflow
metre and a ball valve were placed in each pipe. In particular,
a computer-controlled electric ball valve was used to realise a
controlled stochastic discharge sequence, while a manual ball
valvewas used to regulate the constant discharge. To this aim,
a suitable computer-controlled system was developed using
National Instruments LabVIEW™ software.
Biofilm growth experiment. Biofilm biomass was measured
as total organic matter, expressed as ash-free dry mass
(mg cm�2). One sampling tile per flumewas taken in intervals
of 2 to 7 days and then replaced by a new white tile. Biofilms
on each sampled tile were completely removed using sterile
razor blades. The suspensions of scraped biofilm and MilliQ
water were vortexed and sonicated and subsequently filtered
onto pre-ashed (450 �C, 5 h) glass-fibre filters (Whatman) to
determine biofilm organic matter.



Additional experimental measurements. Measurements of
flume water level and temperature and header tank water
temperature were taken on a daily basis. Flow profiles in
the test areas were carefully measured, and uniform flow
conditions (i.e. constant water depth) were insured.
Measurements of cross-sectional average bottom shear
stress exerted on the wetted perimeter were derived from
flume discharge and water level. In the uniform flow
conditions maintained here, the shear stress, t, can be
expressed as follows:

t ¼ gwRhs (2)

where gw (MT�2 L�2) is the specific weight ofwater;Rh (L) is
the hydraulic radius, defined as the ratio of wetted area and
perimeter (in the case at hand of rectangular cross section,
Rh =By/(B+2y), where B (L) and y (L) are the flume width
and depth, respectively); and s is the constant flume slope.
The resulting relation between flume discharge, Q, and
bottom shear stress, t, reads as

t ¼ aQd (3)

where the exponent d= 0.33 is derived from the experimental
rating curve. Table I reports the performed hydraulic
conditions in the flumes for both discharge treatments
expressed in terms of discharge Q, water depth y, flow
velocity v, shear stress t, shear velocity u* (i.e. u� ¼

ffiffiffiffiffiffiffiffi
t=r

p
,

where r is the fluid density) and Reynolds number Re.

The model

Biofilm biomass temporal dynamics was tested against a set
of simulation models, aiming at the identification of possible
controlling factors. Models were expressed by the basic form
Table I. Flume hydraulic conditions, expressed in terms of discharge
Reynolds number, for bo

Stochastic

Discharge, Q (l s� 1) 0.1
Water depth, y (cm) 1.3
Flow velocity, v (cm s� 1) 18.5
Bottom shear stress, t (Nm� 2) 0.2
Shear velocity, u* (cm s� 1) 1.5
Reynolds number, Re 978

Table II. Definition of the eight models describing the growth

Model name Equation

R1 r0
R2 r0L

R3 r0L
kLþL

R4 r0Le�kLL

R5 r0(1� r1B)

R6 r0L(1� r1B)

R7 r0L
kLþL 1� r1Bð Þ

R8 r0Le�kLL 1� r1Bð Þ
dB
dt

¼ rB� lB (4)

where B is the biofilm biomass; r represents the net biofilm
growth rate, embedding also intrinsic biomass decay and
discharge-independent detachment; and l represents the
hydraulic-induced loss rate.

For our modelling analysis, we hypothesised that biofilm
dynamics may be mainly influenced by the following three
controlling factors:

1. light availability, influencing photosynthetic activity of
biofilm algae;

2. space limitation in the flumes for biofilm growth,
possibly driving density-dependent growth processes;

3. hydraulic conditions, controlling biomass loss.

Water temperature and nutrient concentration influences
on biofilm dynamics have not been taken into account in
the model formulation because of negligible temporal
variation of these two abiotic controlling factors during the
experiment.

Following the literature on biofilm growth dynamics (e.g.
McIntire, 1973; Momo, 1995; Uehlinger et al., 1996; Saravia
et al., 1998), biofilm growth can be expressed as follows
(Table II): (i) a Malthusian model, characterised by an
exponential increase of biomass through time (model R1);
(ii) a light-dependent growth process (models R2–R4); (iii) a
density-dependent growth process (model R5); and (iv) a
density-dependent and light-dependent growth process,
where equations R2–R4 have been coupled with R5 (models
R6–R8). In particular, the influence of light availability on
biofilm growth has been expressed following three alternative
, water depth, flow velocity, bottom shear stress, shear velocity and
th discharge treatments.

flow treatment Constant flow treatment

2–0.51 0.21
2–3.13 1.82
9–32.70 22.96
6–0.42 0.32
9–2.02 1.76
8–40 888 18 408

rate, r, used to reproduce measured biofilm biomass values.

Description

Malthusian

Light-dependent: linear relation

Light-dependent: Monod-type equation

Light-dependent: Steele’s equation

Logistic (density-dependent)

R2 with logistic density dependence

R3 with logistic density dependence

R4 with logistic density dependence



formulations, also extensively applied in the analysis of
phytoplankton (Ensign et al., 2012) and sea-grass (Carr et al.,
2012) dynamics: a linear relation (model R2), a Monod-type
equation (model R3), where kL is the half saturation
coefficient corresponding to the light availability at which r
is one-half of itsmaximum, and Steele’s equation (model R4),
able to model the effect of possible photo-inhibition of
biofilm growth at high incoming light radiation (Steele, 1962;
Steele and Baird, 1962).
Biofilm detachment rate, as a function of hydraulic factors,

was simulated by means of four alternative equations
(Table III), some of which already employed by Saravia
et al. (1998) and Fovet et al. (2010). More specifically, we
assumed that the detachment rate may be proportional to
discharge, following either a linear (model L2) or a power-
law relation (model L3), or to shear stress, following either a
linear (model L4) or a threshold-dependent power-law
relation (model L5). In the latter case, with a formulation
similar to sediment erosion models, biomass removal occurs
only when a critical shear stress, equal to the biofilm
resistance capacity, is reached. Note that the absence of
hydraulic-induced biomass detachment is taken into account
in model L1. We also considered a constant, discharge-
independent loss relation, but in this case, the model
parameters were strongly correlated. We thus decided to
discard this class of models from our analysis. Overall, we
simulated 40 different model combinations.

Parameter calibration and model selection

For each model, we estimated a unique set of parameters in
order to reproduce as close as possible the time series of
biofilm biomass obtained under all light and discharge
treatments. Parameters were calibrated using an optimization
approach based on Markov chain Monte Carlo (MCMC)
methods. The MCMC algorithm allows for the sampling of
the posterior probability distribution function of a desired
probability distribution, which, in our case, is the joint
probability distribution of the set of calibrating parameters
(Gilks et al., 1995). In particular, the differential evolution
adaptive Metropolis (DREAM) algorithm (ter Braak and
Vrugt, 2008) was adopted in order to simultaneously run
multiple chains in parallel to completely explore the
parameter space and flexibly adjust the scale and orientation
of the jumping distribution using differential evolution
(Storn and Price, 1997) and a Metropolis–Hastings update
Table III. Definition of the five models describing the loss rate, l,
used to reproduce measured biofilm biomass values.

Model name Equation Description

L1 — No external loss
L2 l1Q Discharge-dependent:

linear relation
L3 l1Q

� Discharge-dependent: power law
L4 l1t Shear stress-dependent:

linear relation
L5 l1(t� tc)

� Shear stress-dependent:
power law with threshold
step (Metropolis et al., 1953; Hastings, 1970). More
specifically, we applied theDREAMZS variant of theDREAM
algorithm, which in addition uses (i) sampling from past states
examined by theMarkov chains and (ii) a snooker update step
(in addition to parallel update steps) to maximise the diversity
of candidate points (Vrugt et al., 2009). Uninformative flat
prior distributions of parameter values were initialized before
running O 105

� �
iterations until convergence.

The goodness of each single simulation was evaluated as
the residual sum of squares (RSS) between the measured
and modelled biofilm biomass for all light and discharge
treatments as follows:

RSS ¼
Xn
i¼1

Bi � B̂i

� �2
(5)

where Bi and B̂i are the measured and simulated biofilm
biomass values, respectively, and n=312 is the total number
of data points (13 sampling days� 4 light regimes� 2
discharge treatments� 3 independent replicates).

To compare the performances of the 40 candidate
models describing the observed biofilm biomass dynamics,
we used Akaike’s information criterion (AIC) (Akaike,
1974). AIC is a model-selection approach that balances the
goodness of fit and the complexity of the model, expressed
as the number Y of free parameters [i.e. number of
parameters for each model, plus one residual variance
parameter (Burnham and Anderson, 2002; Corani and
Gatto, 2007)]. For each best-fit model, we quantified

AIC ¼ 2Yþ nln
RSS
n

� �
(6)

Because AIC values cannot be individually interpreted,
being a function ofY, they need to be rescaled with respect
to the lowest AIC values (i.e. AICmin, which identifies the
best model). Therefore, for each model, we calculated

ΔAICi ¼ AICi � AICmin (7)

where AICi is the AIC score correspondent to model i.
Increasing ΔAIC values identify less plausible models. A
critical ΔAIC threshold, above which models have no more
applicable evidence, is usually fixed around 10 (Burnham
and Anderson, 2002).
RESULTS

The ability of the 40 candidate models to reproduce the
observed data was analysed through the AIC test (see
Table IV for number of calibrated parameters, root mean
square error RMS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSS=n
p

values, AIC and ΔAIC scores
for each model). In particular, an interesting trend has been
noted: Growth equations played a major role in describing
biofilm dynamics compared with loss functions. The
calibrated models could be thus easily pooled as a function
of the growth equation, as shown in Table II. According to
AIC test results, light-dependent and density-dependent
growth functions are the best performing models for biofilm



Table IV. Summary of calibration results for the 40 tested models.

Growth model Loss model No. of parameters RMS AIC ΔAIC

R7 L2 4 0.0104 �914.75 —
R7 L1 3 0.0105 �914.09 0.66
R7 L3 5 0.0104 �913.52 1.23
R7 L4 4 0.0105 �911.84 2.91
R7 L5 6 0.0105 �908.09 6.66
R8 L1 3 0.0110 �888.24 26.51
R8 L3 5 0.0110 �886.78 27.97
R8 L2 4 0.0110 �885.98 28.77
R8 L4 4 0.0110 �885.60 29.15
R8 L5 6 0.0110 �882.24 32.51
R5 L1 2 0.0116 �861.20 53.55
R5 L2 3 0.0116 �861.14 53.60
R5 L3 4 0.0116 �859.69 55.06
R5 L4 3 0.0117 �859.03 55.72
R5 L5 5 0.0116 �855.22 59.53
R3 L5 5 0.0129 �802.62 112.13
R3 L4 3 0.0135 �784.37 130.38
R3 L3 4 0.0137 �772.22 142.53
R3 L2 3 0.0138 �769.97 144.78
R3 L1 2 0.0143 �753.96 160.79
R1 L5 4 0.0144 �748.07 166.68
R1 L4 2 0.0145 �747.40 167.34
R1 L2 2 0.0151 �728.23 186.52
R1 L3 3 0.0150 �728.02 186.73
R1 L1 1 0.0152 �725.99 188.76
R4 L5 5 0.0151 �719.61 195.14
R4 L3 4 0.0153 �715.05 199.70
R4 L1 2 0.0158 �704.62 210.13
R4 L2 3 0.0158 �702.43 212.32
R4 L4 3 0.0158 �702.29 212.46
R6 L1 2 0.0194 �597.06 317.69
R6 L2 3 0.0194 �594.49 320.26
R6 L4 3 0.0194 �593.91 320.84
R6 L3 4 0.0194 �593.06 321.69
R6 L5 5 0.0194 �591.06 323.69
R2 L5 4 0.0290 �383.95 530.80
R2 L1 1 0.0296 �379.98 534.77
R2 L3 3 0.0294 �379.03 535.72
R2 L2 2 0.0296 �377.60 537.15
R2 L4 2 0.0296 �377.31 537.44
growth. Light availability seems likely to be a limiting factor 
during the initial growth phase, while density-dependent 
effects, governed by space limitation in the flumes, may 
become important afterwards. On the basis of ΔAIC scores, 
density-limited dynamics coupled with a Monod-type 
equation (R7), describing light influences on biomass growth, 
simulated remarkably well the data. Indeed, ΔAIC < 10 (i.e. 
critical threshold for model support) for all candidate models 
in this group. The alternative light-dependent and density-
dependent group of models (R8) based on Steele’s equation 
was characterised by slightly higher RMS values than those 
of R7 and consequently presented greater ΔAIC values. 
Dynamic models based uniquely on density-dependent growth 
effects (R5) worked quite well in terms of RMS, while ΔAIC > 
50. The Malthusian (R1) and light-limited models, following 
either a Monod-type (R3) or Steele’s (R4) equation, showed 
increasingly lower performances in terms of ΔAIC scores. Both 
light-dependent and light-dependent and density-dependent 
growth functions based on a linear relation for
light (R2 and R6, respectively) showed particularly high
values of RMS and ΔAIC. In either case, the model was not
able to reproduce the observed biomass for all light and
discharge treatments: A good fit was observed for the darkest
condition, whereas for the other performed light regimes, the
model sensibly overestimated the data. Concerning the
description of biomass loss dynamics, within the same group
of growth ratemodels, all the adopted loss functions showed a
comparable behaviour, thus highlighting no clear distinctions
among them. Quite interestingly, the threshold-dependent
shear stress equation (L5) was the lowest performing loss
function for all density-dependent growth models, while this
equation showed the best results for all the remaining growth
models.

Model parameters for the first-ranked model combination
(R7–L2), and their probability distribution function, median
and 5–95 percentiles, obtained from the lastO 104

� �
iterations

of the Markov chain, are shown in Figure 2. In order to
perform a sensitivity analysis of the model outcomes with
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Figure 3. Simulation results from the first-ranked model combination R7–L2 against measured data, for each light and discharge treatment. The black
solid line shows the behaviour of the best-set of model parameters, while the grey area quantifies the uncertainty related to parameter estimation (here
represented by the minimum and maximum range of model simulations). The grey dashed line represents the biofilm carrying capacity, determined from
Equation (8), where Q=<Q(t)>. Plots from a to d refer to the constant discharge treatment from 90% to 27% transmission of incident light.
Analogously, plots from e to h refer to the stochastic discharge treatment. See also Supplementary Figure S1 in which the simulation results and the

measured data are reported on a semi-log plot, thus revealing a non-exponential growth trend.
respect to variations of parameter values, from each set of 
explored parameters, sampled from the posterior probability 
distributions, the corresponding model simulations were 
evaluated. The minimum and maximum ranges of model
simulations were consequently derived. Figure 3 reports
measured biofilm biomass values (three replicate flumes with
the same light and discharge treatments for each sampling
day) and model outputs for the performed discharge and light
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treatments. The black solid line shows the performance of the
best set of model parameters, while the grey area quantifies
the uncertainty related to parameter estimation (here
represented by the minimum and maximum range of model
simulations).
Biomass values from the flume experimental campaign

began to exhibit a saturating trend only towards the end of the
experiment, moving slowly towards carrying capacity. The
analytical expression for biomass carrying capacity can be
derived according to our model formulation as follows.
By substituting the expressions for growth and loss models
(i.e. R7 and L2 relations, respectively) into Equation (4),
the nontrivial equilibrium point (i.e. dB/dt = rB� lB = 0, for
t!1), which identifies the biofilm carrying capacity, is
obtained as

B t ! 1ð Þ ¼ 1
r1

� l1Q

r0r1L= kL þ Lð Þ ; (8)

expressed as a function of light and discharge conditions. 
The carrying capacity values, evaluated for each light 
treatment from Equation (8), assuming Q = < Q(t) >, are
reported in Figure 3.
In order to analyse the stationary behaviour of the biofilm 

dynamic model, an extended discharge temporal sequence 
with the same streamflow probability distribution, p(Q), as 
the one used for the experimental stochastic discharge 
treatment, was generated and used as input for the biofilm 
dynamic model. Note that the parameters of p(Q) were
assumed to be constant over time, thus neglecting possible 
seasonal patterns in streamflow sequences. Analogously to 
the flume experiment, the average value of the stochastic 
discharge sequence was used to generate a long-term constant 
discharge regime. From the long-run simulation, for 
both discharge treatments and for light conditions ranging 
between 90% and 50% transmission of incident PAR, nearly 
120 days were necessary to approach the stationary state 
(i.e. carrying capacity). The darkest light regime (27%
transmission) required almost 30 days more (i.e. 150 days). 
Discharge temporal variability, embedded in the dynamic model
through a linear relation, led to biofilm biomass fluctuations
around the biomass value observed under the constant
discharge regime. As shown in Figure 4, where part of the
long-term discharge and corresponding biomass time series
are reported, the temporal fluctuations of flume discharge
are reflected in the biomass temporal pattern. The
numerical probability distribution function of biofilm
biomass at equilibrium (i.e. for t!1) correspondent to
each light and discharge treatment was also assessed. As
displayed in Figure 4, the biomass pdfs for the stochastic
discharge regime are almost comparable for their shape and
range interval, although shifted towards lower biomass
values with decreasing light availability. No significant
biomass differences emerged between the two discharge
regimes. In particular, the differences between the
equilibrium biomass value under the constant discharge
regime and the average biomass value obtained from the
stochastic discharge sequence were negligible among all
light treatments (i.e. less than 0.1%), possibly because of
the selected constant flow regime that was equal to the
average value of the stochastic process.
DISCUSSION AND CONCLUSIONS

Bulk growth of benthic biofilms in experimental flumes
was used to test a set of models, simulating growth
dynamics. Forty different models have been defined for
describing growth and loss dynamics. The MCMC
algorithm has been applied to find the best set of parameter
values for each model combination, and the AIC test has
been performed in order to rank the models in terms of
performances. Key processes controlling biofilm growth
dynamics have been pointed out: Light and space limitation
effects influenced the growth phase, while the hydraulic
environment enhanced biomass losses because of detach-
ment. Concerning the description of growth dynamics, we
found that a linear light-dependent growth function could
not properly describe photo-inhibition and photo-limitation
processes measured during our experiment, whereas either



a saturating (Monod-type equation) or a hump-shaped 
relation (Steele’s equation) seemed to perform comparably 
well. Analysing biomass loss dynamics, no clear differences 
among the performed loss models were found, probably 
because of biofilm suitability to experimental flow conditions 
and limited range of explored discharges. More specifically, 
given the limited experimental range of performed 
discharges, comprised between 0.1 and 0.5 l s� 1, it is likely  
that biofilm was able to adapt and acclimate, by structural 
differentiation and viscoelastic properties, to the hydraulic 
conditions in the flumes, which did not impose extreme 
discharge events. The experiment was designed to avoid the 
lowest values of discharge, which are associated to very 
limited stages and would have induced an increased biofilm 
mortality. Moreover, the similar performance of the tested 
loss functions may stem from the fact that our experimental 
data did not yet show clearly the asymptote of the saturating 
behaviour associated with the balance of growth and loss. 
Therefore, alternative longer-lasting experimental designs 
should be exploited in the future in order to properly analyse 
hydraulic-induced biofilm loss dynamics and possibly 
characterise relevant influences of flow regime on stream 
ecosystems. However (see Supplementary Figure S1), the 
limits to growth were observed, and thus, the confidence in 
the predictive power of all models is granted.
The numerical analysis of the long term discharge 

sequence revealed interesting growth patterns. Whereas at 
low discharge values biofilm growth is enhanced, or at least 
preserved, discharge peaks induce a biomass decrease. 
Biofilm temporal fluctuations are slightly damped with 
respect to discharge variability, showing that biofilm does 
not immediately respond to discharge variations. Indeed, 
we found that the interplay between discharge and biofilm 
growth takes place at different temporal scales, of the order 
of hours for discharge and days for biofilm growth 
processes. We acknowledge that these considerations are 
specific to the case at hand, as biofilms in natural stream 
ecosystems are frequently disturbed by grazers and high 
discharge events.
The experimental and theoretical framework put together 

here, where the role of natural streamflow and light 
variability on stream biofilm dynamics has been analysed, 
is designed to handle all possible generalisations. In 
particular, from the bulk of our results, it is suggested that 
the definition of environmental flows suited to preserve 
riverine ecosystem services should not be based simply on 
the compliance of minimum flow requirements, as 
commonly held, but should rather take properly into 
account the natural variability of discharges within the 
range actually experienced by the river.
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