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Abstract The lightweight design of a thin-walled tube under torsion is addressed
in the paper. A multi-objective optimization approach is adopted to minimize the
mass while maximizing the structural stiffness of the thin walled tube.

Constraints on available room (maximum diameter), safety (admissible stress),
elastic stability (buckling), minimum thickness (forced by manufacturing technolo-
gies) are included in the problem. The analytical solution of the multi-objective
optimization problem is obtained by applying a relaxed formulation of the Fritz
John conditions for Pareto-optimality.

Relatively simple analytical expressions of the Pareto-optimal set are derived
both in the design variables (tube diameter and wall thickness) and objective func-
tions (mass and compliance) domain. Simple practical formulae are provided to
the designer for the preliminary design of thin-walled tubes under torsion. Finally,
the comparative lightweight design of tubes made from different materials is pre-
sented and an application of the derived formulae to a simple engineering problem
is discussed.

Keywords multi-objective optimization · analytical solution · thin-walled tube ·
twisted shaft

1 Introduction

Thin-walled structures have a high ratio between load carrying capabilities and
mass and play a primary role in lightweight design. In order to improve the struc-
tural efficiency, i.e. stiffness and mass ratio, a rigorous optimization approach is
required.

Multi Objective Optimization (MOO) can be effectively applied to structural
design [5, 14, 20, 22] with particular reference to mass minimization while maxi-
mizing the structural stiffness (or, equivalently, minimizing the compliance of the
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structure). In such problems, mass and compliance are considered objective func-
tions (to be minimized). The design variables are the geometrical dimensions of the
structural members. Constraints on safety (i.e. admissible stress), elastic stability
and maximum available room have to be satisfied.

The solution of the optimization process in the Pareto-optimal framework is
composed by a set of optimal solutions (the so-called Pareto-optimal set). Those
solutions represent the best compromise in terms of both minimum mass and
compliance. The designer can then choose the final structure configuration among
these optimal solutions [24].

In [15, 23] multi-objective optimization theory was employed for mass and
deflection minimization of structural members in bending. Optimized profiles of
thin-walled open cross sections were obtained by means of numerical methods.
Shape optimization of bars under torsion was addressed by Wang [27]. The shape
and rounding of the corners of polygonal bars was optimized by means of numerical
methods with the aim to maximize the torsional stiffness for a prescribed target
of mass. The topology of the cross section of thin-walled beams under torsion was
optimized in [17]. A multi-objective optimization approach was followed for maxi-
mizing the torsional stiffness and minimizing the distortion of the thin-walled cross
section. The optimal solution was derived numerically by a weighted sum method.
Gobbi and Mastinu [10] presented a method for the optimal design of compos-
ite material tubular helical springs. In the paper, Multi-Objective Programming
(MOP) was adopted. Both theoretical studies and experimental activities were
conducted.

The solution of (simple) multi-objective optimization problems can be derived
analytically for a number of engineering problems (see for example [4, 12, 13, 20]
or the four-bars plane truss problem in [3]). When available, analytical formulae
can be very useful for designers since they provide a broader view of the problem
and may guide the designers at the conceptual design stage.

Referring to beams, analytical formulae for designing optimal beams under tor-
sion or bending are presented in several papers. In [1], a set of design formulae for
beams of arbitrary cross section under torsion or bending is provided to compare
different materials and shapes. In [13] and [25], with reference to the bending of a
cantilever of arbitrary shape and material, it was demonstrated that the Pareto-
optimal set for any beam subject to bending is given by two connected regions, the
first one is given by the elastic stability while the second one by the available room
constraint. A more in depth analysis on optimal design of specific cross sections of
uniformly bent beams was performed in [4, 12, 21] where analytical solutions for
the Pareto-optimal sets are provided both in the design variables and objective
functions domains.

In this paper, the optimal design of a thin-walled tube under torsion is dis-
cussed. A rigorous multi-objective optimization approach is followed. The mass of
the tube is minimized together with its compliance. Analytical formulae providing
the cross section dimensions of the optimized tube are derived. These formulae
may be a useful tool for designers, who can choose an optimized cross section
without any further iteration.

The paper is structured as follows. Firstly the basic principles related to the
analytical derivation of the Pareto-optimal set of a general multi-objective opti-
mization problem are recalled. Then, the mathematical formulation of the opti-
mization problem of a thin-walled tube under torsion is presented and analytically
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solved. The analytical expressions of the Pareto-optimal set in the design variables
domain (tube diameter and wall thickness) and in the objective functions domain
(mass and compliance) are given. On the basis of the derived analytical formulae,
a comparison of optimized tubes made from different materials is performed. Fi-
nally, a practical example showing the application of the analytical expressions is
presented and discussed.

2 The Fritz John condition for Pareto-optimality

In this section, a brief description of the optimality conditions of a multi-objective
optimization problem is provided. For the sake of space, the description is limited
to the particular case in which the number of design variables is the same of
the number of objective functions, all the mathematical passages are reported in
Appendix A; the reader can refer to [12] for a thorough insight into the method.

Let us consider a general constrained multi-objective minimisation problem:

min F(x) = F(f1(x), f2(x, ..., fk(x))
s.t. G(x) = (g1(x), g2(x), ..., gw(x)) ≤ 0, x ∈ Rn (1)

where F is the vector of the k objective functions, x is the vector of the n design
variables and G is the vector of the w constraint functions.

Fritz John necessary condition [20, 22]. Let the objective function and the
constraint vector of eq. 1 be continuously differentiable at a decision vector x∗ ∈
S . A necessary condition for x∗ to be Pareto-optimal is that there exist vectors
λ ∈ Rk ≥ 0 and µ ∈ Rw ≥ 0 (λ,µ 6= (0,0)) such that∑k

i=1 λi∇fi(x
∗) +

∑w
j=1 µj∇gj(x

∗) = 0

µjgj(x
∗) = 0

(2)

If the number of design variables n equals the number of objective functions
k, the Pareto-optimal solution x∗ of problem 1 is given by the solution of eq. 3

(
w∐
j=1

gj) · det(∇F) = 0 (3)

where the term ∇F = [∇f1 ∇f2 ... ∇fk]n×k (a square matrix being n = k)
contains the gradient of the objective functions.

Eq. 3 states that the solution of the problem is given by the active constraints
and/or the solution of the unconstrained problem.

3 Equations for a thin-walled tube under torsion

The torsion of a thin-walled circular tube is shown in Fig. 1.
The tube has length l, external diameter d, wall thickness t and is subject

to a torsional moment M . The design problem refers to mass and compliance
minimization. For the sake of generality, mass and compliance are divided by the
tube length, the objective functions of the problem are therefore the mass per unit
of length m and the compliance per unit of length c of the tube.
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Fig. 1 Thin-walled circular tube subject to torsion

The design parameters are the tube diameter d and its thickness t, that will
be referred to as design variables hereafter.

The analytical expressions of the objective functions read

m =
mt

l
= πρdt (4)

c =
θ

l
=

4M

Γπd3t
(5)

where ρ is the density of the material and Γ is the shear modulus, while mt and θ
are the overall mass of the tube and the relative rotation of the two end sections of
the tube (Fig. 1) respectively. The design variables d and t are limited by maximum
and minimum attainable values [24]

dmin ≤ d ≤ dmax (6)

tmin ≤ t ≤ tmax (7)

The upper bound of the diameter dmax can be interpreted as a constraint on the
available room, while the lower bound on the wall thickness tmin as a technolog-
ical constraint. The other bounds dmin and tmax can assume, theoretically, any

value. In practice, the thin-walled condition
t

d
≤ 1

20
(and therefore the validity of

the mathematical model employed) should always be checked after a solution is
obtained.

The structural safety is related to the maximum stress occurring in the tube,
that introduces a constraint in the optimization problem

τmax ≤
τy
η

(8)

The left-hand side of eq. 8 represents the maximum shear stress acting in the cross
section, that can be expressed as [28]

τmax =
2M

πd2t
(9)
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The right-hand side of eq. 8 represents the admissible shear stress, given by the
yielding shear stress of the material τy divided by the safety coefficient η.

When thin-walled cross sections are employed, the structure gets more exposed
to failure by local buckling. Local buckling phenomena depend on many parameters
(cross section geometry, material, etc...) but mainly on the wall thickness. To avoid
buckling failure, an additional constraint on the maximum admissible torsional
moment is introduced

M ≤ Mcr

η
(10)

where Mcr is the critical buckling moment and η the safety coefficient.
The critical moment Mcr depends on the material properties and on the ge-

ometry of the cross section. Many analytical expressions of this quantity can be
found in the literature. The first work on the topic was conducted by Schwerin in
1924 [26]. Other expressions of the critical torsional moment of a thin-walled tube
can be found in [28] or in Donnell’s [8] and Lundquist’s [19] works.

For sake of simplicity, in this analysis, Lundquist’s relation has been considered.

Mcr = π
d2

2
tKsE

(
d

2t

)α
(11)

where E is the material elastic modulus, α is a constant equal to −1.35 and Ks
can be related to the geometry of the tube as [7]

Ks = B

(
2l

d

)β
(12)

with B and β numerical constants equal to 1.27 and −0.46 respectively.

4 Optimal design of a thin-walled tube subject to torsion

In this section the optimal design problem of the tube is formulated by following
a multi-objective optimization (MOO [20, 22]) approach.

The problem is formulated as follows.
Find

min

[
c(t, d) =

4M

πΓtd3
m(t, d) = πρtd

]
such that

τmax =
2M

πd2t
≤ τy

η

M ≤ Mcr

η
= π

d2

2η
tKsE

(
d

2t

)α
Ks = B

(
2l

d

)β
tmin ≤ t ≤ tmax
dmin ≤ d ≤ dmax

(13)

The solution of problem (13) can be obtained by applying the theory described
in section 2. Being the number of design variables equal to the number of objective



6 F. Ballo et al.

functions eq. 3 applies. The solution is therefore given either by the solution of the
unconstrained problem or by the active constraint(s).

The buckling constraint provides the following relation:

d ≥

(
2α+1Mη

πBE (2l)β

) 1
2+α−β

t
α−1

2+α−β (14)

while the stress constraint gives

d ≥

√
2Mη

πtτy
(15)

Let us consider the unconstrained problem which reads

min

[
c(t, d) =

4M

πΓtd3
m(t, d) = πρtd

]
(16)

The solution of the unconstrained problem in eq. 16 is given by eq. 17.

det

([
∂c
∂d

∂m
∂d

∂c
∂t

∂m
∂t

])
= det

([
− 12M
πΓd4t πρt

− −4M
πΓd3t2 πρd

])
= 0 (17)

which leads to

−8Mρ

Γd3t
= 0 (18)

Eq. 18 has solution for d3t→∞. Such solution, not belonging to the set of the
finite positive numbers has no physical meaning and has to be discarded [24].

The Pareto optimal set is therefore given by the combination of active con-
straints (eq. 3). By applying eq. 3 the following result is obtained

−

d−( 2α+1Mη

πBE (2l)β

) 1
2+α−β

t
α−1

2+α−β

(d−√2Mη

πtτy

)
·

(d− dmax) (t− tmax) (d− dmin) (t− tmin)
8Mρ

Γd3t
= 0

(19)

Eq. 3 gives a necessary condition for the Pareto-optimal solutions of the prob-
lem. The Pareto-optimal solution is, in general, a subset of the solution given by
eq. 19.

In order to extract Pareto-optimal solutions the intersections among the active
constraints have to be studied. Depending on the relative values of the parame-
ters, different scenarios are possible. These scenarios are analysed in the following
section.
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Fig. 2 Possible scenarios in the design variables domain. The gray area is the set of feasible
solutions, the black lines are the Pareto-optimal sets. Intersection points are marked with
diamond, square and circle.

Fig. 3 Possible scenarios in the objective functions domain. The grey area is the set of feasible
solutions, the black lines are the Pareto-optimal sets. Intersection points are marked with
diamond, square and circle.

5 Sizing of thin-walled tubes with constraints on available room, on
minimum thickness, on buckling and admissible stress

Fig. 2 and fig. 3 show the number of possible scenarios in the design variables
domain. The grey area represents the feasible set of solutions (i.e. solutions that
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Table 1 Case 1© of Figs. 2 and 3. Analytical expressions of the Pareto optimal sets in both
the design variables domain and objective functions domain.

Analytical expressions

Pareto optimal set
in the design

variables domain

Pareto optimal
design in the

objective functions
domain

Boundaries (Figs. 2 and 3)

Pareto optimal
subset

Points

d = dmax m =
4ρM

Γd2maxc
1

[
Ptmaxdmax

, Ptmindmax

]
t = tmin m = ρ

3

√
4π2Mt2

min
Γc

2
[
Ptmindmax

, Ptmindmin

]
Coordinates of points

Ptmaxdmax
Ptmindmax

Ptmindmin

Design variables t tmax tmin tmin

d dmax dmax dmin

Objective functions c 4M
πΓtmaxd3max

4M
πΓtmind

3
max

4M
πΓtmind

3
min

m πρtmaxdmax πρtmindmax πρtmindmin

satisfy the design constraints), while the black lines are the Pareto-optimal solu-
tions.

Case 1©

The lower bounds dmin and tmin of the design variables prevent both static
and buckling failures. Buckling and stress constraints are not active.

By inspecting the expressions of the objective functions in eq. 13, one can
observe that the compliance objective function is monotonically decreasing with
d and t, while the mass objective function is monotonically increasing with d
and t. This means that the Pareto-optimal solution (i.e. the set of solutions that
minimize the mass and compliance at the same time) lies on the borders of the
design domain and is given either by the combination d = dmax and t = tmin or
d = dmin and t = tmax.

By substituting d = dmin and d = dmax in the objective functions, the re-
spective expression in the objective functions domain (i.e. the m, c domain) can
be computed

m (c)

∣∣∣∣
d=dmin

=
4Mρ

Γd2minc
(20)

m (c)

∣∣∣∣
d=dmax

=
4Mρ

Γd2maxc
(21)

By comparing eq. 20 and 21, the solution for d = dmax (eq. 21) is always lower
than eq. 20 and therefore t = tmin and d = dmax are subsets of the Pareto-optimal
set (see Figs. 2 and 3).

The expression of Pareto-optimal solutions for Case 1© are reported in Tab. 1
in the design variables and objective functions domain.

Case 2©
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This is the most general case since both the buckling constraint and stress
constraint are active and part of the Pareto-optimal set.

From Case 1© we have demonstrated that solutions t = tmin and d = dmax are
Pareto-optimal. If a sufficiently large design space is considered, the solutions t =
tmin can violate the constraints on buckling and admissible stress. The intersection
point Pbuck,stress between the buckling and stress constraint reads

t̂ =

(
(πBE)2 (2l)2β

2α+β (Mη)β−α (πτy)2+α−β

) 1
3α−β

(22)

for t ≥ t̂ the stress equation is more binding than the buckling equation. This
means that for t ≤ t̂ the buckling constraint is active, then the active constraint
switches from the buckling equation to the admissible stress.

By substituting the stress constraint of eq. 15 (where the ≥ is replaced by =)
in the objective functions expressions, a relation between m and c when the stress
constraint is active can be obtained and reads

m (c)

∣∣∣∣
τ=
τy
η

=
ΓMη2ρ

τ2y
c (23)

which is a straight line (monotonically increasing) in the objective functions do-
main and therefore does not belong to the Pareto-optimal set.

With the same procedure the buckling constraint in the objective functions
domain can be derived and reads

m (c)

∣∣∣∣
buck.

= ρπ

(
2α+1Mη

πBE (2l)β

) 1
2+α−β


4M

Γπ

(
2α+1Mη

πBE (2l)β

) 3
2+α−β



2α−β+1
4α−β−1

1

c
2α−β+1
4α−β−1

(24)

which is monotonically decreasing in the objective functions domain and there-
fore belongs to the Pareto-optimal set.

The expression of Pareto-optimal solutions for Case 2© are reported in Tab. 2
in the design variables and objective functions domain.

Case 3©

The minimum attainable diameter d is defined by the admissible stress.
The Pareto optimal set is given by the solutions t = tmin and d = dmax.

The stress constraint, as demonstrated in Case 2©, does not belong to the Pareto
optimal set and it defines the solution with the lowest mass as shown in Fig. 3.

The expression of Pareto-optimal solutions for Case 3© are reported in Tab. 3
in the design variables and objective functions domain.

Case 4©
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Table 2 Case 2© of Figs. 2 and 3. Analytical expressions of the Pareto optimal sets in both
the design variables domain and objective functions domain.
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=
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=
ρ
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 2
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1
M
η

π
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E

(
2
l)
β

 
1
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+
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−
β
t
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−

1
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+
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−
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ρ
π

 2
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+

1
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(
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 
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Table 3 Case 3© of Figs. 2 and 3. Analytical expressions of the Pareto optimal sets in both
the design variables domain and objective functions domain.

Analytical expressions

Pareto optimal set
in the design

variables domain

Pareto optimal
design in the

objective functions
domain

Boundaries (Figs. 2 and 3)

Pareto optimal
subset

Points

d = dmax m =
4ρM

Γd2maxc
1

[
Ptmaxdmax

, Ptmindmax

]
t = tmin m = ρ

3

√
4π2Mt2

min
Γc

2
[
Ptmindmax

, Ptmin,stress

]
Coordinates of points

Ptmaxdmax
Ptmindmax

Ptminstress

Design variables t tmax tmin tmin

d dmax dmax

√
2Mη

πτytmin

Objective
functions

c 4M
πΓtmaxd3max

4M
πΓtmind

3
max

1
Γ

√
2πtminτ

3
y

Mη3

m πρtmaxdmax πρtmindmax ρ

√
2πMηtmin

τy

Table 4 Case 4© of Figs. 2 and 3. Analytical expressions of the Pareto optimal sets in both
the design variables domain and objective functions domain.

Analytical expressions

Pareto optimal set
in the design

variables domain

Pareto optimal
design in the

objective functions
domain

Boundaries (Figs. 2 and 3)

Pareto optimal
subset

Points

d = dmax m =
4ρM

Γd2maxc
1

[
Ptmaxdmax

, Pdmax,stress

]
Coordinates of points

Ptmaxdmax
Ptmindmax

Pdmaxstress

Design variables t tmax tmin
2Mη

πτyd2max

d dmax dmax dmax

Objective
functions

c 4M
πΓtmaxd3max

4M
πΓtmind

3
max

2τy

Γdmaxη

m πρtmaxdmax πρtmindmax
2Mηρ

dmaxτy

The solution is defined by the maximum diameter d = dmax, the stress con-
straint is limiting t from below and defines the point with the minimum mass as
shown in in Fig. 3.

The expression of Pareto-optimal solutions for Case 4© are reported in Tab. 4
in the design variables and objective functions domain.

Case 5©

The minimum diameter d, corresponding to minimum mass is defined by the
admissible stress and buckling, as shown in Figs.2,3.

The full analytical expressions of the Pareto optimal sets, both in the design
variable domain and in the objective function domain, are reported in Tab.5.



12 F. Ballo et al.

Table 5 Case 5© of Figs. 2 and 3. Analytical expressions of the Pareto optimal sets in both
the design variables domain and objective functions domain.
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Case 6©

In this case, we see from Fig.2 that no solution within the bounds tmin ≤ t ≤
tmax and dmin ≤ d ≤ dmax is feasible since buckling and stress constraints are
not satisfied.

6 Comparison of tubes made from different materials

In this section a comparison between optimized tubes made from two different
materials (material A and B) is performed. The comparison is made referring to
Pareto-optimal solutions [20]. Considering Fig. 2, the Pareto-optimal sets can be
divided into a number of subsets, depending on the considered case, namely

– d = dmax (subsets 1 in Fig. 2)
– t = tmin (subsets 2 in Fig. 2)
– active constraint on buckling (subsets 3 in Fig. 2)

In the following, the single subsets will be compared for two thin-walled tubes
made from different materials.

6.1 Comparison referring to Pareto-optimal subset 1, d = dmax

If the Pareto-optimal subsets 1 of Fig. 2 are considered, the optimized tubes have
d = dmax for any value of t. This case represents the maximum exploitation of the
available room.

The Pareto-optimal subset 1 in the objective functions domain reads

m =
4ρM

Γd2maxc
(25)

If two tubes made from different materials (let’s say material A and material
B) are considered, the ratio between the mass per unit of length at a given stiffness
of the two tubes can be written as

mA

mB
=
ρAEB
ρBEA

(26)

where Γ has been replaced by E through the relation Γ =
E

2 (1 + ν)

If we assume aluminum for material A and steel for material B (ρA = 2800kg/m3, ρB =
7800kg/m3, EA = 70GPa,EB = 210GPa, νA = νB = 0.3) eq. 26 returns 1.077,
meaning that when all the available room is exploited (i.e. d = dmax) steel allows
to design a tube with about 7.7% less mass than the aluminum counterpart.
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6.2 Comparison referring to Pareto-optimal subset 2, t = tmin

This case can be interpreted as a technological constraint that limits the minimum
manufacturing thickness of the tube. This constraint may depend on the material
and technological manufacturing process.

The Pareto-optimal subset 2 in the objective functions domain reads

m = ρ
3

√
4π2Mt2min

Γc
(27)

By considering the two materials A and B the ratio
mA

mB
has the following

expression

mA

mB
=
ρA
ρB

3

√
EB
EA

(28)

If we consider again aluminum for material A and steel for material B eq. 28
returns 0.52, thus making the mass of aluminum tube about one half of the steel
one for the same compliance c.

6.3 Comparison referring to Pareto-optimal subset 3, active constraint on
buckling

In this case the minimum allowable thickness is determined by the constraint on
buckling which is active. The expression of the Pareto-optimal subset 3 in the
objective functions domain is

m = ρπ

(
2α+1Mη

πBE (2l)β

) 1
2+α−β


4M

Γπ

(
2α+1Mη

πBE (2l)β

) 3
2+α−β



2α−β+1
4α−β−1

c
− 2α−β+1

4α−β−1 (29)

Again by considering the relation between Γ and E, the ratio
mA

mB
reads

mA

mB
=
ρA
ρB

(
EB
EA

)0.545

(30)

Substituting the values of aluminum (material A) and steel (material B) eq.
30 gives 0.65. Therefore it turns out that, when the buckling constraint is active,
the aluminum tube is about 35% lighter for a prescribed compliance.
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Fig. 4 General schematics of the driveline of a two wheel drive vehicle.

7 Optimal design of a race car driveshaft

In this section, a practical example of an application of the derived formulae is
presented. The problem analysed refers to the optimal design of the main driveshaft
of a high-performance race car. The component is highlighted in the scheme of Fig.
4 and has the role of transmitting the drive torque M from the engine to the drive
axle.

The shaft has a tubular shape, the design variables to be optimized are the
tube diameter and its wall thickness, whereas the design objectives are:

– minimization of the overall mass of the shaft
– minimization of the deflection of the shaft when subject to the applied load

The driveshaft is subjected to the following constraints. The available room
for the driveshaft limits the massimum diameter to 90 mm (dmax = 90mm) and
constraints on structural safety and elastic stability have to be satisfied to avoid
failures when the maximum drive torque is applied. The maximum torque M on
the driveshaft is 3600 Nm, obtained by multiplying the maximum engine torque
(800 Nm) by the first gear (4.5). Additionally, a safety factor of 2.5 is considered
in the design process to account for overloads on the driveline and durability
requirements.

A C45 quenched and tempered steel is assumed as reference material for the
shaft.

All the parameters that are necessary for the optimization are listed in Tab. 6.
By substituting the numerical values of Tab. 6 in the analytical expressions

obtained in Section 5, one realizes that Case 4© applies. The Pareto-optimal solu-
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Table 6 Design of the main driveshaft of a race car - input data.

Description Notation Value Unit
Applied torque M 3600 Nm

Material density ρ 7800
kg

m3

Material tangential modulus Γ 80.77 GPa
Material yielding shear stress τy 261 MPa

Safety coefficient η 2.5 -
Lower bound on tube diameter dmin 0.02 m
Upper bound on tube diameter dmax 0.09 m
Lower bound on wall thickness tmin 0.0005 m
Upper bound on wall thickness tmax 0.005 m

tion is therefore given by the constraint d = dmax, the solution with the minimum
attainable mass is defined by the intersection between the stress constraint and
d = dmax; the relative analytical expressions are reported in Tab. 4.

Fig. 5 shows the set of feasible solutions both in terms of design variables (i.e.
tube diameter and wall thickness) and objective functions (mass and compliance
per unit of length). The (Pareto) optimal solutions are identified by the black line
in the graphs of Fig. 5, the designer has to select his final design among this set of
solutions. The solution with the lowest attainable mass is identified by the black
dot of Fig. 5 and is given by the intersection point of the stress constraint with
the constraint d = dmax. Such a solution is characterized by an outer diameter of
90 mm and a wall thickness of 2.71 mm, with a mass per unit of length of 5.98
kg

m
; this solution exhibits also the highest deflection (0.0293

rad

m
) when subject to

the torsional moment.
On the other hand, the solution with the lowest compliance (marked with a

diamond in Fig. 5) is given by a tube with the maximum admissible diameter (90
mm) and the maximum admissible wall thickness (5 mm); regarding the objective

functions, this solution is the stiffest (with a deflection of 0.0132
rad

m
) but the

heaviest one (13.23
kg

m
).

The driveshaft currently mounted on the car is also highlighted in the graphs
of Fig. 5 and has an outer diameter of 90 mm with and a wall thickness of 3 mm.
As evidenced from Fig. 5, the currently adopted solution lies on the Pareto front,
showing that the proposed approach for the design of thin walled tubes under
torsion is in accordance with practical designs obtained by experienced specialists.

8 Conclusion

In the paper, the analytical multi-objective optimization for the lightweight de-
sign of a thin-walled tube subject to torsion has been dealt with. Tube mass and
compliance have been minimized at the same time. Constraints on safety (i.e. ad-
missible stress), elastic stability (buckling), available room (maximum diameter)
and manufacturing constraints (minimum thickness) have been considered.

Analytical formulae of the Pareto-optimal set have been obtained for the con-
sidered design problem. The analytical expressions are derived both in the design
variables (tube diameter and wall thickness) and in the objective functions (mass
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Fig. 5 Optimal design of the driveshaft of a race car - Pareto-optimal solution (black line)
both in the design variables domain (left) and objective functions domain (right).

and compliance of the tube) domain. A comparison of optimized designs made
from different materials has been included.

It has been demonstrated that

– the Pareto-optimal set of the thin-walled tube under torsion is given by the
combination of the buckling limit, minimum thickness and maximum diameter.

– apart from the solution having maximum thickness and maximum diameter,
all the other designs with t = tmax are non-optimal and have to be discarded

– the stress constraint is not part of the Pareto-optimal set, actually it has a role
only in the definition of the minimum attainable mass.

The comparative lightweight design of tubes made from different materials showed
that aluminium alloy allows an effective lightweight construction, but when the
available room is saturated and proper stiffness is requested, steel allows to obtain
a lighter structure by 8%.

A simple engineering problem related to the design of the main driveshaft of a
race car has been solved by employing the obtained analytical expressions, showing
the practical use of the method and its effectiveness in the definition of early-stage
optimal design solutions. From a direct comparison with the currently adopted
driveshaft, it has been shown that the proposed method is in accordance with the
solution obtained by experienced specialists.
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A Appendix

Definition 1 Pareto-optimal solution. Given a MOP (Multi-Objective Programming)
problem with n design variables and k objective functions a Pareto-optimal solution (vector)
x∗ is that for which there does not exist another solution x ∈ X such that:

fj(x) ≤ fj(x∗) j = 1, 2, ..., k
∃l : fl(x) < fl(x

∗)
(31)

Let us consider a general constrained multi-objective minimisation problem:

min F(x) = F(f1(x), f2(x, ..., fk(x))
s.t. G(x) = (g1(x), g2(x), ..., gw(x)) ≤ 0, x ∈ Rn (32)

where F is the vector of the k objective functions, x is the vector of the n design variables and
G is the vector of the w constraint functions.

Fritz John necessary condition [20, 22]. Let the objective function and the constraint vector
of eq. 32 be continuously differentiable at a decision vector x∗ ∈ S . A necessary condition for
x∗ to be Pareto-optimal is that there exist vectors λ ∈ Rk ≥ 0 and µ ∈ Rw ≥ 0 (λ,µ 6= (0,0))
such that ∑k

i=1 λi∇fi(x∗) +
∑w
j=1 µj∇gj(x∗) = 0

µjgj(x
∗) = 0

(33)

The condition is also sufficient if the objective functions and the constraints are convex or pseu-
doconvex [2, 16]. The existence of the Pareto-optimal front is guaranteed by weak conditions
[9, 22].

Equation 33 can be rearranged in a matrix form as [12, 18]

L · δ = 0 (34)
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where L is a [(n+ w)× (k + w)]matrix defined as

L =

[
∇F ∇G
O G

]
(35)

with

∇F = [∇f1 ∇f2 ... ∇fk] (36)

∇G = [∇g1 ∇g2 ... ∇gw] (37)

G = diag(g1, g2, ..., gw) (38)

and O the null matrix of dimensions [w × k] . δ is a vector containing λ and µ (δ =[
λ µ

]T ≥ 0).
The Fritz John conditions (see eq. 33) can be relaxed by removing δ ≥ 0. This relaxation

implies that we are dealing with necessary conditions also in presence of convex objective
functions and constraints.

For n ≥ k, i.e. the number of design variables is equal or greater than the number of
objective functions, eq. 34 admits non-trivial solution if [6]

det(LTL) = 0 (39)

This condition states that the solutions of the optimization problem are those values of
the decision vector x∗ ∈ S for which the det(LTL) is equal to zero.

For square L matrix (i.e. n = k, the number of design variables is equal to the number
of objective functions) it is not necessary to multiply it by its transposed and condition 39
reduces to

det(L) = 0 (40)

By inspecting eq. 40, one may notice that in this case the gradient of the constraints has
no influence on the solution. Furthermore, being G a diagonal matrix, eq. 40 can be rewritten
as

det(L) = 0⇒ (

w∐
j=1

gj) · det(∇F) = 0 (41)

and therefore the solution is either an active constraint or the Pareto-optimal set of the un-
constrained problem [18]. In fact, if the problem is unconstrained, the L matrix is L = ∇F
and the solution is given by

det(∇F) = 0 (42)

If n < k, i.e. the number of design variables is smaller than the number of objective
functions, det(LTL) is always equal to zero and the problem is no longer a minimization
problem. The solution can be found by simply substituting the constraints expressions into
the objective functions as explained in [11].


