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Abstract. Freshwater resources are currently under great pressure all over the world due to many 
factors, such as climate change and growing urbanization. Industrial products like concrete 
pauperize a significant share of available freshwater during their life cycle. Therefore, cutting 
down the amount of freshwater consumed by these products might be a solution to reduce the 
stress in regions affected by water scarcity. In this study, the potential freshwater savings linked 
to the adoption of innovative concrete mixtures were investigated via the Life Cycle Assessment 
(LCA) method. In particular, the use of marine aggregates instead of land-based ones and 
seawater rather than freshwater in the mixing process of concrete were examined. To improve 
the validity of the analysis, the applicability to the Italian context using geo-referenced data for 
the distance to the coastline and the availability of freshwater was explored. Results confirmed 
the positive effect that the use of seawater and marine aggregates might have in reducing the 
water footprint of the Italian construction sector, leaving freshwater available for human 
consumption. Mixing concrete with seawater would lead to a reduction of its water footprint up 
to 12%. Moreover, if land-won aggregates were replaced with marine ones, an 84% reduction of 
the water footprint could be achieved. In both cases, possible burden shifting (e.g. increase of 
greenhouse gases emissions) should be investigated. 

1.  Introduction 
Freshwater resources are currently under great pressure all over the world due to many factors: climate 
change, population growth, higher standards of living, increased industrialization and widespread 
urbanization [1]. Water consumption grew twice as fast as population in the last century [2], and nearly 
half of the global population already live in areas that are potentially scarce in water at least one month 
per year [3]. The industrial sector accounts for approximately 19% of the total water withdrawals [4], 
and the construction industry is among the main users. Urbanization boosted, indeed, the demand for 
construction materials [5], with concrete reaching an annual production of more than 32 Gt in 2017 [6]. 
Besides the large demand for natural aggregates, concrete production also requires a lot of water. For 
instance, a standard concrete batching plant withdraws on average 100 m3 of water each day just for the 
mixing process [7]. However, concrete demand for water goes well beyond this process. Water is 
required to process all the raw materials and to produce the energy and the fuels used along the concrete 
production chain [8]. However, inventory data for water demand throughout the life cycle of concrete 
are limited and inconsistent [9]. Miller et al. tried to estimate the global amount of water consumed to 
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produce concrete at a global scale and concluded that, on a cradle to gate analysis, concrete production 
was responsible for a global water consumption of 16.6 Gm3 in 2012, equivalent to the annual domestic 
use of 145 million US residents [10].  

To avoid the corrosion of the steel rebars used in reinforced concrete structures, mixing water must 
be free of chlorides and therefore, the use of seawater is forbidden and freshwater is currently used [11].  
However, the use of reinforcement elements resistant to corrosion (e.g. stainless steel, glass fibre 
reinforced polymers) has been investigated over the past few years, opening up the opportunity to the 
use of alternative types of water. For instance, results of the SEACON project showed that the properties 
of concrete could be preserved and even improved when seawater was used in the mixing process if 
reinforcing elements resistant to corrosion were used [12]. Moreover, using rebar that would extend the 
durability of the structure could also reduce the life cycle environmental impacts [13] and the life cycle 
costs of the structure [14]. Nevertheless, the actual implications of using seawater and, possibly, chloride 
contaminated aggregates on the Water Footprint (WF) of concrete produced in a specific geographic 
context were not investigated.  

The goals of the study were: (1) to assess the life cycle water consumption and the WF of a generic 
concrete mix produced in Italy, identifying the most impacting stages of the life cycle, and (2) to assess 
the variation in the WF if seawater was used instead of freshwater in the mixing process and marine 
aggregates were included in the mix in place of land-won aggregates. To reach this goal, the WF of the 
different concrete mixes was evaluated with a GIS-based approach considering both the direct and 
indirect water consumption in the different life cycle stages of the production of concrete. 

2.  Materials and methods 
The WF of the different concrete mixes was assessed following the ISO 14046 guidelines, which provide 
a metric to assess the potential impacts associated to the life cycle use of water for an activity [15]. The 
methodological steps, in line with the standardized life cycle assessment procedure, are presented in the 
following sections. 

2.1.  Goal and scope definition 
The goal of the analysis was to assess the water footprint of a generic concrete produced in Italy and to 
investigate whether the use of seawater and marine aggregates could reduce it. Hence, three different 
mix designs were compared: 1) concrete with Land-won Aggregates (LA) mixed with Fresh-Water 
(FW), representing the base case scenario and referred to as “LAFW” in the analysis; 2) concrete with 
Land-won Aggregates mixed with Sea-Water (SW), referred to as “LASW”; and 3) concrete with 
Marine Aggregates (MA) mixed with Sea-Water, referred to as “MASW”.    

2.1.1.  Declared unit. The declared unit was one cubic metre of unreinforced fresh generic concrete 
delivered to the construction site. Except for the type of aggregates (land-won or marine) and mixing 
water (freshwater or seawater), the same concrete mix was used for all the scenarios. Recipe for the mix 
(i.e. 200 kg of Portland cement, 1280 kg of gravel, 720 kg of sand and 170 litres of water) was taken 
from the Ecoinvent database [16] and represents a general unreinforced concrete. All mixes were 
assumed to have the same mechanical properties and service life. 

2.1.2.  System boundaries. The approach of the study was from cradle-to-gate, where the gate of the 
study was the construction site. Transportation to the construction site (i.e. stage A4 according to ISO 
14046) was included in the analysis. The different unit processes considered for the analysis and their 
relative inputs of direct water are illustrated in ‘figure 1’. Direct water refers to the water consumed in 
a specific process (e.g. water for mixing concrete). Although the component was not shown in the figure, 
indirect water (i.e. water consumed in preceding processes such as the one consumed in the generation 
of energy used to mix concrete) was also included in the assessment. 
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2.1.3.  Geography. Three different Italian regions (i.e. Abruzzo, Eastern Sicily and Lombardy) were 
considered for the analysis to investigate the influence of the geographical context on the WF. In fact, 
the three regions (in the central, southern and northern part of the country respectively) differ in terms 
of climate, freshwater availability, distance from the sea and type of quarries.  

2.2.  Life Cycle Inventory (LCI) 
Different studies, databases and tools were used for the LCI: studies available in the scientific literature 
and the Ecoinvent database [16] were used as sources of secondary data; ArcGIS was used for the 
geolocation of quarries, cement factories, batching plants and seawater intake facilities; finally, the 
Distance Matrix API of Google was used to calculate the road distances between different points. The 
electricity consumed in quarries, cement factories and batching plants was modelled using the Italian 
electricity mix. A focus on the inventory for aggregates and water considered in the different scenarios 
is presented in the next sections. As for the quality of the data, primary data were collected for energy 
consumption and water withdrawals in a land quarry and a in a concrete batching plant, while secondary 
data were used for the other unit processes. 

2.2.1.  Aggregates. Aggregates, in Italy, are sourced from three different types of land quarries: wet, 
dry, and rock quarries. Wet quarries are open-pit mines characterized by the presence of a lake, formed 
when the excavations of sand and gravel penetrates the aquifer’s water table. Conversely, in dry quarries 
the excavation process never reaches the water table. Finally, aggregates from rock quarries are 
produced from blasting and crushing rocks in mountainous areas. A hypothetical scenario where marine 
aggregates were used instead of land-won aggregates was also considered in the present study. Although 
the extraction of aggregates from the seabed is not currently practiced in Italy, this activity is common 
in other European countries such as the UK and the Netherlands [17]. For this scenario, aggregates were 
assumed to be dredged from the seabed off the Italian coast and transported by ship to the shore. 

In wet quarries, water is used to wash the aggregates and the machinery on site. Aggregates are 
washed to separate the different sizes, while machineries are washed for productivity reasons. Although 
not directly used, freshwater is consumed in quarries due to evaporation. Water evaporates not only 
during the washing process, but also from the extracted aggregates (before and after washing) and from 
the quarry lake. If aggregates were not quarried, the evaporating water would remain in the aquifer and 
it would be available for other purposes. For this reason, evaporating water was included in the 
assessment. On the other hand, not all the water used to wash the aggregates and the machineries is 
consumed: most of it, in fact, either leaches back to the aquifer or it is conveyed to settling tanks, where 
silt deposits and decanted water is re-used for washing. For this reason, the only water that is actually 

Figure 1. Unit processes considered in the study and their relative direct inputs of water.  
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consumed in the washing process is that which is adsorbed by the aggregates or that evaporates. Based 
on a previous study, the amount of evaporating water was assumed to be 10% of the withdrawn water 
[18]. As for the water evaporating from the quarry lake, it was calculated using the Visentini formulas, 
which correlate the evaporation rate from small water surface to the average temperature and the 
elevation [19]. A wet quarry located in Northern Italy was used as reference case study, and the annual 
evaporation from the quarry lake was then multiplied by the surface of the lake and the rate was divided 
by the annual production of the quarry in order to allocate the amount of evaporated water to the 
produced aggregates.  

Water is used to wash aggregates and machineries in dry quarries too. However, since no lake is 
present in this case and water used for washing is collected and reused for the same purpose, the only 
water consumed is the one adsorbed by the aggregates or the one evaporating during the activity. 
Primary data collected by Rigamonti et al. were considered in this case [20]. 

In rock quarries, aggregates are not washed since there are not fine particles (i.e. silt) to be removed. 
Nevertheless, water is consumed to control dust and to wash machinery. Data were collected from 
another Italian study investigating this type of quarry [21]. Decanted harvested rainwater and new 
freshwater withdrawn from the well were used in the quarry; however, since not enough information 
was available on the amount of harvested rainwater, only the withdrawn component was considered. 

Finally, in case of off-shore extractions, it was assumed that marine aggregates were washed with 
seawater to remove the fine particles and that no additional washing was required to remove the 
chlorides contamination. Therefore, direct consumption of freshwater was considered null in this case.  

2.2.2.  Batching plant. Primary data were collected for water consumed at the batching plant: total direct 
consumption was equal to 0.50 m3 per cubic meter of fresh concrete, split between the water for mixing 
(equal to 0.17 m3 based on the Ecoinvent recipe) and the one for washing the truck mixers and the area. 
For the base case scenario, water for mixing was assumed to be withdrawn from a well located at the 
concrete mixing plant. On the other hand, seawater was assumed to be collected from an open intake 
facility on the coast and then transported by truck to the concrete mixing plants.  

2.2.3.  Cement plant. Primary data from one of the main Italian cement manufacturers were used for the 
study and 0.24 m3 of FW resulted to be used on average per metric ton of cement, mainly for gas 
conditioning and cooling activities. 

2.2.4.  Geolocation, distances and transports. Location of the active quarries in the different regions 
was retrieved from the official regional websites while location of batching plants and cement factories 
were provided, respectively, by the Italian Technical Economic Association for Ready-Mixed Concrete 
[22] and the Italian Association of Cement manufactures [23]. Coordinates of each plant and quarry 
were then imported to ArcGIS and, for each batching plant, it was assumed that cement was supplied 
from the closest producer and that aggregates were sourced in equal amounts from the closest four 
quarries. Finally, fresh concrete was assumed to be transported for 10 km with a truck mixer to reach 
the construction site [24].  

Seawater intake facilities and marine aggregates extraction site were assumed to be located along the 
coastline, at a minimal linear distance to each batching plant. SW was considered to be transported by 
tankers from the intake facility to the concrete batching plant.  

2.3.  Life Cycle Impact Assessment 
The AWARE method, developed by WULCA, was used for the impact assessment [25]. The AWARE 
characterization factors account for the Available WAter Remaining in a watershed after the demand of 
humans and aquatic ecosystems is met. The metric provides characterization factors both at the river 
basin scale and aggregated at national level. In the present study, basin scale factors were used for direct 
water consumptions, while aggregated national factors were considered for the indirect uses. 
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Characterization factors were then imported to ArcGIS and applied to the different plants based on their 
location. 

3.  Results and discussion 
The actual amount of freshwater consumed to produce 1 m3 of concrete in Italy and the water footprint 
for the different mixes assessed with the AWARE method are both presented in this section.  

3.1.  Water consumption 
Direct and indirect freshwater consumption for each process unit are listed in ‘table 1’, where all the 
numbers are referred to the declared unit in the base case scenario (i.e. 1 m3 of fresh concrete delivered 
to the construction site). An average distance was considered for transportation from the quarry and the 
cement plants to the concrete mixing facility. Water consumption to produce 1 m3 of fresh concrete 
ranged between 1.7 and 5.5 m3, according to the type of aggregate used in the mix. The minimum value 
corresponds to concrete containing aggregates from a rock quarry, while the maximum is referred to the 
case with aggregates from a wet quarry. The high value of direct consumption for the wet quarry was 
due to a large extent (i.e. 94%) to the water evaporated from the quarry lake.   

 
Table 1. Direct, indirect and total freshwater consumption for the base case scenario. 

Process unit 
Indirect water 
consumption 

Direct water 
consumption 

Total Water 
consumption 

 (m3
water/m3

concrete) (m3
water/m3

concrete) (m3
water/m3

concrete) 
Aggregates production – dry quarry 0.03 1.68 1.71 

Aggregates production – wet quarry 0.06 4.49 4.55 

Aggregates production – rock quarry 0.04 0.71 0.75 

Cement plant 0.30 0.05 0.35 

Batching plant 0.05 0.50 0.55 

Transport 0.03 0.00 0.03 

Declared unit 0.41 - 0.44 1.26 - 5.04 1.65 - 5.48 
 

3.2.  Water footprint  

3.2.1.  Base case scenario. WF results for the Italian base case scenario (i.e. LAFW) are summarized in 
‘table 2’. In the table, the WF (expressed in world-equivalents m3 of water) of each unit process is 
reported for the three regions investigated. The mean represents the calculated average WF for the 
concrete produced in the region, while the range represents the potential minimum and maximum for 
each region. Cases where all the aggregates were sourced from only one of the four closest quarries was 
also included in the analysis. The larger WF in Sicily (up to 300 m3-eq. per m3 produced) was due to the 
limited remaining available freshwater in the region; conversely, the larger availability of freshwater in 
Lombardy resulted in lower impacts. The ranges for cement production, batching plant and mixing water 
are related to the different characterization factors of the river basins where the plants are located. The 
range for aggregates production depends not only on the characterization factors, but also on the type of 
quarry. Finally, the range for transportation is related to the transport distance and does not depend on 
local water availability, since there was no direct water consumption involved in the process. For indirect 
water, national aggregated characterization factors of the producing countries based on the information 
available on Ecoinvent datasets were used. 
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Table 2. Water footprint of each unit process for the base case scenario in the regions investigated. 
 Abruzzo Eastern Sicily Lombardy 
 Mean Range Share Mean Range Share Mean Range Share 
 (m3-eq.) (%) (m3-eq.) (%) (m3-eq.) (%) 

Aggregates prod 46 13-98 61 126 49-256 74 10 4-15 46 
Cement prod 10 9-11 13 12 12 7 8 8 37 
Batching plant 13 7-21 17 16 15-17 9 3 3 12 
Mixing water 6 3-10 8 15 14-16 9 < 1 < 1 2 
Transport < 1 < 1 1 1 1 1 < 1 < 1 - 1 3 
Declared unit 65 32-141 100 171 91-303 100 21 15-27 100 

  

3.2.2.  Alternative scenarios. A comparison of the WF for the different scenarios considered (i.e. LAFW, 
LASW and MASW) is presented in ‘figure 2’. Error bars indicate the minimum and the maximum WF 
in the different batching plants. Differently from ‘table 2’, the minimum and maximum considered here 
do not consider the cases where all the aggregates were sourced from a single supplier. Since the 
AWARE characterization factor for seawater is null, the WF of the water used for mixing in the LASW 
and MASW scenarios was only due to its transportation from the coast to the batching plants. 

 

 
Figure 2.  Average water footprint for the three scenarios in the regions investigated. 

 
Replacing FW with SW resulted in a reduction of the WF of concrete from less than 2% in Lombardy 

to 9% in Eastern Sicily. Using MA instead of LA resulted in a further reduction of the WF in almost all 
the batching plants analyzed. In Abruzzo and Eastern Sicily, the reduction would be extremely 
significant (i.e. always larger than 45%) thanks to the avoided direct freshwater consumption in areas 
affected by high water stress. In Lombardy, on the other hand, the WF implications depend on the type 
of aggregates that would be substituted. Given the long distance from the coast, the benefits of using 
MA in terms of WF were clear (up to a 36% reduction) only when aggregates from wet quarries were 
replaced.  
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4.  Conclusions 
In the present study, the amount of freshwater consumed to produce 1 m3 of fresh concrete and its WF 
were assessed for three Italian regions differently affected by water stress. Moreover, the implications 
on the final WF of substituting land-won aggregates with marine ones and using seawater instead of 
freshwater for mixing the concrete were investigated. The following conclusions could be drawn: 
• Aggregates production proved to be the determining parameter on the final overall freshwater 

consumption, while water used to mix the concrete resulted to be only a fraction of all the freshwater 
consumed along the production chain (i.e. from a minimum of less than 2% to a maximum of 12%). 
Freshwater evaporating from quarry lakes could considerably increase the amount of water 
consumed in case aggregates from wet quarries were used, with a contribution that could reach 4.2 
m3 per m3 of concrete (i.e. up to 77% of the total consumption). Moreover, cement production and 
water consumed in batching plants in addition to that used for mixing, contribute significantly to the 
overall consumption. On the other hand, the indirect water consumed to transport the different 
materials resulted to be trivial. 

• Similarly, water physically incorporated in the fresh concrete was only partially responsible for its 
WF (i.e. 8 to 9% of the total WF in areas affected by high water stress and 2% in Lombardy, where 
the direct water consumptions are less impacting). Accordingly, using seawater could reduce the 
WF of concrete up to 12% in Eastern Sicily and would negligibly affect the WF in Lombardy. 

• On the other hand, replacing land-won aggregates with the marine counterpart could reduce to a 
great extent the pressure of concrete on freshwater availability in areas affected by water stress, 
leaving freshwater available for human consumption. In Eastern Sicily, for instance, using marine 
aggregates and seawater could reduce the WF up to 80%. However, if aggregates need to be 
transported for a long distance and the area has a large availability of freshwater, using marine 
aggregates might be detrimental for the WF.  

5.  Further investigations 
The present study was a first attempt to assess the implications of using alternative sources of water and 
aggregates on the WF of concrete. Even though the study showed positive outcomes, before promoting 
their use further research is necessary to investigate a possible burden shifting (e.g. implications on 
greenhouse gas emissions and aquatic ecosystems, which fell outside the scope of the present work). 
Moreover, the durability of the concrete designs and the water consumption in the manufacturing of the 
reinforcing elements should be included in the analysis to extend the present results to the whole life 
cycle of the building material. Furthermore, some assumptions made for the present analysis should be 
further revised to improve the robustness of the study. For instance, water evaporating from the quarry 
lake resulted to be a decisive parameter in the WF of concrete in regions with wet quarries. However, 
the dimension of the lake, the temperature in the region, the productivity and the service life of the 
quarry would greatly affect the amount of evaporating freshwater that should be allocated to the 
aggregates. Finally, an additional sensitivity analysis considering different strengths and water-to-binder 
ratios for concrete should be performed to investigate variations in the role that water for mixing and 
mixture components might play in the overall WF of the material. 
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