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ABSTRACT   

The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of 

complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well 

known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect 

the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. 

This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. 

The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a 

generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and 

Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated 

once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main 

advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary 

photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and 

the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic 

circuit example with multiple uncertain variables. 
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1. INTRODUCTION 

Recent advances in photonic integration are making possible the implementation of photonic circuits combining many 

functions on a single chip, significant production volumes and reduced fabrication costs [1]. As for electronics, the 

introduction of a building-block-based approach allowed for complex photonic integrated circuits to be conceived, 

designed, and realized by assembling a restricted number of building blocks (BBs) made available through a Process 

Design Kits (PDK). A PDK contains foundry specific technology information and provides a library of the offered building 

blocks incorporating all the information related to a particular device such as its schematic representation and the 

deterministic mathematical macro-model of its behavior, generally in the form of either a transmission or a scattering 

matrix. Once the BBs of a particular photonic foundry are available, the design and simulation of complex photonic can 

be carried out at a circuit level by simply combining the desired BBs according to given design rules [2, 3]. However, 

stochastic uncertainties related to unavoidable tolerances of the technological processes such as waveguide width or height 

variations, proper gap opening or changes in material composition can have a strong effect on the functionality of the 

fabricated circuits and ultimately affect the entire circuit performance [4-6]. The information on the expected variability is 

hence an essential aspect for each building block and the availability of efficient computational strategies is fundamental 

to quickly predict the statistical behavior of a circuits since the early stage of the design process. 

In this regard, Monte Carlo is a robust, accurate, and easy-to-implement approach, and is often considered as the standard 

for stochastic analysis. However, its high computational cost can obstruct its application to the analysis of even relatively 

simple circuits because a large number of simulation runs (generally in the order of 104 - 105) is required to obtain reliable 

results. For this reason, the generalized polynomial chaos approach has been introduced in several application fields 

as an efficient alternative to the classical Monte Carlo method [7, 8], and recently it has been proposed also for the 



 

 
 

 

 

 

variability analysis of photonic devices [9, 10]. The generalized polynomial chaos technique allows approximating the 

dependence of the simulation output on the stochastic input parameters with a set of orthonormal polynomials. The 

computation of the coefficients of the basis functions is done either through intrusive methods (e.g. stochastic Galerkin 

[11] and stochastic testing [12]), that require modifying the internal code of an existing deterministic solver, or nonintrusive 

methods (i.e. sample-based methods), such as stochastic collocation [13], that use the deterministic solvers as black boxes.  

The few implementations of the generalized polynomial chaos (gPC) described in literature for photonics applications are 

based on nonintrusive methods. Figure 1(a) schematically reports the common approach for stochastic analyses at circuit 

level. The building blocks made available by a process design kit are used by the designer to build a deterministic circuit 

model, depending on a set of random parameters. During simulations, the value of these parameters is sampled according 

to their probability density function and the circuit simulator is used iteratively to compute the response of the designed 

circuit for each sample exploiting the deterministic model (e.g. scattering matrices) included in each building block. The 

number of simulations depends on the problem, but it is generally smaller than few hundreds. This pool of initial Monte 

Carlo simulations is used to correctly approximate the stochastic behavior of the circuit through a generalized polynomial 

chaos expansion. This approach is obviously circuit-specific and has to be carried out each time the layout of the circuit 

changes. 

 

Figure 1. (a) Typical approach for the stochastic analysis of photonic circuit exploiting standard process design kits, Monte 
Carlo simulations and nonintrusive generalized polynomial chaos approximation. (b) Computation of the stochastic 
behavior of the circuit exploiting the proposed stochastic process design kits. In both cases PDK and stochastic PDK are 
circuit independent 

In this work, the generalized polynomial chaos expansion is exploited in conjunction with the stochastic Galerkin method 

to efficiently build BB’s model (augmented macro-models) directly embedding their statistical behavior. This new models 

retain the form of transmission or scattering matrices, are circuit independent and can be stored and replace the original 

deterministic models of the building blocks in the process design kit [see Fig.1(b)]. The augmented macro-models can 

hence combined according to the circuit connections to derive with a single deterministic simulation run an augmented 

matrix description of the whole circuit. The obtained gPC coefficients are related to the stochastic moments of the circuit 

such as mean, variance and Probability Density Function of a desired quantity of interest. Using this approach, we 

demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) 



 

 
 

 

 

 

library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first 

time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation 

only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical 

Monte Carlo analysis are verified by means of a two-stage Mach-Zehnder filter with multiple uncertain variables. 

2. POLYNOMIAL CHAOS BACKGROUND  

The finite-variance stochastic process Y depending on a vector of normalised random variables 𝛏⃗ can be described as a 

summation of basis functions φi(𝛏⃗) with suitable coefficients 𝑦𝑖  as [14] 

 
Y(𝛏⃗) =  ∑ yiφi(𝛏⃗).

∞

i=0

 (1) 

In this expression, 𝛏⃗ = [ξ1, ξ2, …,ξN] are independent standard normal random variables, N is number of uncertain 

parameters and φi are the orthonormal polynomials with respect to the probability measure W(ξ⃗) as 

 
〈φi(𝛏⃗), φj(𝛏⃗)〉 =  ∫ φi(𝛏⃗) φj(𝛏⃗)W(ξ⃗)dξ⃗ = δij, (2) 

  

where δij is the Kronecker delta. The construction of the gPC expansion (1) requires the following three-step process. The 

first step is to calculate the orthogonal polynomials. The second step is to truncate the series to a finite order, and last is to 

compute the gPC coefficients yi. If the random variables 𝛏⃗ are independent, the corresponding basis functions φi(𝛏⃗) can 

be computed as product combinations of the orthogonal polynomials corresponding to each individual random variable ξi. 

It is important to note that for random variables with specific distributions (i.e., Gaussian, Uniform and Beta), the basis 

functions are the polynomials described by the Wiener-Askey scheme [14]. For example, in the Gaussian PDF case, the 

basis functions are the Hermite polynomials. Consequently, equation (1) can be truncated for computational purposes. 

Considering all N-dimensional Hermite polynomials of order P, the response may be approximated as 

 
Y(𝛏⃗) =  ∑ yiφi(𝛏⃗).

M

i=0

 (3) 

The number of gPC basis function M in equation (3) with the order of the expansion P and the number of random 

variables N is 

 
M + 1 =

(N + P)!

N! P!
. (4) 

After determination of basis functions and truncation of the series in equation (3), the M + 1 scaler coefficients yi can be 

computed. In this work, to calculate the gPC coefficients yi we have used the linear regression technique in which all the 

gPC coefficients are calculated solving a least square system.  

  
𝚿𝐲𝐢 = 𝐑.  

(5) 

Equation (5) is calculated for an initial small pool of K Monte Carlo simulations of the normalized random variables 𝛏⃗, 

indicated as [𝛏⃗𝐣]1

K
. The jth row of the matrix 𝚿 contains the multivariate polynomial basis evaluated at 𝛏⃗𝐣 and the matrix 𝐑 

represents the corresponding set of stochastic response values of process under consideration. The main feature of the gPC 

expansion is the efficient representation of the system variability: stochastic moments of Y, such as its mean µ and 

variance 𝜎2, can be analytically computed as  

 µ =  y0, (6) 
 

σ2 =  ∑ yi

M

1

〈φi(𝛏⃗), φi(𝛏⃗)〉. (7) 

Apart from the first moments, complex stochastic information of  Y, such as the probability density function (PDF) and the 

cumulative density function (CDF), can be computed following standard analytical formulae or by applying Monte Carlo 

sampling on the gPC approximation (3). In this work, we consider the complex frequency response (transfer function) of 



 

 
 

 

 

 

photonic circuits as the stochastic process Y, which can be handled by considering equation (3) for each wavelength and 

calculating the coefficients 𝐲𝐢 as wavelength dependent.  

3. AUGMENTED SYSTEM FOR THE BUILDING BLOCKS 

The polynomial chaos formalism described in the previous section is exploited here to create an augmented-macro model 

of a building block embedding its stochastic behavior. For a given building block, a scattering matrix represents a 

convenient way to describe the relation between the complex amplitude of the input waves and the complex amplitude of 

the output waves. In this formalism, the behavior of a system with np ports can hence be expressed as  

 𝐛⃗ =  𝐒⃗𝐚⃗⃗, ( 9) 

where vectors 𝐚⃗⃗  ∈  ℂnp×1  and 𝐛⃗  ∈  ℂnp×1 are the complex input and output at all the np ports and 𝐒⃗  ∈  ℂnp×np  is the 

matrix containing scattering parameters of building block. If the building block described by the scattering matrix depends 

on a set of random variables 𝛏⃗, equation (9) becomes 

 𝐛⃗(𝛏⃗) =  𝐒⃗(𝛏⃗)𝐚⃗⃗(𝛏⃗). (10) 

Using the gPC expansion (3), the wave relation (10) becomes 

 

∑ 𝐛⃗iφi(𝛏⃗)

M

i=0

=  ∑ ∑ 𝐒⃗i𝐚⃗⃗jφi(𝛏⃗)φj(𝛏⃗)

M

j=0

,

M

i=0

 (11) 

where 𝐚⃗⃗i, 𝐛⃗i and  𝐒⃗i are now the polynomial chaos coefficients of the input and output wave amplitudes and of the building 

block scattering parameters for each port, respectively. A non-intrusive approach can be used to obtain the gPC coefficient 

𝐒⃗i of a given building block similar to the method described in Section 2. In order to build the augmented scattering matrix 

of building block, using Galerkin method, projecting equation (11) on to the 𝑝th gPC basis function φp gives 

 

𝐛⃗p
k =  ∑ ∑ 𝐒⃗i𝐚⃗⃗j 〈φi(𝛏⃗) φj(𝛏⃗),  φp(𝛏⃗)〉

M

j=0

,

M

i=0

 (12) 

where the elements 𝐛⃗p
k represent the 𝑝th gPC coefficient at the 𝑘th port (𝑘 = 1 … 𝑛𝑝) for the output wave. The factors 

〈φi(𝛏⃗) φj(𝛏⃗),  φp(𝛏⃗)〉 arises in equation (12) are real scalar numbers and can be computed analytically solving multi-

dimensional integrals and stored. Repeating this operation for all the M + 1 gPC basis functions lead to  

 𝐛⃗𝐏𝐂 =  𝐒⃗𝐏𝐂𝐚⃗⃗𝐏𝐂. (13) 

The vectors 𝐚⃗⃗PC ∈ ℂ(M+1)np×1 and 𝐛⃗PC ∈ ℂ(M+1)np×1 contains the gPC coefficient of input and output waves respectively, 

while the augmented matrix  𝐒⃗PC ∈ ℂ(M+1)np×(M+1)np  of the building block is the weighted combination of gPC 

coefficients. Equation (13) describes the "augmented model" of the building block which depends on the considered 

random variables. It is important to mention that 𝐒⃗PC is still a unitary and loss-less scattering matrix and the use of 

orthonormal gPC basis functions preserves the symmetry. The augmented scattering parameters 𝐒⃗PC can be used to 

generate the stochastic scattering parameters. The gPC coefficients are contained in the augmented matrices. It can be seen 

from the definition of augmented matrices (12) that the entries of the first row of an augmented matrix contain the 

corresponding expansion coefficients. Next, the procedure can be repeated for all the needed frequency points in a given 

frequency range to obtain frequency-dependent augmented models 𝐒⃗𝐏𝐂(𝐟𝐥) for l = 1, … , L.  

 

The library of building blocks modeled by frequency-dependent augmented matrices in form of equation (6) realize a 

Stochastic Process Design Kit. Using standard procedures [2], the BBs augmented scattering matrices can be combined 

according to the circuit layout with a single simulation run of available deterministic circuit simulators and the stochastic 

behavior of any arbitrary circuit is obtained.  

4. CASCADED MACH-ZEHNDER FILTER 

In this section, the proposed approach is applied to compute the augmented models of two different building blocks, that 

are a directional coupler (BBK) and a waveguide (BBW), that are exploited to analyze the stochastic behaviour of a two-

stage Mac-Zehnder filter. To build the second-order Mach-Zehnder filter, we use the two building blocks as schematically 

shown in Fig. 2(a). We consider as a reference a standard silicon-on-insulator technology. The nominal design of the filter 



 

 
 

 

 

 

was obtained with the synthesis technique described in reference [15]. The Mach-Zehnder filter has a nominal 3-dB 

bandwidth of BWo = 62 GHz and the corresponding coupling coefficients for the three directional couplers are  K1 =
K3  =  0.865 and  K2 = 0.532, with an in-band isolation larger than 20 dB. For the directional coupler building blocks, the 

considered nominal gap distance is gi = 0.3 µm. For the waveguide building blocks the nominal waveguide width is Wi =
407.7 nm and thickness is 220 nm, corresponding to an effective and group indices of about 2.23 and 4.402. Both 

building blocks have the same unbalance lengths of 680.8 μm, corresponding to a free spectral range of 100 GHz.  Figure 

2(b) shows the ideal transfer function of the Mach-Zehnder filter at the bar (bold black) and the cross (bold red) ports 

respectively. Although these results already represent high-quality designs, they do not take into account the unavoidable 

process variations affecting real fabricated circuits. For BBw the waveguide width (∆W𝑖) and for BBK  the gap (∆g𝑖) of the 

couplers are assumed as independent standard Gaussian distributed random variable with standard deviation 𝜎W = 10 pm 

and 𝜎g = 5 nm respectively. Figure 2b shows, in addition to the nominal response, several spectral transfer function of the 

Mach-Zehnder filter at bar and cross ports (grey lines) obtained for reference by classical Monte Carlo analysis. It can be 

clearly seen that the transfer function of the original nominal design (bold lines) is largely distorted even is the case small 

considered uncertainty, with fluctuations of both the pass band and the in-band isolation. 

 

As a first step, the augmented macro-models of these two building blocks are calculated once and stored as described in 

section 3. The complex frequency response (transfer function) of the photonic circuit is considered as the stochastic process 

under investigation. In order to calculate the augmented macro-models, we computed the following steps:  

1. The gPC model of the directional coupler (BBK) and the waveguide (BBW) are calculated for 250 wavelength 

samples between 1.549 µm and 1.551 µm in the form of equation (11) considering the order of expansion P = 2 

and a number of uncertain parameters N = 1. The gap of the coupler and the waveguide width are the uncertain 

parameter for  BBK and BBW respectively. The random parameters are modelled with Gaussian random variables 

and corresponding basis functions are Hermite polynomials. The gPC coefficients are calculated with  K = 30 

Monte Carlo samples for each BB.  

2. The 𝐒⃗𝐏𝐂 Matrix in the form of equation (13) is built via Galarkin projection for both elementary BBs for each 

wavelength considering the uncertain parameters of the whole circuit. Both building blocks have 𝑛𝑝 = 2 ports. 

3. The matrices of the directional coupler and waveguides are combined to obtain the final matrix of the circuit. The 

first row of the final matrix contains the coefficient of gPC approximation of whole circuit.   

The obtained wavelength-dependent gPC coefficients allow to calculate the stochastic moments, such as mean and variance 

using equations (6) and (7). Stochastic functions such as the probability density function (PDF) and the cumulative density 

function (CDF) can be computed following standard analytical formulae or by applying Monte Carlo sampling on the gPC 

approximation (14) of the circuit. 

 
S⃗⃗(λ, ξ⃗) =  ∑ 𝐒⃗PC

i0

M

i=0

(λ)φi(𝛏⃗). (8) 

 

Since BBK and BBW are used three and two times, respectively, and they are considered independent of each other, for  the 

whole circuit the number of random variables is N = 5. This makes the size of the augmented matrix BBW 42 × 42 with 

M = 21, np = 2 and BBK 84 × 84 with np = 4 and same M. The BBK and BBW  are combined accordingly to build an 

augmented matrix description of the whole circuit in which first row or column contains the gPC coefficients. Using these 

coefficients the gPC approximation in form of equation (14) is obtained.  
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Figure 2: (a) Schematic of the second-order Mach-Zehnder filter (b) Transfer function of the Mach-Zehnder filter at the 
bar (black) and the cross (red) ports for the nominal design. Thin grey lines show the effect of fabrication uncertainties 
on the waveguide widths and the gap of couplers 

 

  
Figure 3: Comparison between (a) the mean and (b) the standard deviation of the magnitude of drop (black colour) and 
through (red colour) port of the filter obtained with the BB-PCE (blue dashed-dotted line), MC analysis (solid line) and 
the PC-based method (circles). The MC analysis is carried out using 104samples, the PC-based analysis is carried out 
using 80 samples and 30 samples are used for the proposed BB-PCE method.  

Using the proposed method (BB-gPC), the circuit statistical behavior is computed in terms of mean and variance with only 

one single simulation. A comparison between the direct Monte Carlo, classical gPC analysis and BB-gPC is shown in 

Figure 3 and 4. For both classical gPC and BB-gPC, the probability density function of any quantity of interest can be 

obtained by Monte Carlo sampling of the approximation of the circuit at a negligible computational cost. We used 104 

samples for every Monte Carlo analysis. To build the gPC approximation through the classical approach in the form of 

equation (3) [see Section 2] we used K = 80 samples for linear regression at the output ports (bar and cross in Fig.1a) at 

each wavelength. Figures 3a and 3b shows the mean and the standard deviation of the transmission at the bar (black) and 

the cross (red) ports of the filter. Blue dash-dot lines represent the result obtained by the proposed technique while full line 

and circles shows the result obtained using Monte Carlo and gPC analysis, respectively. The BB-gPC method is in good 

agreement compared with the classical MC and gPC analysis in computing mean and standard deviation of the circuit. 

Figure 4a describes the probability density function of the intensity transfer function at the bar (black color) and the cross 

port (red color) of the filter at a wavelength around 1.5493 µm (shown by a black marker in Fig. 2b) and  1.5495 µm 

(b) 



 

 
 

 

 

 

(shown by red marker in Fig. 2b) respectively.  Blue desh-dot line represents proposed techiniqe while full line and circles 

shows the results of classical MC and gPC respectively. Note that the cross port of the filter suffers from a broader deviation 

of the intensity, while the bar port is more robust for the same process uncertainties. The obtained gPC approximation (14) 

can be used to perform the analysis of other desired quantities of interest, for example the 3-dB bandwidth of the filter. 

The transfer functions obtained with MC analysis on the original circuit and on both classical gPC and BB-gPC 

approximations are used to calculate the PDF of the 3-dB bandwidth of the filter at the bar port as shown in Fig. 4b. It is 

interesting to note that the bandwidth PDF is asymmetric and this behaviour is consistently described with all the three 

considered methods. The results obtained with all the three methods are in good agreement demonstrating that the BB-

gPC provides reliable results not only for simple stochastic moments such as mean and variance but also for complex 

stochastic moments as the probability density function of any quantity of interest. 

 
 

Figure 4: (a) PDF of the intensity transfer function at the bar (black colour) and cross (red colour) ports of the filter 
at a wavelength around 1.5493 µm (shown by a black marker in Fig. 4b) and  1.5495 µm (shown by red marker in 
Fig. 4b), respectively. (b) PDF of the bandwidth at bar port of the filter. Blue dash-dot line: PDF compute using the 
proposed BB-PCE method. Full line: PDF computed using the MC technique. Circles: PDF computed using the PC-
based method. 

The computational time of the test case described above is summarized in Table I. The Monte Carlo analysis took about 

11 hours while classical gPC technique took around 5 minutes and 26 seconds using 80 samples. On the contrary, the 

proposed method required 3 minutes 9 seconds to compute gPC model using initial 30 samples for each BB  in form of 

equation (7). This computation is required to be performed only once and used to obtain the statistical information of any 

circuit layout. The actual computational cost to retrieve the gPC approximation of the entire circuit is only 5.6 seconds. 

 

Table 1: Efficiency of BB-gPC 

Technique Computational time 

Frequency domain MC analysis [104 samples] 10 hour 58 minutes  

gPC analysis [80 samples] 5 minutes 26 seconds 

BB-gPC analysis 5.6 seconds 

Preparation of stochastic models of BBs (one-time ) 3 minutes and 9 seconds  

5. CONCLUSION 

In this paper, stochastic process design kits for efficient variability analysis of arbitrary photonic circuit using building 

block approach is presented. In the proposed framework the generalised polynomial chaos expansion is exploited in 

conjunction with the stochastic Galerkin method to efficiently build augmented macro-models of each BB directly 

embedding their statistical behaviour. Such augmented macro-model is calculated once and stored in BB library. Using 



 

 
 

 

 

 

these augmented BB models, stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation 

only, without the need for repeated simulations. The efficiency and flexibility of the framework are illustrated using a 

relevant numerical example. 
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