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Abstract: 21 

We provide qualitative and quantitative assessment of the results of a grid 22 

convergence study in terms of (a) the rate/order of convergence and (b) the Grid 23 

Convergence Index, GCI, associated with the numerical solutions of Moment 24 

Equations (MEs) of steady-state groundwater flow. The latter are approximated at 25 

second order (in terms of the standard deviation of the natural logarithm, Y, of 26 

hydraulic conductivity). We consider (i) the analytical solutions of Riva et al. (2001) 27 

for steady-state radial flow in a randomly heterogeneous conductivity field, which 28 

we take as references; and (ii) the numerical solutions of the MEs satisfied by the 29 

(ensemble) mean and (co)variance of hydraulic head and fluxes. Based on 45 30 

numerical grids associated with differing degrees of discretization, we find a 31 

supra-linear rate of convergence for the mean and (co)variance of hydraulic head 32 

and for the variance of the transverse component of fluxes, the variance of radial 33 

fluxes being characterized by a sub-linear convergence rate. Our estimated values of 34 

GCI suggest that an accurate computation of mean and (co)variance of head and 35 

fluxes requires a space discretization comprising at least 8 grid elements per 36 

correlation length of Y, an even finer discretization being required for an accurate 37 

representation of the second-order component of mean heads. 38 

Keywords: stochastic moment equations; groundwater flow; grid convergence 39 

index; Richardson extrapolation.  40 



1. Introduction 41 

Modeling of groundwater flow in natural aquifer systems is affected by a variety 42 

of sources of uncertainty. In this context, our incomplete knowledge of spatial 43 

distributions of hydrogeological attributes, such as hydraulic conductivity, inevitably 44 

propagates to results of numerical models. A convenient way to deal with such 45 

uncertainty is to conceptualize system attributes as random spatial fields, thus 46 

leading to a stochastic description of groundwater flow and/or transport. 47 

In this context, a wide range of stochastic approaches are available including, e.g., 48 

techniques based on numerical Monte Carlo simulations and moment differential 49 

equations (or moment equations, MEs). Our study is focused on moment 50 

differential equations of fully saturated steady-state confined groundwater flow (see, 51 

e.g., Tartakovsky and Neuman, 1997; Zhang, 2002; Li and Tchelepi, 2003, 2004; Li 52 

et al., 2003; or Winter et al., 2003 for a review on moment differential equations for 53 

groundwater flow in highly heterogeneous porous media). The latter are 54 

deterministic equations rendering the (ensemble) moments of hydraulic head h(x) 55 

and Darcy flux q(x) at location vector x. Moment equations are obtained from the 56 

stochastic flow and mass conservation equations by integration in probability space. 57 

While the resulting system of MEs is almost never closed, closure approximations 58 

employed to make MEs workable are typically grounded on perturbation expansions 59 

(see also Section 2). Advantages of MEs-based approaches to groundwater flow as 60 

compared to numerical Monte Carlo (MC) simulations include the observation that 61 



MEs provide insights on the nature of the solution which can hardly be achieved 62 

through a MC framework. Additionally, MC-based approaches rely on numerical 63 

solutions of the flow equation across a collection of many detailed realizations of 64 

hydraulic conductivity to capture the effects of heterogeneity. In some cases, this can 65 

lead to high computational costs, which can hamper the efficiency of MC-based 66 

analyses. 67 

Moment differential equations of groundwater flow have been recently applied to 68 

field settings (Riva et al., 2009; Bianchi Janetti et al., 2010; Panzeri et al., 2015), to 69 

non-Gaussian fields (e.g., Hristopulos, 2006; Riva et al., 2017) and have been 70 

embedded in geostatistical inverse modeling approaches (Hernandez et al. 2003), 71 

stochastic pumping test interpretation (Neuman et al., 2004, 2007), or reactive solute 72 

transport (e.g., Hu et al., 2004). Most recent developments have allowed embedding 73 

stochastic MEs of transient groundwater flow in data assimilation/integration and 74 

parameter estimation approaches, e.g., via ensemble Kalman filter (Li and Tchelepi, 75 

2006; Panzeri et al., 2013, 2015). 76 

It can be argued that grids required to accurately represent the spatial distributions 77 

of inputs to MEs can be coarser than those associated with MC simulations, MEs 78 

being grounded on smoothed, ensemble mean parameters. Nevertheless, an 79 

assessment of the degree of approximation introduced by a given numerical grid 80 

employed to solve MEs is still lacking. In this context, it is noted that the full set of 81 

MEs (i.e., the equations governing the spatial distribution of ensemble mean or 82 



variance-covariance) for steady-state groundwater flow are characterized by the 83 

same mathematical format, while being associated with differing forcing terms (see 84 

also Section 2). As such, the nature of such forcing terms can play a main role in 85 

driving numerical grid convergence studies and results. 86 

While a number of grid refinement analyses have been conducted on subsurface 87 

flow and transport settings (see, e.g., Slough et al., 1999; Weatherill et al., 2008; 88 

Graf and Degener, 2011), these have mainly been framed in a deterministic 89 

modeling framework. As such, they yield only limited insights about the 90 

dependencies of numerical grid size on the main geostatistical descriptors of aquifer 91 

heterogeneity. Leube et al. (2013) provided guidance about the selection of the 92 

spatial resolution of a numerical grid employed to solve groundwater flow in 93 

randomly heterogeneous reservoirs in a MC context. These authors apportion the 94 

computational complexity of numerical MC simulations according to spatial and 95 

temporal grid resolution, as well as the number of realizations to be considered in 96 

the collection employed to evaluate statistics (or quantiles) of interest. Recently, 97 

Maina et al. (2018) compared several numerical approaches to simulate 98 

breakthrough curves of solute concentrations measured during laboratory 99 

experiments performed on flow cells filled with various configurations of 100 

heterogeneous sands. Their results suggest that spatial discretization is significantly 101 

important to obtain accurate solutions in heterogeneous domains. 102 

The two main objectives of our study are the assessment of the order of 103 



convergence, p, and the analysis of the results of systematic grid convergence 104 

studies for numerical solutions of steady-state groundwater flow MEs. Quantities of 105 

interest are the (ensemble) mean of hydraulic head, h(x), and flux vector, q(x), as 106 

well as the corresponding spatial covariances. The qualities of the ensuing solutions 107 

are estimated through the Grid Convergence Index (GCI), which relies on a grid 108 

refinement error estimator grounded on the generalized Richardson extrapolation 109 

(Richardson, 1910; Richardson and Gaunt, 1927). As a reference against which 110 

solution accuracies of MEs are evaluated, we leverage on the analytical expressions 111 

developed by Riva et al. (2001) for leading statistical moments of h(x) and q(x) 112 

under steady-state convergent flow to a well operating in a bounded, randomly 113 

heterogeneous reservoir. 114 

This study is organized as follows. Section 2 illustrates the MEs we analyze. 115 

Section 3 presents the details of the convergence study for the MEs. Sections 4 and 5 116 

illustrate the set of numerical analyses and associated results, respectively. Section 6 117 

is devoted to our main conclusions. 118 

2. Theoretical Background for Moment Equations of steady-state groundwater 119 

flow 120 

Consider steady-state groundwater flow described by: 121 

( ) ( )=0
( ) ( ) ( )

x f
K h

−∇ ⋅ + 
= − 

q x x
q x x x  (1) 122 

subject to boundary conditions 123 

( ) ( )h H=x x  D∈Γx  (2) 124 



[ ]( ) ( ) ( )Q− ⋅ =q x n x x   N∈Γx  (3) 125 

Here, x is the vector of spatial coordinates within domain Ω ; x∇ ⋅ is the spatial 126 

gradient operator; ( )f x  is a (generally random) forcing term; ( )K x  is hydraulic 127 

conductivity; ( )n x  is the unit vector normal to Neumann boundary NΓ ; ( )Q x  is 128 

the (typically random) flux along NΓ ; ( )H x  is a random head along Dirichlet 129 

boundary DΓ . 130 

For simplicity, we consider ( )f x , ( )H x  and ( )Q x  as deterministic in our 131 

analyses. Hydraulic conductivity ( )K x  is taken to be a random spatial field, its 132 

fluctuation about the (ensemble) mean ( )K x  being expressed as 133 

' ( ) ( ) ( )K K K= −x x x . We introduce ' ( ) ( ) ( )h h h= −x x x  as the random 134 

fluctuation of hydraulic head, ( )h x , about (ensemble) mean, ( )h x . One can then 135 

recast (1)-(3) as 136 

' ' ' '[ ( ) ( ) ( ) ( )+ ( ) ( ) ( ) ( )] ( )=0x x x x xK h K h K h K h f∇ ⋅ ∇ + ∇ ∇ + ∇ +x x x x x x x x x (4) 137 

subject to boundary conditions 138 

'( ) ( ) ( )h h H+ =x x x  D∈Γx  (5) 139 

'

' ' '
( ) ( ) + ( ) ( ) ( ) ( )

+ ( ) ( ) + ( ) ( )
x x

x x

K h K h Q
K h K h

 ∇ ∇
⋅ = ∇ ∇ 

x x x x n x x
x x x x   N∈Γx  (6) 140 

Taking ensemble averages of (4)-(6) yields exact equations satisfied by ( )h x  141 

(see, e.g., Guadagnini and Neuman, 1999a; Zhang, 2002). Following these authors, 142 

it is then possible to obtain exact equations satisfied by the covariance of heads 143 

and/or the cross-covariance between conductivity and heads, as well as expressions 144 

for the covariance tensor of flux. A strategy to solve these (deterministic) MEs relies 145 



on expanding all moments appearing in them in terms of a small parameter Yσ , 146 

representing the standard deviation of the natural logarithm of hydraulic 147 

conductivity, i.e.,  ln( ) ( )Y K=x x . We then obtain a set of recursive approximations 148 

of the otherwise exact MEs which we can solve up to a given order (expressed in 149 

terms of powers of Yσ ). Each equation rendering a given order of approximation of 150 

a moment of interest is then local in space. In the following sections, we summarize 151 

the main formulations associated with the equations satisfied by low order 152 

approximations of ensemble mean and covariance of hydraulic heads and fluxes. 153 

Further details about the complete derivation of such equations are included, e.g., in 154 

Guadagnini and Neuman (1999a) and Zhang (2002). 155 

2.1 Zero-order mean head and flux 156 

The equation for the zero-order mean head (0) ( )h x  is expressed as: 157 

(0)( ) ( ) ( )=0x G xK h f ∇ ⋅ ∇ + x x x   (7) 158 

subject to boundary conditions: 159 

(0) ( ) ( )h H=x x  D∈Γx  (8) 160 

( ) ( ) ( ) ( )0 Q − ⋅ = q x n x x  N∈Γx  (9) 161 

Here and in the following, superscript (i) identifies terms that are strictly of order i 162 

(in terms of powers of Yσ ), ( )( ) Y
GK e= xx  is the geometric mean of ( )K x , and 163 

( ) ( )0 (0)( ) ( )G xK h= − ∇q x x x  is the zero-order mean flux vector. 164 

2.2 Second-order cross covariance between head and conductivity 165 

Multiplying Eqs. (4-6) by ' ( )K y , taking expectation and expanding the resulting 166 



equations yield the following equations for the second-order approximation of the 167 

cross covariance of head and conductivity, ( ) ( ) ( )22 ' ', ( ) ( )u K h=y x y x : 168 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0, , =0x G G YxK u K C ∇ ∇ −⋅ x y x y x xqy  (10) 169 

subject to boundary conditions: 170 

( ) ( )2 , 0u =y x  D∈Γx  (11) 171 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0, , 0G G YxK u K C ∇ − ⋅ = qx y x y x y x n x  N∈Γx  (12) 172 

Here, ( ) ' ', ( ) ( )YC Y Y=x y x y  is the covariance of Y between locations x  and y  173 

in the domain. 174 

2.3 Second-order head covariance 175 

Multiplying Eqs. (4-6) by head fluctuation ' ( )h y , taking expectation and 176 

expanding the resulting equations yield the following equations for the second-order 177 

head covariance, ( ) ( ) ( )22 ' ', ( ) ( )hC h h=y x y x : 178 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 0, , =0x xG h xK C u h ∇ ∇ ⋅ + ∇x y x x y x
 (13) 

179 

subject to boundary conditions: 180 

( ) ( )2 , 0hC =y x  D∈Γx  (14) 181 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 0, , 0G h xxK C u h ∇ + ∇ ⋅ = x y x x y x n x  N∈Γx  (15) 182 

where ( ) ( ) ( )22 ' ', ( ) ( )u K h=x y x y  is given by Eqs. (10)-(12). 183 

2.4 Second-order mean head and flux 184 

The equation satisfied by the second-order mean head ( ) ( )2h x  is: 185 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 0 2 =0
2

Y
x G x xK h hσ  

∇ ∇ + ∇ −  
  

⋅ x x x r x  (16) 186 

subject to boundary conditions: 187 



( ) ( )2 0h =x  D∈Γx  (17) 188 

( ) ( ) ( )2 0  ⋅− =x n xq  N∈Γx  (18) 189 

Here, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 0 2

2
Y

G x xK h hσ 
= − ∇ + ∇ + 

 
x x x xq r x  and 190 

( ) ( ) (2 2) ( , )xu∇= −r x xx  are a second-order mean flux vector and the residual flux, 191 

respectively. 192 

We evaluate the second-order residual flux by taking the limit for →y x  of the 193 

negative of (2) ( , )xu∇ y x , as: 194 

( ) ( ) ( ) ( )2 2lim ,
y x xu→

 = −∇ r x y x  (19) 195 

where ( ) ( )2 ,u y x  is given by Eqs. (10)-(12). 196 

We note that Guadagnini and Neuman (1999a, b) relied on a strategy based on a 197 

Green’s function approach to compute the second-order residual flux, which is 198 

expressed as ( ) ' ' T (0) (2 0)( ) ( ) ( ) ( ) ( ) ( , ) ( )G G x y yK K Y Y G h dy
Ω

= ∇ ∇ ∇∫x x y x y y x yr , 199 

subscript T  representing transpose, and (0) ( , )G y x  being the zero-order mean 200 

Green’s function associated with the flow problem (see Guadagnini and Neuman, 201 

1999a, for details). This approach has then been employed in subsequent studies 202 

(e.g., Ye et al., 2004). It is apparent that the main computation cost associated with 203 

this scheme stems from the need to solve the equation satisfied by (0) ( , )G y x  for 204 

a number of times corresponding to the number of computational nodes in domain 205 

Ω , evaluating the corresponding partial derivatives, and then performing integration 206 

over Ω . Computational times associated with this approach are then exacerbated 207 

when considering transient flow (see Ye et al., 2004). All of these aspects constitute 208 



a limitation when considering inverse modeling for geostatistical aquifer 209 

characterization based on Moment Equations. This is the key motivation for which 210 

we resort here to Eqs. (10)-(12), and (19) to evaluate ( ) ( )2r x  at a much reduced 211 

computational effort. 212 

2.5 Second-order tensor of flux covariance 213 

The second-order flux covariance tensor ( ) ( ) ( )22 ' ' T, ( ) ( )q =C yx q q yx  satisfies 214 

the following equation: 215 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2T

0 0T

0 2T

2 0T

, [ ,
,

,

, ]

q G G x y h

x y Y

x y

x y

K K C
h h C

h u

u h

= ∇ ∇

+∇ ∇

+∇ ∇

+∇ ∇

x x x
x x

x x

C y y y
y y

y

y yx

 (20) 216 

Solutions of Eqs. (7)-(15) constitute the inputs to (20). 217 

2.6 Numerical approach 218 

Evaluation of the statistical moments introduced above is performed in a 219 

sequential way. We start by computing the zero-order mean head, (0)h , through 220 

Eqs. (7-9). Note that all other quantities of interest depend on (0)h . The 221 

zero-order mean flux, (0)q , is obtained through Darcy’s law using the derivatives 222 

of the numerical approximation of (0)h . Neither (0)h  nor (0)q  depend on 223 

the covariance of Y. 224 

The second-order cross covariance between head and conductivity, (2) ( , )u y x , is 225 

obtained by solving (10-12) and depends on the covariance of Y and on (0)q . 226 

Quantities such as ( )2h , (2)q , and ( )2
hC  depend strongly on (2)u . The latter 227 



must then be computed accurately and grid discretization should be fine enough to 228 

properly describe the contribution of the covariance function of Y to (2)u . In other 229 

words, if the distance between two adjacent nodes on the computational grid is 230 

larger than the correlation length of Y, the covariance function in Eq. (10) between 231 

such nodes will tend to vanish. This would in turn lead to a poor approximation of 232 

(2)u , thus impacting on the quality of the results associated with all quantities that 233 

depend on (2)u . 234 

From a numerical point of view, Eqs. (7), (10), (13), and (16) share the same 235 

format, i.e., all of them can be cast in terms of the divergence of the gradient of a 236 

given moment multiplied by GK , under the action of a sink/source term. Thus, their 237 

discretization leads to systems of equations where the coefficients of the unknown 238 

quantities are identical, the right-hand side (i.e., the force term) depending on the 239 

moment to be solved. In this context, one can resort to a direct solver, which allows 240 

for the transformation (factorization) of the matrix containing the coefficients of the 241 

system of equations. This transformation is performed only once and the 242 

transformed matrix enables one to solve the system of equations in a very efficient 243 

way, because only the right-hand side needs to be updated depending on the moment 244 

of interest. The MEs are here solved by linear Galerkin finite elements. 245 

3. Grid Convergence for Moment Equations 246 

We take the analytical solutions of moments of steady-state flow to a well of Riva 247 

et al. (2001) as the exact results, exactF , against which the quality of numerical 248 



solutions of the MEs illustrated in Section 2 is assessed. We focus on requirements 249 

for grid convergence of the equations satisfied by (0) ( )h x , (2) ( , )u y x , (2) ( , )hC y x  250 

and (2) ( )h x . It is remarked that while the equations satisfied by these quantities 251 

are characterized by the same mathematical format, they are associated with 252 

differing forcing terms. The latter feature can influence the rate p of grid 253 

convergence which we examine in this study. 254 

A grid convergence/refinement study is a procedure that enables us to explore the 255 

effect of a given grid discretization level on the accuracy of the numerical solution 256 

of a target mathematical model. We estimate the orders p of grid convergence of the 257 

solutions of equations illustrated in Section 2 by the two procedures described in the 258 

following. 259 

3.1 Rate of Convergence 260 

We start by defining the quantity: 261 

( )( ) ( ) p
exactE F F C O pϑ ϑ ϑ= − = +  (21) 262 

where ϑ  is a metric representing grid spacing; and ( )E ϑ  is the error between the 263 

numerical solution ( )F ϑ  related to grid spacing ϑ  and exactF  (i.e., the exact 264 

solution), ( )O p  representing higher order terms. One can then estimate C and p in 265 

(21) from a linear regression on results obtained on multiple grids, according to: 266 

ln ( ) ln lnE C pϑ ϑ≈ +  (22) 267 

We follow Vassberg and Jameson (2010) and take 1 Nϑ = , N being the 268 

number of nodes (i.e. number of unknowns) of a given computational grid. The 269 



regression result typically depends on the number of grids used to perform the 270 

analysis. As we state in Section 4, our study relies on a total of 15 families of 271 

unstructured grids. Each family comprises a coarse, an intermediate and a fine grid, 272 

constructed according a constant/uniform grid refinement ratio. We then obtain a 273 

total of 3 values of ϑ  for each grid family. As such, we can perform regression to 274 

estimate C and p on the basis of 45 values of ( )E ϑ  for target moment and location 275 

in the domain. We do so for the set of (statistical) moments of interest (see Section 276 

4). 277 

3.2 Grid Convergence Index 278 

We note that, in general, exactF  is unknown, this being a key reason underpinning 279 

grid convergence studies. We consider three grid refinement levels for each of the 15 280 

grid families mentioned in Section 3.1 (see also Section 4), i.e., a coarse, an 281 

intermediate, and a fine level (hereafter termed cϑ , mϑ , and fϑ , respectively) and 282 

evaluate the corresponding (numerical) solutions ( )iF ϑ  = iF  (i = c, m, or f). One 283 

can then estimate p from (21) as: 284 

( )ln / lnc m

m f

F Fp
F F

ω
 −

≈   − 
  (23) 285 

where / /c m m fω ϑ ϑ ϑ ϑ= =  is a (constant) grid refinement ratio. High values of p 286 

correspond to high convergence rates. We can calculate 15 values of p in our 287 

analyses, one for each grid family we construct. We can also evaluate the quality of 288 

the convergence, based on the indicator (Stern et al., 2001): 289 

, ,m f c mµ ε ε= ; with ,c m c mF Fε = − ; and ,m f m fF Fε = −  (24) 290 



where one can distinguish among monotonic ( 0 1µ< < ) or oscillatory ( 0µ < ) 291 

convergence; and divergence ( 1µ > ). It is worth noting that values of µ  ≈ 1 292 

indicate that p  is close to zero (see (23)) which means that the numerical solution 293 

is not sensitive to the grid size. 294 

We then calculate a Grid Convergence Index (GCI) for each grid family. This 295 

index rests on the theory of the generalized Richardson extrapolation and provides a 296 

measure of grid convergence as well as an error band for the grid convergence of the 297 

solution (Roache, 1994) and is defined as 298 

( ),GCI 100%
1

k s
k s F p

s

F F
S

F ω
−

= ×
−

  (25) 299 

Here, ,GCIk s  is the grid convergence index corresponding to numerical solutions 300 

kF  and sF ; and FS  is a safety factor, which is typically set to 1.25 when 301 

three-grid levels are employed. 302 

4 Numerical analyses for radial flow configuration 303 

4.1 Numerical settings 304 

Consistent with the setting of Riva et al. (2001), we perform our grid 305 

convergence study on a two-dimensional domain formed by a circle of radius L  306 

(Figure 1a) and centered at the origin of a selected coordinate system. Domain 307 

discretization is implemented through an unstructured triangular mesh. Boundary 308 

conditions are of Dirichlet type and are considered as uniform and known (i.e., head 309 

is set to 0). A zero-radius well with a deterministic unit pumping rate is operating at 310 

the domain center. Hydraulic conductivity K(x) is considered as a (second-order 311 



stationary) spatial random field characterized by a Gaussian covariance function 312 

defined by: 313 

2
2

2

δ(δ) exp
4Y YC πσ
λ

 
= − 

 
 (26) 314 

where δ  separation distance (lag) between two locations, 2
Yσ  is the variance of 315 

( )Y x  and λ  the (isotropic) correlation scale. 316 

The accuracies of the numerical simulations are analyzed by comparison against 317 

the analytical solutions provided by Riva et al. (2001). These authors derived 318 

analytical solutions for second-order (statistical) moments of head and flux in terms 319 

of four-dimensional integrals. These are evaluated at given locations in the domain 320 

by Gaussian quadrature relying on 500 Gauss points. The moments of interest, i.e., 321 

(0)h , (2)h , 2(2)
hσ  and the components of (second-order) flux variance tensor, 322 

i.e., 2(2)
qrσ , 2(2)

qθσ , and 2(2) 2(2)
qr q rθ θσ σ= , are evaluated at 100rN =  (dimensionless) 323 

values of /r Lξ =  (r being distance from the well). These moments do not depend 324 

on the angular coordinate due to symmetry. The selected 100 values of ξ  are 325 

distributed according to a geometric progression, i.e., following an arithmetic 326 

progression of the log-transformed values of ξ , with ln(0.01) ≤ ξ  ≤ ln(0.99) and 327 

considering a constant increment of 1 ln 99
99

× . 328 

Since we rely on an unstructured mesh, we cannot take advantage of symmetry. 329 

The numerical solutions are computed at the above indicated rN  locations and at a 330 

set of 100Nθ =  angular coordinates (ranging according to 0 ≤ θ ≤ 99 / 50π , with 331 

a regular increment of / 50π ) for each radial distance. The ensuing rN Nθ×  332 



reference locations are depicted in Figure 1a, the spatial arrangement of ξ  values 333 

being depicted in Figure 1b for a given θ. 334 

The second-order head covariance (2)
hC  between locations (ξ ,θ ) and ( 'ξ , 'θ ) is 335 

symmetric with respect to either ( )'ξ ξ−  (when ' 0θ θ− = ) or ( )'θ θ−  (when 336 

' 0ξ ξ− = ). We consider three given 'ξ  values (i.e., 'ξ  = 0.2, 0.5, and 0.8) and 337 

define two sets of reference locations at which we compute head covariances. The 338 

first set corresponds to three locations having the same angular coordinate and 339 

differing radial coordinates. A second set is formed by three locations with the same 340 

radial coordinate and differing θ . In the following, we denote by ( )(2) '
1,hC ξ ξ , 341 

( )(2) '
2,hC ξ ξ  and ( )(2) '

3,hC ξ ξ  the solutions of the first set of reference points and by 342 

( )(2) '
1,hC θ ξ , ( )(2) '

2,hC θ ξ  and ( )(2) '
3,hC θ ξ  the corresponding solutions associated 343 

with the second set of reference points. 344 

The analytical solution for a given distance ξ  is compared to the 100 numerical 345 

solutions obtained at the same distance to the well and corresponding to differing 346 

values of θ . Numerical solutions are first calculated at the nodes of the triangular 347 

mesh and then projected (through linear interpolation) onto the closest reference 348 

locations where analytical solutions are evaluated. 349 

Solutions for means and variances are stored in a rN Nθ×  matrix S , whose 350 

entry ijS  is the numerical solution at radial coordinate iξ  and angular coordinate 351 

jθ . The size of the matrix associated with corresponding solutions for head 352 

covariances is r rN N×  or N Nθ θ×  for the two sets of reference points above 353 



illustrated, respectively. Entry ijS  of S  is then the numerical solution of head 354 

covariance at radial ( iξ  and jξ ) or angular ( iθ  and jθ ) coordinates, for the first 355 

and second set of reference points, respectively. 356 

Numerical errors are estimated through the root mean square error for a given iξ , 357 

i.e., 358 

( )
2

1

1 N
i a
r ij i

j
E S S

N

θ

θ =

= −∑   (27) 359 

and by way of the global quantity 360 

1

1 rN
i

r r
ir

E E
N =

= ∑  (28) 361 

ijS  and a
iS  being the numerical and the analytical solutions, respectively.  362 

4.2 Domain discretization and test cases 363 

We conduct our grid convergence study by relying on 15 grid families. The 15 364 

initial triangular meshes, each associated with a given element size (expressed as ζ= 365 

λ / ∆x in Table 1, ∆x being the grid size) and termed as coarse meshes, are generated 366 

with the public domain mesh generator Gmsh (Geuzaine and Remacle, 2009). These 367 

initial meshes are then refined by dividing each triangle into 4 regular sub-triangles 368 

to obtain the medium meshes (Table 1). The latter are further refined (using the same 369 

procedure) to obtain the fine meshes. MEs are then solved on the collection of 45 370 

different unstructured meshes listed in Table 1. Numerical simulations are hereafter 371 

termed as ,i jTC  (subscripts i  = 1, 2, …, 15, and j  = c, m, and f representing the 372 

grid family and the level of refinement, respectively). Note that the initial nodes 373 



employed during the generation of the coarse mesh in the ith family are then shared 374 

by the corresponding medium and fine meshes. Grid refinement also includes 375 

additional nodes, specifically employed to describe the domain boundary and 376 

generated as shown in Figure 2. 377 

Numerical solutions of the various (statistical) moments of interest are computed 378 

for a combination of values of GK  and 2
Yσ , and for /Lκ λ=  = 1, and 3.  379 

5. Results and Discussion 380 

5.1 Qualitative comparisons against analytical solutions 381 

Figure 3 juxtaposes the numerical and analytical solutions for the zero- ( (0)h ) 382 

and second- ( (2)h ) order mean heads, as well as second-order head variance ( 2(2)
hσ ) 383 

for 1,cTC  and 15, fTC , respectively associated with the coarsest and finest grids 384 

considered. Corresponding comparisons for the components of second-order flux 385 

variance tensors are depicted in Figure 4. Figures 5 and 6 depict the results obtained 386 

for the two sets of head covariances corresponding to the reference points indicated 387 

in Section 4.1. As expected, numerical errors for the coarse mesh are visibly 388 

significant at locations characterized by marked spatial gradients of the solution (i.e., 389 

close to the well), the quality of the numerical results significantly increasing with 390 

the level of discretization. Values of the cross component 2(2)
qrθσ  are very small and 391 

fluctuating around their analytical counterpart, which is equal to zero (Riva et al., 392 

2001). It has to be noticed that errors are also associated with the required (linear) 393 

interpolations of the numerical solutions. This is especially critical close to the well 394 



where heads tend to vary in a way which is akin to a logarithmic trend. The Dirichlet 395 

boundary contributes to stabilize the numerical solution far from the well, 396 

independent of the discretization. The seemingly periodic fluctuations appearing for 397 

the head covariance associated with 1,cTC  (Fig. 6) are likely due to the combined 398 

effects of the interpolation and of the spatial structure of the grid. 399 

5.2 Grid convergence 400 

Figure 7 depicts ln rE  (28) versus the total number of nodes associated with each 401 

of the numerical grids employed, as rendered by ( )ln 0.5ln( )Nϑ = − . Straight 402 

(solid or dashed) lines are the results of (least square) linear regressions on 403 

numerical results. According to Eq. (21), the slopes of these regression lines 404 

correspond to estimates of the convergence orders (p) of the numerical solutions. 405 

The values of p and of the determination coefficients ( 2R ) of the regressions are 406 

listed in Table 2. 407 

Results included in Figure 7b and Table 2 show that numerical solutions for 408 

( )(2) '
1,hC ξ ξ , ( )(2) '

2,hC ξ ξ  and ( )(2) '
3,hC ξ ξ  are associated with virtually the same 409 

value of p, a similar observation holding also for the second set of head covariance 410 

solutions. With reference to the latter, we note that their associated convergence 411 

orders are higher than those we find for any of the (statistical) moments considered. 412 

This result is partially attributed to the observation that numerical solutions for 413 

( )(2) '
1,hC θ ξ , ( )(2) '

2,hC θ ξ  and ( )(2) '
3,hC θ ξ  are evaluated at positions apart from the 414 

pumping well (see the red plus symbols in Figure 1) and, as such, do not include the 415 



zone close to the pumping location where errors are highest. While the rate of 416 

convergence is supra-linear for the mean and (co)variance of hydraulic head and for 417 

the variance of the transverse component of fluxes, it is sub-linear for the variance 418 

of the radial component of fluxes. 419 

Quantification of grid convergence order across the whole domain in the absence 420 

of a reference analytical solution (as is the case in a variety of flow scenarios in 421 

natural heterogeneous aquifers) can be assessed through Eq. (23) at nodes where the 422 

numerical solutions are characterized by monotonic convergence conditions (i.e., 0 423 

< µ < 1; see Eq. (24)). In our study, we start by analyzing: 424 

* * 100%mc
i i iN Nα = ×   with i  = 1, 2, …, 15 (29) 425 

Here, subscript i denotes the grid family; iα  is the percentage of grid nodes where 426 

monotonic convergence is attained for a given statistical moment of interest; *mc
iN  427 

and *
iN  are the number of nodes associated with monotonic convergence condition 428 

and the initial number of nodes (i.e., the number of nodes in common to the coarse, 429 

medium and fine meshes), respectively. The dependence of iα  on the grid family 430 

for the various moments considered is depicted in Figure 8a. These results indicate 431 

that values of iα  for (2)h  are always close to 100%, while fluctuating around 90% 432 

for (0)h , 2(2)
hσ  and (2)

†hC  (the latter quantity is the head covariance solution at 433 

the reference point corresponding to coordinates (ξ, θ) ≡ (0.5, 0)). Figure 8b 434 

complements these results by depicting the values of p  computed as averages of 435 

the corresponding values of p calculated through Eq. (23) at the fraction of nodes 436 



depicted in Figure 8a. These results reveal that similar average values of p , i.e., 1.6 437 

≤ p  ≤ 1.9, are obtained for (0)h , (2)h , 2(2)
hσ  and (2)

†hC . These values are 438 

consistent with those listed in Table 2. 439 

A global appraisal of the grid convergence index ,GCIc m  (as calculated 440 

considering the coarse (c) and medium (m) mesh) for the whole domain can be 441 

obtained as the average of the nodal values of (25) computed at the *mc
iN  grid 442 

nodes. The dependence on the grid family of values of average ,GCIc m  (denoted as 443 

,GCIc m ) are depicted in Figure 8c. It is noted that values of ,GCIc m  decrease with 444 

increasing / xζ λ= ∆  (i.e., with decreasing grid size with respect to the correlation 445 

scale of Y) and converge to zero for all statistical moments. This finding implies that 446 

numerical convergence is attained, or, in other words, that a further mesh refinement 447 

does not lead to an improvement of the quality of the numerical results. As expected, 448 

we note that values of ,GCIc m  for the second-order components of the statistical 449 

moments analyzed generally display lower convergence rates as compared to (0)h . 450 

A significantly fine grid (in terms of number of grid nodes per correlation scale) is 451 

required to obtain accurate results for the second-order mean head, as compared to 452 

(0)h . Similar grid convergence behavior is observed for both L / λ = 1 and 3 (see 453 

the inset in Fig. 8c). On the basis of these results and Table 2, we note that grid 454 

convergence is achieved for / xλ ∆  ≥ 8 for all statistical quantities except for the 455 

second-order mean head (2)h  that attains grid convergence for / xλ ∆  ≥ 14 (for 456 

example, when considering (2)h  one can note that ,GCIc m  < 0.5% when / xλ ∆  457 



= 16). 458 

5.3 Dependence of numerical errors on the mean and variance of log-conductivities 459 

Here, we investigate the dependence on Y  and 2
Yσ  of the errors associated 460 

with the numerical solutions of the MEs. We do so by considering two settings, 461 

respectively corresponding to (i) Y  = − 2.3, − 0.7, 1.6, and 2.3 (corresponding to 462 

GK  = 0.1, 0.5, 5 and 10, in arbitrary consistent units) with 2
Yσ  = 1.0; and (ii) 2

Yσ  463 

= 2, 4, 6 and 8 with Y  = 0.0 (i.e., GK  = 1.0). We keep / 1Lκ λ= =  in both 464 

settings. 465 

Figures 9 and 10 depict the dependence of rE  (28) on Y  and ϑ  for the 466 

statistical moments considered. The error is significant for coarse meshes and low 467 

values of Y  for all moments of head considered. Because boundary conditions 468 

and well pumping rate are (deterministically) prescribed, low values of Y  give 469 

rise to marked head gradients and the linear interpolation employed tends to be 470 

ineffective. Errors associated with second-order flux variances appear to be 471 

insensitive to Y . The pattern of errors associated with head covariances is similar 472 

to the one observed for the mean and variance (compare Figures 9 and 10), the 473 

errors decreasing with the distance from the well. 474 

Figures 11 and 12 depict the dependence of rE  (28) on 2
Yσ  and ϑ  for the 475 

statistical moments considered, with the exception of (0)h , which is independent 476 

of 2
Yσ  (see Eq. (7)). One can see that rE  generally increases with 2

Yσ  and ϑ . 477 

The impact of 2
Yσ  is consistent with the formats of the moment equations (see Eqs. 478 



(10), (13), (16) and (20)) where 2
Yσ  appears as a multiplicative factor, thus 479 

potentially amplifying computational errors. For example, the head gradient in Eq. 480 

(10) is multiplied by 2
Yσ , thus amplifying (for 2

Yσ  > 1) the error due to the head 481 

gradient evaluation. 482 

6. Conclusions 483 

Values of grid convergence orders, p, of numerical solutions of moment 484 

equations (MEs) of steady-state groundwater flow are quantified. As test case, we 485 

consider convergent flow to a well taking place in a bounded randomly 486 

heterogeneous two-dimensional system and ground our results on comparisons 487 

between numerical solutions of MEs associated with multiple families of grids and 488 

the analytical solutions presented by Riva et al. (2001). 489 

Our study leads to the following major conclusions. 490 

1. The rate of convergence is (a) supra-linear for the mean and (co)variance of 491 

hydraulic head and for the variance of the transverse component of fluxes, 492 

and (b) sub-linear for the variance of the radial component of fluxes. 493 

Approximated values of average rate of convergence obtained by Eq. (23), 494 

relying on the use of numerical solutions of MEs associated with 495 

increasingly refined grids are consistent with their counterparts based on Eq. 496 

(22) and obtained as a linear regression on the errors between numerical and 497 

(reference) analytical solutions. Our results on grid convergence yield a 498 

pragmatic estimate of the accuracy improvement associated with the 499 



evaluation of a given target statistical moment of groundwater flow with 500 

respect to grid refinement. As shown in Table 2, grid convergence rate 501 

depends on the given statistical moment, being a critical element in the 502 

evaluation of the variance of the radial component of flux while denoting the 503 

fastest achievement of a desired accuracy level for hydraulic head 504 

covariances. These findings can assist modelers to optimally refine numerical 505 

grids to achieve the highest accuracy associated with the desired prediction 506 

goal depending on the available computational resources. 507 

2. The grid convergence index ,GCIc m  (see Eq. (25)) associated with all of the 508 

statistical moments considered is shown to converge to zero with increased 509 

grid refinement. Our results suggest that employing a grid spacing 510 

8x λ∆ ≤  yields accurate approximations of all moments considered, an 511 

enhanced grid refinement (i.e., x∆ /λ ≤ 1/14) being required to attain grid 512 

convergence only for the second-order mean head. 513 

3. Variations of log conductivity mean, GK , and variance, 2
Yσ , show no 514 

appreciable impact on the percentage of nodes where uniform convergence is 515 

attained, rate of convergence, or the value of ,GCIc m . In addition, decreasing 516 

GK  can yield increased solution errors for all computed statistical moments, 517 

with the exception of the components of second-order flux variance. 518 

Increasing 2
Yσ  can lead to enhanced solution errors for all of the 519 

second-order statistical moments considered. 520 



As noted above, our findings are associated with the particularly challenging 521 

scenario of flow driven by a pumping well, where grid refinement requirements are 522 

driven by the feedback between the geostatistical parameters of the randomly 523 

heterogeneous Y field and the degree of non-uniformity of the flow field. These 524 

results are associated with a strongly non-uniform flow condition and domain sizes 525 

(relative to the conductivity correlation length) which enable exploring the region of 526 

the domain where statistical moments of hydraulic head and fluxes are mostly 527 

affected by the action of the pumping well (see the analytical solution of Riva et al., 528 

2001). In this context, our findings can be considered as a basis upon which one can 529 

build future studies to ascertain the effect of conditioning (e.g., on available 530 

conductivity information) on the requirements associated with numerical grids 531 

employed for the solution of groundwater flow MEs under general (non-uniform) 532 

conditions. 533 
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Tables 
 

Table 1. Main characteristics of the 15 families of grids employed in the grid convergence study 

(here, ζ = λ / ∆x, λ and ∆x respectively being the correlation scale of the log-conductivity field 

(see Eq. (26)) and the grid size; N is the total number of nodes associated with a given grid). 

 

Grid family 
Coarse grid set Medium grid set Fine grid set 

ζ  N  ζ  N  ζ  N  

1 4 85 8 137 16 1345 

2 6 137 12 689 24 2375 

3 8 297 16 1185 32 4737 

4 10 449 20 1793 40 7169 

5 12 645 24 2577 48 10305 

6 14 849 28 3393 56 13569 

7 16 1153 32 4609 64 18433 

8 18 1389 36 5553 72 22209 

9 20 1749 40 6993 80 27969 

10 22 2085 44 8337 88 33345 

11 24 2469 48 9873 96 39489 

12 26 2885 52 11537 104 46145 

13 28 3273 56 13089 112 52353 

14 30 3881 60 15521 120 62081 

15 32 4437 64 17745 128 70977 



 
 

Table 2. Estimates of the convergence order (p) calculated through Eq. (21) on the basis of Fig. 7. Values of the determination coefficients ( 2R ) 

of the corresponding regressions are also listed. 

 

Moments (0)h  (2)h  2(2)
hσ  2(2)

qrrσ  2(2)
qθθσ  ( )(2) '

1,hC ξ ξ  ( )(2) '
2,hC ξ ξ  ( )(2) '

3,hC ξ ξ  ( )(2) '
1,hC θ ξ  ( )(2) '

2,hC θ ξ  ( )(2) '
3,hC θ ξ  

p  1.21 1.23 1.07 0.49 1.13 1.08 1.04 1.03 2.23 2.18 2.00 

2R  0.93 0.93 0.85 0.89 0.91 0.82 0.81 0.81 0.96 0.98 0.98 

 



Figures 

 

 

Figure 1. Flow domain and (a) spatial distribution of the reference points (, +), and 

(b) detailed locations of the 100 reference points () in log scale along a generic 

radius for the comparisons between analytical and numerical solutions of the MEs. 

The pumping well (• ) is located at the domain center. 

  



 

 

Figure 2. Details of the grid refinement at the domain boundary: (a) element e is 

divided into (b) 4 sub-elements ( le ; l = 1, 2, 3, 4) and two additional elements are 

generated, i.e., 5e  and 6e ). The additional node (denoted as 7) is located on the 

domain boundary at equal distance from nodes 2 and 3. 

  



 

Figure 3. Numerical and analytical solutions for the zero- ( (0)h ) and second- 

( (2)h ) order mean heads, together with second-order head variance ( 2(2)
hσ ) for (a, b, 

c) 1,cTC  and (d, e, f) 15, fTC . The dark blue solid curve represents the mean of the 

Nθ  numerical values calculated for a given radial coordinate, the light blue band 

describing the range of fluctuation of the solutions; the red solid curve represents the 

corresponding analytical solution. Results are depicted for L / λ = 1, 2
Yσ  = 1, and 

GK  = 1.  



 

 

Figure 4. Numerical and analytical solutions of (second-order) flux variances 2(2)
qrrσ , 

2(2)
qθθσ  and 2(2)

qrθσ  for (a, b, c) 1,cTC  and (d, e, f) 15, fTC . The dark blue solid curve 

represents the mean of the Nθ  numerical values calculated for a given radial 

coordinate, the light blue band describing the range of fluctuation of the solutions; the 

red solid curve represents the corresponding analytical solution. Results are depicted 

for L / λ = 1, 2
Yσ  = 1, and GK  = 1. 

  



 

Figure 5. Numerical and analytical solutions of head covariances ( )(2) '
1,hC ξ ξ , 

( )(2) '
2,hC ξ ξ , and ( )(2) '

3,hC ξ ξ  for (a, b, c) 1,cTC  and (d, e, f) 15, fTC . The dark blue 

solid curve represents the mean of the Nθ  numerical values calculated for a given 

radial coordinate, the light blue band describing the range of fluctuation of the 

solutions; the red solid curve represents the corresponding analytical solution. Results 

are depicted for L / λ = 1, 2
Yσ  = 1, and GK  = 1. 

  



 

Figure 6. Numerical and analytical solutions of the head covariance ( )(2) '
1,hC θ ξ , 

( )(2) '
2,hC θ ξ  and ( )(2) '

3,hC θ ξ  for (a, b, c) 1,cTC  and (d, e, f) 15, fTC . The dark blue 

solid curve represents the mean of the Nθ  numerical values calculated for a given 

radial coordinate, the light blue band describing the range of fluctuation of the 

solutions; the red solid curve represents the corresponding analytical solution. Results 

are depicted for L / λ = 1, 2
Yσ  = 1, and GK  = 1. 

  



 

Figure 7. Values of ln rE  (28) versus ( )ln 0.5ln( )Nϑ = −  for (a) (0)h , (2)h , 

2(2)
hσ , 2(2)

qrrσ , and 2(2)
qθθσ ; and (b) ( )(2) '

1,hC ξ ξ , ( )(2) '
2,hC ξ ξ  and ( )(2) '

3,hC ξ ξ  

( )(2) '
1,hC θ ξ , ( )(2) '

2,hC θ ξ  and ( )(2) '
3,hC θ ξ . Straight (solid or dashed) lines are the 

results of (least square) linear regressions on numerical results. Results are depicted 

for L / λ = 1, 2
Yσ  = 1, and GK  = 1. 

  



 

Figure 8. Values of (a) iα  (29); (b) p  (i.e., averages of the corresponding values of 

p calculated via Eq. (23)) at the fraction of nodes depicted in (a); and (c) average 

,GCIc m  (25), denoted as ,GCIc m , versus grid family identifier (see Table 1). Results 

are depicted for (2)h , (0)h , 2(2)
hσ  and (2)

†hC  (i.e., the head covariance for the 

reference point (ξ, θ) ≡ (0.5, 0)). Results are depicted for L / λ = 1, 3, 2
Yσ  = 1, and 

GK  = 1. 
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Figure 9. Dependence of rE  (28) on Y
GK e=  and ϑ  for mean and variance of 

heads and variance of fluxes. Results are depicted for L / λ = 1, and 2
Yσ  = 1. 

  



 

Figure 10. Dependence of rE  (28) on Y
GK e=  and ϑ  for (a) ( )(2) '

1,hC ξ ξ , (b) 

( )(2) '
2,hC ξ ξ , (c) ( )(2) '

3,hC ξ ξ , (d) ( )(2) '
1,hC θ ξ , (e) ( )(2) '

2,hC θ ξ , and (f) ( )(2) '
3,hC θ ξ . 

Results are depicted for L / λ = 1, and 2
Yσ  = 1. 

  



 

Figure 11. Dependence of rE  (28) on 2
Yσ  and ϑ  for mean and variance of heads 

and variance of fluxes. Results are depicted for L / λ = 1, and GK  = 1. 

  



 

Figure 12. Dependence of rE  (28) on 2
Yσ  and ϑ  for (a) ( )(2) '

1,hC ξ ξ , (b) 

( )(2) '
2,hC ξ ξ , (c) ( )(2) '

3,hC ξ ξ , (d) ( )(2) '
1,hC θ ξ , (e) ( )(2) '

2,hC θ ξ , and (f) ( )(2) '
3,hC θ ξ . 

Results are depicted for L / λ = 1, and GK  = 1. 
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