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Abstract. We investigate the regularity of the free boundary for a general
class of two-phase free boundary problems with non-zero right hand side. We
prove that Lipschitz or flat free boundaries are C1,γ . In particular, viscosity
solutions are indeed classical.

1. Introduction and main results

In this paper we consider two phase free boundary problems governed by uni-
formly elliptic equations with distributed sources. Our purpose is to investigate
the regularity of the free boundary under additional hypotheses such as flatness or
Lipschitz continuity. A model problem we have in mind is the following:

(1.1)






∆u = f, in Ω+(u) ∪Ω−(u),

(u+ν )
2 − (u−ν )

2 = 1, on F (u) := ∂Ω+(u) ∩ Ω.

Here, as usually for any bounded domain Ω ⊂ R
n,

Ω+(u) := {x ∈ Ω : u(x) > 0}, Ω−(u) := {x ∈ Ω : u(x) ≤ 0}◦,

and u+ν and u−ν denote the normal derivatives in the inward direction to Ω+(u) and
Ω−(u) respectively.

Typical examples are the Prandtl-Bachelor model in fluiddynamics (see e.g. [B1,
EM]), where f = 1Ω−(u), the characteristic function of the negative phase, or
the eigenvalue problem in magnetohydrodynamics (1,1) considered in [FL], where
f = λu. Other examples come from limits of singular perturbation problems with
forcing term as in [LW], where the authors analyze solutions to (1.1), arising in the
study of flame propagation with nonlocal effects.

The homogeneous case f ≡ 0 was settled in the classical works of Caffarelli
[C1, C2]. A key step in these papers is the construction of a family of continuous
supconvolution deformations that act as comparison subsolutions.

The results in [C1, C2] have been widely generalized to different classes of ho-
mogeneous elliptic problems. See for example [CFS, FS1, FS2] for linear opera-
tors, [AF, F1, F2, Fe1, W1, W2] for fully nonlinear operators and [LN] for the
p-Laplacian. All these papers follow the guidelines of [C1, C2].
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In [D], De Silva introduced a new strategy to investigate inhomogeneous free
boundary problems, motivated by a classical one phase problem in hydrodynamic.
This method has been successfully applied in [DR] to nonlocal one phase Bernoulli
type problems, governed by the fractional Laplacian. For another application of
the techniques in [D] see also [LT].

Here we extend the method in [D] to two phase problems to prove that flat (see
below) or Lipschitz free boundaries of (1.1) are C1,γ .

In order to better emphasize the ideas involved, we first develop the regularity
theory for free boundaries of viscosity solutions to problem (1.1) (see Section 2
for the relevant definitions), and then we extend our results to a more general
class of free boundary problems. For simplicity, in order to avoid the machinery
of Lp-viscosity solution, we assume that f is bounded in Ω and continuous in
Ω+(u)∪Ω−(u). Our results may be extended to the case when f is merely bounded
measurable.

We remark that in view of Theorem 4.5 in [CJK], a viscosity solution to (1.1)
is locally Lipschitz. In fact, as it can be easily checked, our viscosity solutions are
also weak solutions in the sense of Definition 4.4 in that paper and both ∆u± − f
are non negative Radon measures.

We now state our first main results. Here constants depending only on n, ‖f‖∞,
and Lip(u) will be called universal.

Theorem 1.1 (Flatness implies C1,γ). Let u be a (Lipschitz) viscosity solution to
(1.1) in B1. Assume that f ∈ L∞(B1) is continuous in B+

1 (u) ∪ B−

1 (u). There
exists a universal constant δ̄ > 0 such that, if

(1.2) {xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ},

with 0 ≤ δ ≤ δ̄, then F (u) is C1,γ in B1/2.

Theorem 1.1 still holds when (1.2) is replaced by other common flatness condi-
tions (see Subsection 6.3).

Theorem 1.2 (Lipschitz implies C1,γ). Let u be a (Lipschitz) viscosity solution to
(1.1) in B1, with 0 ∈ F (u). Assume that f ∈ L∞(B1) is continuous in B+

1 (u) ∪
B−

1 (u). If F (u) is a Lipschitz graph in a neighborhood of 0, then F (u) is C1,γ in a
(smaller) neighborhood of 0.

The proof of Theorem 1.1 is based on an improvement of flatness, obtained via
a compactness argument which linearizes the problem into a limiting one. The key
tool is a geometric Harnack inequality that localizes the free boundary well, and
allows the rigorous passage to the limit.

The main difficulty in the analysis comes from the case when u− is degenerate,
that is very close to zero without being identically zero. In this case the flatness
assumption does not guarantee closeness of u to an “optimal” (two-plane) config-
uration. Thus one needs to work only with the positive phase u+ to balance the
situation in which u+ highly predominates over u− and the case in which u− is not
too small with respect to u+.

Theorem 1.2 follows from Theorem 1.1 and the main result in [C1], via a blow-up
argument.

Sections 2 through 6 are devoted to the proof of the theorems above. In par-
ticular, in Section 2 we introduce the relevant definitions and some preliminary



lemmas. In Section 3 we describe the linearized problem associated to (1.1). Sec-
tion 4 is devoted to the proof of Harnack inequality both in the non-degenerate and
in the degenerate setting. In Section 5, we present the proof of the improvement
of flatness lemmas. Section 6 contains the proof of the Theorem 1.1 and Theorem
1.2.

From Section 7 to Section 10 we deal with more general problems of the form

(1.3)





Lu = f, in Ω+(u) ∪ Ω−(u),

u+ν = G(u−ν , x), on F (u) := ∂Ω+(u) ∩ Ω,

with f bounded on Ω and continuous in Ω+(u)∪Ω−(u), and u Lipschitz continuous
with Lip(u) ≤ L. Here

L =

n∑

i,j=1

aij(x)Dij + b · ∇, aij ∈ C0,γ̄(Ω), b ∈ C(Ω) ∩ L∞(Ω),

is uniformly elliptic i.e. there exist 0 < λ ≤ Λ such that, for every ξ ∈ R
n and

every x ∈ Ω,

λ|ξ|2 ≤

n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2,

and

G(η, x) : [0,∞)× Ω → (0,∞)

satisfies the following assumptions:

(H1) G(η, ·) ∈ C0,γ̄(Ω) uniformly in η; G(·, x) ∈ C1,γ̄([0, L]) for every x ∈ Ω.
(H2) G′(·, x) > 0 with G(0, x) ≥ γ0 > 0 uniformly in x.
(H3) There exists N > 0 such that η−NG(η, x) is strictly decreasing in η, uni-

formly in x.

In this framework we prove the following main results. Here, a constant depend-
ing (possibly) on n, Lip(u), λ,Λ, [aij]C0,γ̄ , ‖b‖L∞, ‖f‖L∞, [G(η, ·)]C0,γ̄ , γ0 and N is
called universal. The C1,γ̄ norm of G(·, x) may depend on x and enters our proofs
in a qualitative way only.

Theorem 1.3 (Flatness implies C1,γ). Let u be a Lipschitz viscosity solution to
(1.3) in B1, with Lip(u) ≤ L. Assume that f is continuous in B+

1 (u) ∪ B−

1 (u),
‖f‖L∞(B1) ≤ L and G satisfies (H1)-(H3). There exists a universal constant δ̄ > 0
such that, if

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ},

with 0 ≤ δ ≤ δ̄, then F (u) is C1,γ in B1/2.

Theorem 1.4 (Lipschitz implies C1,γ). Let u be a Lipschitz viscosity solution
to (1.3) in B1, with 0 ∈ F (u) and Lip(u) ≤ L. Assume that f is continuous in
B+

1 (u) ∪B
−

1 (u), ‖f‖L∞(B1) ≤ L and G satisfies (H1)-(H3). If F (u) is a Lipschitz

graph in a neighborhood of 0, then F (u) is C1,γ in a (smaller) neighborhood of 0.

Some remarks are in order. In particular, further extensions can be achieved with
small extra effort. Actually, there is no problem to extend our results to the case
when b and f are merely bounded measurable, however as we already mentioned
in the prototype problem we wish to avoid too many technicalities.



In Theorems 1.3 and 1.4 we need to assume the Lipschitz continuity of our
solution unless the operator can be put into divergence form. Indeed, in this case
an almost monotonicity formula is available (see [MP]) and under the assumption
G(η, x) → ∞, as η → ∞ one can reproduce the proof of Theorem 4.5 in [CJK],
to recover the Lipschitz continuity of a viscosity solution. Observe that then f =
f(x, u,∇u) is allowed, with f(x, ·, ·) locally bounded.

2. Compactness and localization lemmas

In this section, we state basic definitions and we prove some elementary lemmas.
First we need the following standard notion.

Definition 2.1. Given u, ϕ ∈ C(Ω), we say that ϕ touches u by below (resp.
above) at x0 ∈ Ω if u(x0) = ϕ(x0), and

u(x) ≥ ϕ(x) (resp. u(x) ≤ ϕ(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that ϕ touches u strictly by below
(resp. above).

We refer to the usual C-viscosity definition of subsolution, supersolution and
solution of an elliptic PDE, see e.g. [CC]. Let us introduce the notion of comparison
subsolution/supersolution.

Definition 2.2. We say that v ∈ C(Ω) is a strict (comparison) subsolution (resp.

supersolution) to (1.1) in Ω, if and only if v ∈ C2(Ω+(v)) ∩ C2(Ω−(v)) and the
following conditions are satisfied:

(i) ∆v > f (resp. < f) in Ω+(v) ∪Ω−(v);
(ii) If x0 ∈ F (v), then

(v+ν )
2 − (v−ν )2 > 1 (resp. (v+ν )

2 − (v−ν )2 < 1, v+ν (x0) 6= 0).

Notice that by the implicit function theorem, according to our definition the free
boundary of a comparison subsolution/supersolution is C2.

Finally we can give the definition of viscosity solution to the problem (1.1).

Definition 2.3. Let u be a continuous function in Ω. We say that u is a viscosity
solution to (1.1) in Ω, if the following conditions are satisfied:

(i) ∆u = f in Ω+(u) ∪ Ω−(u) in the viscosity sense;
(ii) Any (strict) comparison subsolution v (resp. supersolution) cannot touch

u by below (resp. by above) at a point x0 ∈ F (v) (resp. F (u).)

The next lemma shows that “δ−flat” viscosity solutions (in the sense of our
main Theorem 1.1) enjoy non-degeneracy of the positive part δ-away from the free
boundary. Precisely,

Lemma 2.4. Let u be a solution to (1.1) in B2 with Lip(u) ≤ L and ‖f‖L∞ ≤ L.
If

{xn ≤ g(x′)− δ} ⊂ {u+ = 0} ⊂ {xn ≤ g(x′) + δ},

with g a Lipschitz function, Lip(g) ≤ L, g(0) = 0, then

u(x) ≥ c0(xn − g(x′)), x ∈ {xn ≥ g(x′) + 2δ} ∩Bρ0
,

for some c0, ρ0 > 0 depending on n, L as long as δ ≤ c0.



Proof. All constants in this proof will depend on n, L.
It suffices to show that our statement holds for {xn ≥ g(x′) + Cδ} for a pos-

sibly large constant C. Then one can apply Harnack inequality to obtain the full
statement.

We prove the statement above at x = den (recall that g(0) = 0). Precisely, we
want to show that

u(den) ≥ c0d, d ≥ Cδ.

After rescaling, we reduce to proving that

u(en) ≥ c0

as long as δ ≤ 1/C, and ‖f‖∞ is sufficiently small. Let γ > 0 and

w(x) =
1

2γ
(1− |x|−γ)

be defined on the closure of the annulus B2 \B1 with ‖f‖∞ small enough so that

∆w < −‖f‖ on B2 \B1.

Let

wt(x) = w(x + ten).

Notice that

|∇w0| < 1 on ∂B1.

From our flatness assumption for t >, 0 sufficiently large (depending on the
Lipschitz constant of g), wt is strictly above u. We decrease t and let t̄ be the first
t such that wt touches u by above. Since wt̄ is a strict supersolution to ∆u = f
in B2 \ B̄1 the touching point z can occur only on the η := 1

2γ (1 − 2−γ) level set

in the positve phase of u, and |z| ≤ C = C(L). Since u is Lipschitz continuous,
0 < u(z) = η ≤ Ld(z, F (u)), that is a full ball around z of radius η/L is contained
in the positive phase of u. Thus, for δ̄ small depending on η, L we have that
Bη/2L(z) ⊂ {xn ≥ g(x′) + 2δ̄}. Since xn = g(x′) + 2δ̄ is Lipschitz we can connect
en and z with a chain of intersecting balls included in the positive side of u with
radii comparable to η/2L. The number of balls depends on L . Then we can apply
Harnack inequality and obtain

u(en) ≥ cu(z) = c0,

as desired.

Next, we state a compactness lemma. For its proof, we refer the reader to Section
7 where the analogue of this result for a more general class of operators and free
boundary conditions is stated and proved (see Lemma 7.3).

Lemma 2.5. Let uk be a sequence of viscosity solutions to (1.1) with right-hand-
side fk satisfying ‖fk‖L∞ ≤ L. Assume uk → u∗ uniformly on compact sets, and
{u+k = 0} → {(u∗)+ = 0} in the Hausdorff distance. Then

−L ≤ ∆u∗ ≤ L, in Ω+(u∗) ∪Ω−(u∗)

in the viscosity sense and u∗ satisfies the free boundary condition

(u∗ν
+)2 − (u∗ν

−)2 = 1 on F (u∗)

in the viscosity sense of Definition 2.3.



We are now ready to re-formulate our main Theorem 1.1 using the two lemmas
above. First, we denote by Uβ the following one-dimensional function,

Uβ(t) = αt+ − βt−, β ≥ 0, α =
√
1 + β2,

where

t+ = max{t, 0}, t− = −min{t, 0}.

Then Uβ(x) = Uβ(xn) is the so-called two-plane solution to (1.1) when f ≡ 0.

Lemma 2.6. Let u be a solution to (1.1) in B1 with Lip(u) ≤ L and ‖f‖L∞ ≤ L.
For any ε > 0 there exist δ̄, r̄ > 0 depending on ε, n, and L such that if

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ},

with 0 ≤ δ ≤ δ̄, then

(2.1) ‖u− Uβ‖L∞(Br̄) ≤ εr̄

for some 0 ≤ β ≤ L.

Proof. Given ε > 0 and r̄ depending on ε to be specified later, assume by contra-
diction that there exist a sequence δk → 0 and a sequence of solutions uk to the
problem (1.1) with right-hand-side fk such that Lip(uk), ‖fk‖ ≤ L and

(2.2) {xn ≤ −δk} ⊂ B1 ∩ {u+k (x) = 0} ⊂ {xn ≤ δk},

but the uk do not satisfy the conclusion (2.1).
Then, up to a subsequence, the uk converge uniformly on compacts to a function

u∗. In view of (2.2) and the non-degeneracy of u+k 2δk-away from the free boundary
(Lemma 2.4), we can apply our compactness lemma and conclude that

−L ≤ ∆u∗ ≤ L, in B1/2 ∩ {xn 6= 0}

in the viscosity sense and also

(2.3) (u∗n
+)2 − (u∗n

−)2 = 1 on F (u∗) = B1/2 ∩ {xn = 0},

with

u∗ > 0 in Bρ0
∩ {xn > 0}.

Thus,

u∗ ∈ C1,γ(B1/2 ∩ {xn ≥ 0}) ∩ C1,γ(B1/2 ∩ {xn ≤ 0})

for all γ and in view of (2.3) we have that (for any r̄ small)

‖u∗ − (αx+n − βx−n )‖L∞(Br̄) ≤ C(n, L)r̄1+γ

with α2 = 1 + β2. If r̄ is chosen depending on ε so that

C(n, L)r̄1+γ ≤
ε

2
r̄,

since the uk converge uniformly to u∗ on B1/2 we obtain that for all k large

‖uk − (αx+n − βx−n )‖L∞(Br̄) ≤ εr̄,

a contradiction.

In view of Lemma 2.6, after rescaling our main Theorem 1.1 follows from the
following main Theorem 2.7.



Theorem 2.7. Let u be a solution to (1.1) in B1 with Lip(u) ≤ L and ‖f‖L∞ ≤ L.
There exists a universal constant ε̄ > 0 such that, if

(2.4) ‖u− Uβ‖L∞(B1) ≤ ε̄ for some 0 ≤ β ≤ L,

and

{xn ≤ −ε̄} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ ε̄},

and

‖f‖L∞(B1) ≤ ε̄,

then F (u) is C1,γ in B1/2.

Finally, we also need the following elementary lemma which holds for any arbi-
trary continuous function u.

Lemma 2.8. Let u be a continuous function. If for η > 0 small,

‖u− Uβ‖L∞(B2) ≤ η, 0 ≤ β ≤ L,

and

{xn ≤ −η} ⊂ B2 ∩ {u+(x) = 0} ⊂ {xn ≤ η},

then

• If β ≥ η1/3, then

Uβ(xn − η1/3) ≤ u(x) ≤ Uβ(xn + η1/3), in B1

• If β < η1/3, then

U0(xn − η1/3) ≤ u+(x) ≤ U0(xn + η1/3), in B1.

3. The linearized problem

This section is devoted to the study of the linearized problem associated with
our free boundary problem (1.1), that is the following boundary value problem,
(α̃ 6= 0)

(3.1)






∆ũ = 0 in Bρ ∩ {xn 6= 0},

α̃2(ũn)
+ − β̃2(ũn)

− = 0 on Bρ ∩ {xn = 0}.

Here (ũn)
+ (resp. (ũn)

−) denotes the derivative in the en direction of ũ restricted
to {xn > 0} (resp. {xn < 0}).

We remark that Theorem 2.7 will follow, see Section 6, via a compactness argu-
ment from the regularity properties of viscosity solutions to (3.1).

Definition 3.1. A continuous function u is a viscosity solution to (3.1) if
(i) ∆ũ = 0 in Bρ ∩ {xn 6= 0}, in the viscosity sense;

(ii) Let φ be a function of the form

φ(x) = A+ px+n − qx−n +BQ(x− y)

with

Q(x) =
1

2
[(n− 1)x2n − |x′|2], y = (y′, 0), A ∈ R, B > 0



and

α̃2p− β̃2q > 0.

Then φ cannot touch u strictly by below at a point x0 = (x′0, 0) ∈ Bρ.
Analogously, if

α̃2p− β̃2q < 0

then φ cannot touch u strictly by above at x0.

We wish to prove the following regularity result for viscosity solutions to the
linearized problem.

Theorem 3.2. Let ũ be a viscosity solution to (3.1) in B1/2 such that ‖ũ‖∞ ≤ 1.

There exists a universal constant C̄ such that

(3.2) |ũ(x)− ũ(0)− (∇x′ ũ(0) · x′ + p̃x+n − q̃x−n )| ≤ C̄r2, in Br

for all r ≤ 1/4 and with α̃2p̃− β̃2q̃ = 0.

In order to prove the above result, first we show in the following Theorem 3.3,
that problem (3.1) admits a classical solution.

Theorem 3.3. Let h be a continuous function on ∂B1. There exists a (unique)
classical solution ṽ to (3.1) with ṽ = h on ∂B1, that is ṽ ∈ C∞(B1 ∩ {xn ≥

0}) ∩ C∞(B1 ∩ {xn ≤ 0}). In particular, there exists a universal constant C̃ such
that

(3.3) |ṽ(x)−ṽ(x̄)−(∇x′ ṽ(x̄)·(x′−x̄′)+p̃(x̄)x+n−q̃(x̄)x
−

n )| ≤ C̃‖ṽ‖L∞r2, in Br(x̄)

for all r ≤ 1/4, x̄ = (x̄′, 0) ∈ B1/2 and with α̃2p̃(x̄)− β̃2q̃(x̄) = 0.

Proof. Let w be the harmonic function in B1 ∩ {xn > 0} such that

w = 0 on B1 ∩ {xn = 0}, w(x) = h(x′, xn)− h(x′,−xn) on ∂B1 ∩ {xn > 0}.

Then w ∈ C∞(B1 ∩ {xn ≥ 0}). Call

φ(x′) = wn(x
′, 0), (x′, 0) ∈ B1.

Let

ṽ1(x) = w(x) + ṽ2(x
′,−xn) in B̄1 ∩ {xn ≥ 0}

where ṽ2 is the solution to the problem





∆ṽ2 = 0 in B1 ∩ {xn < 0}

ṽ2 = h on ∂B1 ∩ {xn < 0}

(ṽ2)n = q̃φ on B1 ∩ {xn = 0}

with

q̃ =
α̃2

β̃2 + α̃2
.

Then it is easily verified that the function

ṽ =

{
ṽ1 in B̄1 ∩ {xn ≥ 0}

ṽ2 in B̄1 ∩ {xn ≤ 0}

is the unique classical solution to our problem and hence it satisfies the estimate
(3.3) with

q̃(x̄) = q̃φ(x̄), p̃(x̄) = p̃φ(x̄),



and

p̃ =
β̃2

β̃2 + α̃2
.

Finally, to obtain our regularity result we only need to show the following fact.

Theorem 3.4. Let ũ be a viscosity solution to (3.1) in B1 such that ‖ũ‖∞ ≤ 1 and
let ṽ be the classical solution to (3.1) in B1/2 with boundary data ũ. Then ũ = ṽ.

Proof. We prove that ṽ ≤ ũ in B1/2. The opposite inequality is obtained in a
similar way.

Let ε > 0, t ∈ R and denote by

ṽt,ε(x) = ṽ + ε|xn|+ εx2n − ε− t, x ∈ B̄1/2.

Since ũ is bounded, for t > 0 large enough

(3.4) ṽt,ε ≤ ũ.

Let t̄ be the smallest t such that (3.4) holds and let x̄ be the first touching point.
We want to show that t̄ < 0. Assume t̄ ≥ 0. Since

ṽt̄,ε < ũ on ∂B1/2

such touching point must belong to B1/2. However,

∆ṽt̄,ε(x) > 0 in B1/2 ∩ {xn 6= 0}

and

∆ũ = 0 in B1/2 ∩ {xn 6= 0}.

Thus x̄ ∈ B1/2 ∩ {xn = 0}. We claim that there exists a function φ of the form

φ(x) = A+ px+n − qx−n +BQ(x− y)

with

Q(x) =
1

2
[(n− 1)x2n − |x′|2], y = (y′, 0), A ∈ R, B > 0

and

α̃2p− β̃2q > 0,

such that φ touches ṽt̄,ε(x) strictly by below at x̄. This would contradict the
definition of viscosity solutions hence t̄ < 0. In particular

ṽ + ε|xn|+ εx2n − ε < ũ on B1/2

and for ε going to 0 we obtain as desired

ṽ ≤ ũ on B1/2.

We are left with the proof of the claim. Call

ν′ = ∇x′ ṽ(x̄)

and set

y′ = x̄′ +
ν′

B
, A = ṽ(x̄)− ε− t̄−BQ(x̄− y)

with B > 0 to be chosen later. Then in view of the estimate (3.3), in order to verify
that in a small neighborhood of x̄

φ(x) < ṽt̄,ε(x), x 6= x̄



we need to show that we can find B > 0, p, q such that for |x− x̄| 6= 0 small enough

(C̃ universal)

B

2
(n− 1)x2n −

B

2
|x′ − x̄′|2 + px+n − qx−n < (p̃+ ε)x+n − (q̃ − ε)x−n − C̃|x− x̄|2

and

α̃2p− β̃2q > 0,

(for simplicity we dropped the dependence of p̃, q̃ on x̄.)
It is then enough to choose,

B = 4C̃, p = p̃+
ε

2
, q = q̃ −

ε

2
.

4. Harnack inequality

In this section we prove our main tool, that is a Harnack-type inequality for
solutions to our free boundary problem. The results contained here will allow us
to pass to the limit in the compactness argument of our improvement of flatness
lemmas in Section 5.

Throughout this section we consider a Lipschitz solution u to (1.1) with Lip(u) ≤
L.

We need to distinguish two cases, which we call the non-degenerate and the
degenerate case.

4.1. Non-degenerate case. In this case our solution u is trapped between two
translation of a “true” two-plane solution Uβ that is with β 6= 0.

Theorem 4.1 (Harnack inequality). There exists a universal constant ε̄, such that
if u satisfies at some point x0 ∈ B2

(4.1) Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + b0) in Br(x0) ⊂ B2,

with

‖f‖L∞ ≤ ε2β, 0 < β ≤ L,

and

b0 − a0 ≤ εr,

for some ε ≤ ε̄, then

Uβ(xn + a1) ≤ u(x) ≤ Uβ(xn + b1) in Br/20(x0),

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)εr,

and 0 < c < 1 universal.

Before giving the proof we deduce an important consequence.
If u satisfies (4.1) with, say r = 1, then we can apply Harnack inequality repeat-

edly and obtain

Uβ(xn + am) ≤ u(x) ≤ Uβ(xn + bm) in B20−m(x0),

with

bm − am ≤ (1 − c)mε



for all m’s such that

(1− c)m20mε ≤ ε̄.

This implies that for all such m’s, the oscillation of the function

ũε(x) =





u(x)− αxn
αε

in B+
2 (u) ∪ F (u)

u(x)− βxn
βε

in B−

2 (u)

in Br(x0), r = 20−m is less than (1 − c)m = 20−γm = rγ . Thus, the following
corollary holds.

Corollary 4.2. Let u be as in Theorem 4.1 satisfying (4.1) for r = 1. Then in
B1(x0) ũε has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄,
i.e for all x ∈ B1(x0), with |x− x0| ≥ ε/ε̄

|ũε(x)− ũε(x0)| ≤ C|x − x0|
γ .

The proof of the Harnack inequality relies on the following lemma.

Lemma 4.3. There exists a universal constant ε̄ > 0 such that if u satisfies

u(x) ≥ Uβ(x), in B1

with

(4.2) ‖f‖L∞(B1) ≤ ε2β, 0 < β ≤ L,

then if at x̄ =
1

5
en

(4.3) u(x̄) ≥ Uβ(x̄n + ε),

then

(4.4) u(x) ≥ Uβ(xn + cε), in B1/2,

for some 0 < c < 1 universal. Analogously, if

u(x) ≤ Uβ(x), in B1

and

u(x̄) ≤ Uβ(x̄n − ε),

then

u(x) ≤ Uβ(xn − cε), in B1/2.

Proof. We prove the first statement. For notational simplicity we drop the sub-
index β from Uβ.

Let

(4.5) w = c(|x− x̄|−γ − (3/4)−γ)

be defined in the closure of the annulus

A := B3/4(x̄) \B1/20(x̄).

The constant c is such that w satisfies the boundary conditions
{
w = 0 on ∂B3/4(x̄),

w = 1 on ∂B1/20(x̄).



Then, for a fixed γ > n− 2,

∆w ≥ k(γ, n) = k(n) > 0, 0 ≤ w ≤ 1 on A.

Extend w to be equal to 1 on B1/20(x̄).
Notice that since xn > 0 in B1/10(x̄) and u ≥ U in B1 we get

B1/10(x̄) ⊂ B+
1 (u).

Thus u−U ≥ 0 and solves ∆(u−U) = f in B1/10(x̄) and we can apply Harnack
inequality to obtain

(4.6) u(x)− U(x) ≥ c(u(x̄)− U(x̄))− C‖f‖L∞ in B1/20(x̄).

From the assumptions (4.2) and (4.3) we conclude that (for ε small enough)

(4.7) u− U ≥ αcε− Cαε2 ≥ αc0ε in B1/20(x̄).

Now set ψ = 1− w and

v(x) = U(xn − εc0ψ(x)), x ∈ B3/4(x̄),

and for t ≥ 0,

vt(x) = U(xn − εc0ψ(x) + tε), x ∈ B3/4(x̄).

Then,

v0(x) = U(xn − εc0ψ(x)) ≤ U(x) ≤ u(x) x ∈ B3/4(x̄).

Let t̄ be the largest t ≥ 0 such that

vt(x) ≤ u(x) in B3/4(x̄).

We want to show that t̄ ≥ c0. Then we get the desired statement. Indeed,

u(x) ≥ vt̄(x) = U(xn − εc0ψ + t̄ε) ≥ U(xn + cε) in B1/2 ⊂⊂ B3/4(x̄)

with c universal. In the last inequality we used that ‖ψ‖L∞(B1/2) < 1.

Suppose t̄ < c0. Then at some x̃ ∈ B3/4(x̄) we have

vt̄(x̃) = u(x̃).

We show that such touching point can only occur on B1/20(x̄). Indeed, since w ≡ 0
on ∂B3/4(x̄) from the definition of vt we get that for t̄ < c0

vt̄(x) = U(xn − εc0ψ(x) + t̄ε) < U(x) ≤ u(x) on ∂B3/4(x̄).

We now show that x̃ cannot belong to the annulus A. Indeed,

∆vt̄ ≥ βεc0k(n) > ε2β ≥ ‖f‖∞, in A+(vt̄) ∪ A
−(vt̄)

for ε small enough.
Also,

(v+t̄ )
2
ν − (v−t̄ )

2
ν = 1 + ε2c20|∇ψ|

2 − 2εc0ψn on F (vt̄) ∩ A.

Thus,

(v+t̄ )
2
ν − (v−t̄ )2ν > 1 on F (vt̄) ∩ A

as long as

ψn < 0 on F (vt̄) ∩ A.

This can be easily verified from the formula for ψ (for ε small enough.)



Thus, vt̄ is a strict subsolution to (1.1) in A which lies below u, hence by the
definition of viscosity solution, x̃ cannot belong to A.

Therefore, x̃ ∈ B1/20(x̄) and

u(x̃) = vt̄(x̃) = U(x̃n + t̄ε) ≤ U(x̃) + αt̄ε < U(x̃) + αc0ε

contradicting (4.7).
The proof of the second statement follows from a similar argument.

We can now prove our Theorem 4.1.

Proof of Theorem 4.1. Assume without loss of generality that x0 = 0, r = 1. We
distinguish three cases.

Case 1. a0 < −1/5. In this case it follows from (4.1) that B1/10 ⊂ {u < 0} and

0 ≤ v(x) :=
u(x)− β(xn + a0)

βε
≤ 1

with

|∆v| ≤ ε in B1/10.

The desired claim follows from standard Harnack inequality applied to the function
v.

Case 2. a0 > 1/5. In this case it follows from (4.1) that B1/5 ⊂ {u > 0} and

0 ≤ v(x) :=
u(x)− α(xn + a0)

αε
≤ 1

with

|∆v| ≤ ε in B1/5.

Again, the desired claim follows from standard Harnack inequality for v.

Case 3. |a0| ≤ 1/5. Assumption (4.1) gives that

Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + a0 + ε) in B1.

Assume that (the other case is treated similarly)

(4.8) u(x̄) ≥ Uβ(x̄n + a0 +
ε

2
), x̄ =

1

5
en.

Call

v(x) := u(x− a0en), x ∈ B4/5.

Then the inequality above reads

Uβ(xn) ≤ v(x) ≤ Uβ(xn + ε) in B4/5.

From (4.8)

v(x̄) ≥ Uβ(x̄n +
ε

2
).

Then, by Lemma 4.3,

v(x) ≥ Uβ(xn + cε), in B2/5

which gives the desired improvement

u(x) ≥ Uβ(x + a0 + cε) in B3/5.



4.2. Degenerate case. In this case, the negative part of u is negligible and the
positive part is close to a one-plane solution (i.e. β = 0).

Theorem 4.4 (Harnack inequality). There exists a universal constant ε̄, such that
if u satisfies at some point x0 ∈ B2

(4.9) U0(xn + a0) ≤ u+(x) ≤ U0(xn + b0) in Br(x0) ⊂ B2,

with
‖u−‖L∞ ≤ ε2, ‖f‖L∞ ≤ ε4,

and
b0 − a0 ≤ εr,

for some ε ≤ ε̄, then

U0(xn + a1) ≤ u+(x) ≤ U0(xn + b1) in Br/20(x0),

with
a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)εr,

and 0 < c < 1 universal.

We can argue as in the nondegenerate case and get the following result.

Corollary 4.5. Let u be as in Theorem 4.1 satisfying (4.9) for r = 1. Then in
B1(x0)

ũε :=
u+(x)− xn

ε
has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e for all
x ∈ B1(x0), with |x− x0| ≥ ε/ε̄

|ũε(x)− ũε(x0)| ≤ C|x − x0|
γ .

The proof of the Harnack inequality can be deduced from the following lemma,
as in the one-phase case [D].

Lemma 4.6. There exists a universal constant ε̄ > 0 such that if u satisfies

u+(x) ≥ U0(x), in B1

with

(4.10) ‖u−‖L∞ ≤ ε2, ‖f‖L∞ ≤ ε4,

then if at x̄ =
1

5
en

(4.11) u+(x̄) ≥ U0(x̄n + ε),

then

(4.12) u+(x) ≥ U0(xn + cε), in B1/2,

for some 0 < c < 1 universal. Analogously, if

u+(x) ≤ U0(x), in B1

and
u+(x̄) ≤ U0(x̄n − ε),

then
u+(x) ≤ U0(xn − cε), in B1/2.



Proof. We prove the first statement. The proof follows the same line as in the
nondegenerate case.

Since xn > 0 in B1/10(x̄) and u
+ ≥ U0 in B1 we get

B1/10(x̄) ⊂ B+
1 (u).

Thus u−xn ≥ 0 and solves ∆(u−xn) = f in B1/10(x̄) and we can apply Harnack
inequality and the assumptions (4.10) and (4.11) to obtain that (for ε small enough)

(4.13) u− xn ≥ c0ε in B1/20(x̄).

Let w be as in the proof of Lemma 4.3 and ψ = 1− w. Set

v(x) = (xn − εc0ψ(x))
+ − ε2C1(xn − εc0ψ(x))

−, x ∈ B3/4(x̄),

and for t ≥ 0,

vt(x) = (xn − εc0ψ + tε)+ − ε2C1(xn − εc0ψ(x) + tε)−, x ∈ B3/4(x̄).

Here C1 is a universal constant to be made precise later. We claim that

v0(x) = v(x) ≤ u(x) x ∈ B3/4(x̄).

This is readily verified in the set where u is non-negative using that u ≥ x+n . To
prove our claim in the set where u is negative we wish to use the following fact:

(4.14) u− ≤ Cx−n ε
2, in B 19

20

, C universal.

This estimate is easily obtained using that {u < 0} ⊂ {xn < 0}, ‖u−‖∞ < ε2 and
the comparison principle with the function w satisfying

∆w = −ε4 in B1 ∩ {xn < 0}, w = u− on ∂(B1 ∩ {xn < 0}).

Thus our claim immediately follows from the fact that for xn < 0 and C1 ≥ C,

ε2C1(xn − εc0ψ(x)) ≤ Cxnε
2.

Let t̄ be the largest t ≥ 0 such that

vt(x) ≤ u(x) in B3/4(x̄).

We want to show that t̄ ≥ c0. Then we get the desired statement. Indeed, it is
easy to check that if

u(x) ≥ vt̄(x) = (xn − εc0ψ + t̄ε)+ − ε2C1(xn − εc0ψ(x) + t̄ε)− in B3/4(x̄)

then

u+(x) ≥ U0(xn + cε) in B1/2 ⊂⊂ B3/4(x̄)

with c universal, c < c0 infB1/2 w

Suppose t̄ < c0. Then at some x̃ ∈ B3/4(x̄) we have

vt̄(x̃) = u(x̃).

We show that such touching point can only occur on B1/20(x̄). Indeed, since w ≡ 0
on ∂B3/4(x̄) from the definition of vt we get that for t̄ < c0

vt̄(x) = (xn − εc0 + t̄ε)+ − ε2C1(xn − εc0 + t̄ε)− < u(x) on ∂B3/4(x̄).

In the set where u ≥ 0 this can be seen using that u ≥ x+n while in the set where
u < 0 again we can use the estimate (4.14).

We now show that x̃ cannot belong to the annulus A. Indeed,

∆vt̄ ≥ ε3c0k(n) > ε4 ≥ ‖f‖∞, in A+(vt̄) ∪ A
−(vt̄)



for ε small enough.
Also,

(v+t̄ )
2
ν − (v−t̄ )2ν = (1− ε4C2

1 )(1 + ε2c20|∇ψ|
2 − 2εc0ψn) on F (vt̄) ∩ A.

Thus,

(v+t̄ )
2
ν − (v−t̄ )2ν > 1 on F (vt̄) ∩ A

as long as ε is small enough (as in the non-degenerate case one can check that
infF (vt̄)∩A(−ψn) > c > 0, c universal.) Thus, vt̄ is a strict subsolution to (1.1) in
A which lies below u, hence by definition x̃ cannot belong to A.

Therefore, x̃ ∈ B1/20(x̄) and

u(x̃) = vt̄(x̃) = (x̃n + t̄ε) < x̃n + c0ε

contradicting (4.13).

5. Improvement of flatness

In this section we prove our key “improvement of flatness” lemmas. As in Section
4, we need to distinguish two cases.

5.1. Non-degenerate case. In this case our solution u is trapped between two
translations of a two-plane solution Uβ with β 6= 0. We plan to show that when
we restrict to smaller balls, u is trapped between closer translations of another
two-plane solution (in a different system of coordinates).

Lemma 5.1 (Improvement of flatness). Let u satisfy

(5.1) Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1, 0 ∈ F (u),

with 0 < β ≤ L and

‖f‖L∞(B1) ≤ ε2β.

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r, then

(5.2) Uβ′(x · ν1 − r
ε

2
) ≤ u(x) ≤ Uβ′(x · ν1 + r

ε

2
) in Br,

with |ν1| = 1, |ν1 − en| ≤ C̃ε , and |β − β′| ≤ C̃βε for a universal constant C̃.

Proof. We divide the proof of this Lemma into 3 steps.

Step 1 – Compactness. Fix r ≤ r0 with r0 universal (the precise r0 will be
given in Step 3). Assume by contradiction that we can find a sequence εk → 0 and
a sequence uk of solutions to (1.1) in B1 with right hand side fk with L∞ norm
bounded by ε2kβk, such that

(5.3) Uβk
(xn − εk) ≤ uk(x) ≤ Uβk

(xn + εk) for x ∈ B1, 0 ∈ F (uk),

with L ≥ βk > 0, but uk does not satisfy the conclusion (5.2) of the lemma.
Set (α2

k = 1 + β2
k),

ũk(x) =





uk(x)− αkxn
αkεk

, x ∈ B+
1 (uk) ∪ F (uk)

uk(x)− βkxn
βkεk

, x ∈ B−

1 (uk).



Then (5.3) gives,

(5.4) − 1 ≤ ũk(x) ≤ 1 for x ∈ B1.

From Corollary 4.2, it follows that the function ũk satisfies

(5.5) |ũk(x)− ũk(y)| ≤ C|x− y|γ ,

for C universal and
|x− y| ≥ εk/ε̄, x, y ∈ B1/2.

From (5.3) it clearly follows that F (uk) converges to B1∩{xn = 0} in the Hausdorff
distance. This fact and (5.5) together with Ascoli-Arzela give that as εk → 0 the
graphs of the ũk converge (up to a subsequence) in the Hausdorff distance to the
graph of a Hölder continuous function ũ over B1/2. Also, up to a subsequence

βk → β̃ ≥ 0

and hence

αk → α̃ =

√
1 + β̃2.

Step 2 – Limiting Solution. We now show that ũ solves the following lin-
earized problem (transmission problem)

(5.6)





∆ũ = 0 in B1/2 ∩ {xn 6= 0},

α̃2(ũn)
+ − β̃2(ũn)

− = 0 on B1/2 ∩ {xn = 0}.

Since
|∆uk| ≤ ε2kβk in B+

1 (uk) ∪B
−

1 (uk),

one easily deduces that ũ is harmonic in B1/2 ∩ {xn 6= 0}.
Next, we prove that ũ satisfies the boundary condition in (5.6) in the viscosity

sense.
Let φ̃ be a function of the form

φ̃(x) = A+ px+n − qx−n +BQ(x− y)

with

Q(x) =
1

2
[(n− 1)x2n − |x′|2], y = (y′, 0), A ∈ R, B > 0

and
α̃2p− β̃2q > 0.

Then we must show that φ̃ cannot touch u strictly by below at a point x0 = (x′0, 0) ∈
B1/2 (the analogous statement by above follows with a similar argument.)

Suppose that such a φ̃ exists and let x0 be the touching point.
Let

(5.7) Γ(x) =
1

n− 2
[(|x′|2 + |xn − 1|2)

2−n
2 − 1]

and let

(5.8) Γk(x) =
1

Bεk
Γ(Bεk(x− y) +ABε2ken).

Now, call

φk(x) = akΓ
+
k (x) − bkΓ

−

k (x) + αk(d
+
k (x))

2ε
3/2
k + βk(d

−

k (x))
2ε

3/2
k



where
ak = αk(1 + εkp), bk = βk(1 + εkq)

and dk(x) is the signed distance from x to ∂B 1

Bεk

(y + en(
1

Bεk
−Aεk)).

Finally, let

φ̃k(x) =






φk(x)− αkxn
αkεk

, x ∈ B+
1 (φk) ∪ F (φk)

φk(x)− βkxn
βkεk

, x ∈ B−

1 (φk).

By Taylor’s theorem

Γ(x) = xn +Q(x) +O(|x|3) x ∈ B1,

thus it is easy to verify that

Γk(x) = Aεk + xn +BεkQ(x− y) +O(ε2k) x ∈ B1,

with the constant in O(ε2k) depending on A,B, and |y| (later this constant will
depend also on p, q.).

It follows that in B+
1 (φk) ∪ F (φk) (Q

y(x) = Q(x− y))

φ̃k(x) = A+BQy + pxn +Aεkp+BpεkQ
y + ε

1/2
k d2k +O(εk)

and analogously in B−

1 (φk)

φ̃k(x) = A+BQy + qxn +Aεkp+BqεkQ
y + ε

1/2
k d2k +O(εk).

Hence, φ̃k converges uniformly to φ̃ on B1/2. Since ũk converges uniformly to ũ

and φ̃ touches ũ strictly by below at x0, we conclude that there exist a sequence of
constants ck → 0 and of points xk → x0 such that the function

ψk(x) = φk(x+ εkcken)

touches uk by below at xk. We thus get a contradiction if we prove that ψk is a
strict subsolution to our free boundary problem, that is





∆ψk > ε2kβk ≥ ‖fk‖∞, in B+
1 (ψk) ∪B

−

1 (ψk),

(ψ+
k )

2
ν − (ψ−

k )2ν > 1, on F (ψk).

It is easily checked that away from the free boundary

∆ψk ≥ βkε
3/2
k ∆d2k(x+ εkcken)

and the first condition is satisfied for k large enough.
Finally, since on the zero level set |∇Γk| = 1 and |∇d2k| = 0 the free boundary

condition reduces to showing that

a2k − b2k > 1.

Using the definition of ak, bk we need to check that

(α2
kp

2 − β2
kq

2)εk + 2(α2
kp− β2

kq) > 0.

This inequality holds for k large in view of the fact that

α̃2p− β̃2q > 0.

Thus ũ is a solution to the linearized problem.



Step 3 – Contradiction. According to estimate (3.2), since ũ(0) = 0 we obtain
that

|ũ− (x′ · ν′ + p̃x+n − q̃x−n )| ≤ Cr2, x ∈ Br,

with
α̃2p̃− β̃2q̃ = 0, |ν′| = |∇x′ ũ(0)| ≤ C.

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get that

(5.9) |ũk − (x′ · ν′ + p̃x+n − q̃x−n )| ≤ Cr2, x ∈ Br.

Now set,

β′

k = βk(1 + εkq̃), νk =
1√

1 + ε2k|ν
′|2

(en + εk(ν
′, 0)).

Then,

α′

k =

√
1 + β′

k
2 = αk(1 + εkp̃) +O(ε2k), νk = en + εk(ν

′, 0) + ε2kτ, |τ | ≤ C,

where to obtain the first equality we used that α̃2p̃− β̃2q̃ = 0 and hence

β2
k

α2
k

q̃ = p̃+ O(εk).

With these choices we can now show that (for k large and r ≤ r0)

Ũβ′

k
(x · νk − εk

r

2
) ≤ ũk(x) ≤ Ũβ′

k
(x · νk + εk

r

2
), in Br

where again we are using the notation:

Ũβ′

k
(x) =





Ũβ′

k
(x)− αkxn

αkεk
, x ∈ B+

1 (Ũβ′

k
) ∪ F (Ũβ′

k
)

Ũβ′

k
(x)− βkxn

βkεk
, x ∈ B−

1 (Ũβ′

k
).

This will clearly imply that

Uβ′

k
(x · νk − εk

r

2
) ≤ uk(x) ≤ Uβ′

k
(x · νk + εk

r

2
), in Br

and hence leads to a contradiction.
In view of (5.9) we need to show that in Br

Ũβ′

k
(x · νk − εk

r

2
) ≤ (x′ · ν′ + p̃x+n − q̃x−n )− Cr2

and
Ũβ′

k
(x · νk + εk

r

2
) ≥ (x′ · ν′ + p̃x+n − q̃x−n ) + Cr2.

Let us show the second inequality. In the set where

(5.10) x · νk + εk
r

2
< 0

by definition we have that

Ũβ′

k
(x · νk + εk

r

2
) =

1

βkεk
(β′

k(x · νk + εk
r

2
)− βkxn)

which from the formula for β′
k, νk gives

Ũβ′

k
(x · νk + εk

r

2
) ≥ x′ · ν′ + q̃xn +

r

2
− C0εk.



Using (5.10) we then obtain

Ũβ′

k
(x · νk + εk

r

2
) ≥ x′ · ν′ + p̃x+n − q̃x−n +

r

2
− C1εk.

Thus to obtain the desired bound it suffices to fix r0 ≤ 1/(4C) and take k large
enough.

The other case can be argued similarly. �

5.2. Degenerate case. In this case, the negative part of u is negligible and the
positive part is close to a one-plane solution (i.e. β = 0). We prove below that in
this setting only u+ enjoys an improvement of flatness.

Lemma 5.2 (Improvement of flatness). Let u satisfy

(5.11) U0(xn − ε) ≤ u+(x) ≤ U0(xn + ε) in B1, 0 ∈ F (u),

with

‖f‖L∞(B1) ≤ ε4,

and
‖u−‖L∞(B1) ≤ ε2.

If 0 < r ≤ r1 for r1 universal, and 0 < ε ≤ ε1 for some ε1 depending on r, then

(5.12) U0(x · ν1 − r
ε

2
) ≤ u+(x) ≤ U0(x · ν1 + r

ε

2
) in Br,

with |ν1| = 1, |ν1 − en| ≤ Cε for a universal constant C.

Proof. We argue similarly as in the non-degenerate case.

Step 1 – Compactness. Fix r ≤ r1 with r1 universal (made precise in Step
3). Assume by contradiction that we can find a sequence εk → 0 and a sequence
uk of solutions to (1.1) in B1 with right hand side fk with L∞ norm bounded by
ε4k, such that

(5.13) U0(xn − εk) ≤ u+k (x) ≤ U0(xn + εk) for x ∈ B1, 0 ∈ F (uk),

with

‖u−k ‖∞ ≤ ε2k
but uk does not satisfy the conclusion (5.12) of the lemma.

Set

ũk(x) =
uk(x)− xn

εk
, x ∈ B+

1 (uk) ∪ F (uk)

Then (5.13) gives,

(5.14) − 1 ≤ ũk(x) ≤ 1 for x ∈ B+
1 (uk) ∪ F (uk).

As in the non-degenerate case, it follows from Corollary 4.5 that as εk → 0 the
graphs of the ũk converge (up to a subsequence) in the Hausdorff distance to the
graph of a Hölder continuous function ũ over B1/2 ∩ {xn ≥ 0}.

Step 2 – Limiting Solution. We now show that ũ solves the following Neu-
mann problem

(5.15)





∆ũ = 0 in B1/2 ∩ {xn > 0},

ũn = 0 on B1/2 ∩ {xn = 0}.



As before, the interior condition follows easily thus we focus on the boundary
condition.

Let φ̃ be a function of the form

φ̃(x) = A+ pxn +BQ(x− y)

with

Q(x) =
1

2
[(n− 1)x2n − |x′|2], y = (y′, 0), A ∈ R, B > 0

and

p > 0.

Then we must show that φ̃ cannot touch u strictly by below at a point x0 = (x′0, 0) ∈

B1/2. Suppose that such a φ̃ exists and let x0 be the touching point.
Let Γk be as in the proof of the non-degenerate case (see (5.8)). Call

φk(x) = akΓ
+
k (x) + (d+k (x))

2ε2k, ak = (1 + εkp)

where dk(x) is the signed distance from x to ∂B 1

Bεk

(y + en(
1

Bεk
−Aεk)).

Let

φ̃k(x) =
φk(x) − xn

εk
.

As in the previous case, it follows that in B+
1 (φk) ∪ F (φk) (Q

y(x) = Q(x− y))

φ̃k(x) = A+BQy + pxn +Aεkp+BpεkQ
y + εkd

2
k +O(εk).

Hence, φ̃k converges uniformly to φ̃ on B1/2 ∩ {xn ≥ 0}. Since ũk converges

uniformly to ũ and φ̃ touches ũ strictly by below at x0, we conclude that there
exist a sequence of constants ck → 0 and of points xk → x0 such that the function

ψk(x) = φk(x+ εkcken)

touches uk by below at xk ∈ B+
1 (uk) ∪ F (uk). We claim that xk cannot belong to

B+
1 (uk). Otherwise, in a small neighborhood N of xk we would have that

∆ψk > ε4k ≥ ‖fk‖∞ = ∆uk, ψk < uk in N \ {xk}, ψk(xk) = uk(xk)

a contradiction.
Thus xk ∈ F (uk) ∩ ∂B 1

Bεk

(y + en(
1

Bεk
−Aεk − εkck)). For simplicity we call

B := B 1

Bεk

(y + en(
1

Bεk
−Aεk − εkck)).

Let Nρ be a small neighborhood of xk of size ρ. Since

‖u−k ‖∞ ≤ ε2k, u+k ≥ (xn − εk)
+

as in the proof of Harnack inequality using the fact that xk ∈ F (uk) ∩ ∂B we can
conclude by the comparison principle that

u−k ≤ cε2k(d(x, ∂B))
−, in N 3

4
ρ

where d denotes again the signed distance from x to ∂B.
Let

(5.16) Ψk(x) =





ψk in B

cε2k(3d(x, ∂B) + d2(x, ∂B)) outside of B.



Then Ψk touches uk strictly by below at xk ∈ F (uk) ∩ F (Ψk).
We reach a contradiction if we show that

(Ψ+
k )

2
ν − (Ψ−

k )
2
ν > 1, on F (Ψk).

This is equivalent to showing that

a2k − cε4k > 1

or
(1 + εkp)

2 − cε4k > 1.

This holds for k large enough, since p > 0. We finally reached a contradiction.

Step 3 – Contradiction. In this step we can argue as in the final step of the
proof of Lemma 4.1 in [D]. �

6. Proof of the main Theorems

In this section we exhibit the proofs of our main results, Theorem 1.1 and The-
orem 1.2. As already pointed out, Theorem 1.2 will follow via a blow-up analysis
from the flatness result. Thus, first we present the proof of Theorem 1.1 based on
the improvement of flatness lemmas of the previous section.

6.1. Proof of Theorem 1.1. To complete the analysis of the degenerate case, we
need to deal with the situation when u is close to a one-plane solution and however
the size of u− is not negligible. Precisely, we prove the following lemma.

Lemma 6.1. Let u solve (1.1) in B2 with

‖f‖L∞(B1) ≤ ε4

and satisfy

(6.1) U0(xn − ε) ≤ u+(x) ≤ U0(xn + ε) in B1, 0 ∈ F (u),

‖u−‖L∞(B2) ≤ C̄ε2, ‖u−‖L∞(B1) > ε2,

for a universal constant C̄. If ε ≤ ε2 universal, then the rescaling

uε(x) = ε−1/2u(ε1/2x)

satisfies in B1

Uβ′(xn − C′ε1/2) ≤ uε(x) ≤ Uβ′(xn + C′ε1/2)

with β′ ∼ ε2 and C′ > 0 depending on C̄.

Proof. For notational simplicity we set

v =
u−

ε2
.

From our assumptions we can deduce that

F (v) ⊂ {−ε ≤ xn ≤ ε}

(6.2) v ≥ 0 in B2 ∩ {xn ≤ −ε}, v ≡ 0 in B2 ∩ {xn > ε}.

Also,
|∆v| ≤ ε2, in B2 ∩ {xn < −ε},

and

(6.3) 0 ≤ v ≤ C̄ on ∂B2,



(6.4) v(x̄) > 1 at some point x̄ in B1.

Thus, using comparison with the function w such that

∆w = −ε2 in D := B2 ∩ {xn < ε} and w = v on ∂D

we obtain that for some k > 0 universal

(6.5) v ≤ k|xn − ε|, in B1.

This fact forces the point x̄ in (6.4) to belong to B1∩{xn < −ε} at a fixed distance
δ from xn = −ε.

Now, let w be the harmonic function in B1 ∩ {xn < −ε} such that

w = 0 on B1 ∩ {xn = −ε}, w = v on ∂B1 ∩ {xn ≤ −ε}.

By the maximum principle we conclude that

w + ε2(|x|2 − 3) ≤ v on B1 ∩ {xn < −ε}.

Also, for ε small, in view of (6.5) we obtain that

w − kε(|x|2 − 3) ≥ v on ∂(B1 ∩ {xn < −ε})

and hence also in the interior. Thus we conclude that

(6.6) |w − v| ≤ cε in B1 ∩ {xn < −ε}.

In particular this is true at x̄ which forces

(6.7) w(x̄) ≥ 1/2.

By expanding w around (0,−ε) we then obtain, say in B1/2 ∩ {xn ≤ −ε}

|w − a|xn + ε|| ≤ C|x|2 + Cε.

This combined with (6.6) gives that

|v − a|xn + ε|| ≤ Cε, in Bε1/2 ∩ {xn ≤ −ε}.

Moreover, in view of (6.7) and the fact that x̄ occurs at a fixed distance from
{xn = −ε} we deduce from Hopf lemma that

a ≥ c > 0

with c universal. In conclusion (see (6.5))

|u− − bε2|xn + ε|| ≤ Cε3, in Bε1/2 ∩ {xn ≤ −ε}, u− ≤ bε2|xn − ε|, in B1

with b comparable to a universal constant.
Combining the two inequalities above and the assumption (6.1) we conclude that

in Bε1/2

(xn − ε)+ − bε2(xn − Cε)− ≤ u(x) ≤ (xn + ε)+ − bε2(xn + Cε)−

with C > 0 universal and b larger than a universal constant. Rescaling, we obtain
that in B1

(xn − ε1/2)+ − β′(xn − Cε1/2)− ≤ uε(x) ≤ (xn + ε1/2)+ − β′(xn + Cε1/2)−

with β′ ∼ ε2. We finally need to check that this implies the desired conclusion in
B1

α′(xn −Cε1/2)+ − β′(xn −Cε1/2)− ≤ uε(x) ≤ α′(xn +Cε1/2)+ − β′(xn +Cε1/2)−

with α′2 = 1 + β′2 ∼ 1 + ε4. This clearly holds in B1 for ε small, say by possibly
enlarging C so that C ≥ 2. �



We are finally ready to exhibit the proof of Theorem 2.7, which as already
observed, immediately gives the result of Theorem 1.1.

Proof of Theorem 2.7. Let us fix r̄ > 0 to be a universal constant such that

r̄ ≤ r0, r1, 1/16,

with r0, r1 the universal constants in the improvement of flatness Lemmas 5.1-5.2.
Also, let us fix a universal constant ε̃ > 0 such that

ε̃ ≤ ε0(r̄),
ε1(r̄)

2
,
1

2C̃
,
ε2
2

with ε0, ε1, ε2, C̃, the constants in the Lemmas 5.1-5.2-6.1 . Now, let

ε̄ = ε̃3.

We distinguish two cases. For notational simplicity we assume that u satisfies our
assumptions in the ball B2 and 0 ∈ F (u).

Case 1. β ≥ ε̃.

In this case, in view of Lemma 2.8 and our choice of ε̃, we obtain that u satisfies
the assumptions of Lemma 5.1,

(6.8) Uβ(xn − ε̃) ≤ u(x) ≤ Uβ(xn + ε̃) in B1, 0 ∈ F (u),

with 0 < β ≤ L and

‖f‖L∞(B1) ≤ ε̃3 ≤ ε̃2β.

Thus we can conclude that, (β1 = β′)

Uβ1
(x · ν1 − r̄

ε̃

2
) ≤ u(x) ≤ Uβ1

(x · ν1 + r̄
ε̃

2
) in Br̄,

with |ν1| = 1, |ν1 − en| ≤ C̃ε̃ , and |β − β1| ≤ C̃βε̃. In particular, by our choice of
ε̃ we have

β1 ≥ ε̃/2.

We can therefore rescale and iterate the argument above. Precisely, set (k =
0, 1, 2....)

ρk = r̄k, εk = 2−kε̃

and

uk(x) =
1

ρk
u(ρkx), fk(x) = ρkf(ρkx).

Also, let βk be the constants generates at each k-iteration, hence satisfying (β0 = β)

|βk − βk+1| ≤ C̃βkεk.

Then we obtain by induction that each uk satisfies

(6.9) Uβk
(x · νk − εk) ≤ uk(x) ≤ Uβk

(x · νk + εk) in B1,

with |νk| = 1, |νk − νk+1| ≤ C̃ε̃k (ν0 = en.)

Case 2. β < ε̃.

In view of Lemma 2.8 we conclude that

U0(xn − ε̃) ≤ u+(x) ≤ U0(xn + ε̃) in B1.



Moreover, from the assumption (2.4) and the fact that β < ε̃ we also obtain that

‖u−‖L∞(B1) < 2ε̃.

Call (ε′)2 = 2ε̃. Then u satisfies the assumptions of the (degenerate) improvement
of flatness Lemma 5.2.

U0(xn − ε′) ≤ u+(x) ≤ U0(xn + ε′) in B1,

with

‖f‖L∞(B1) ≤ (ε′)4, ‖u−‖L∞(B1) < ε′2.

We conclude that

U0(x · ν1 − r̄
ε′

2
) ≤ u+(x) ≤ U0(x · ν1 + r̄

ε′

2
) in Br̄,

with |ν1| = 1, |ν1 − en| ≤ Cε′ for a universal constant C. We now rescale as in the
previous case and set (k = 0, 1, 2....)

ρk = r̄k, εk = 2−kε′

and

uk(x) =
1

ρk
u(ρkx), fk(x) = ρkf(ρkx).

We can iterate our argument and obtain that (with |νk| = 1, |νk − νk+1| ≤ Cεk)

(6.10) U0(x · νk − εk) ≤ u+k (x) ≤ U0(x · νk + εk) in B1,

as long as we can verify that

‖u−k ‖L∞(B1) < ε2k.

Let k̄ be the first integer k̄ > 1 for which this fails, that is

‖u−
k̄
‖L∞(B1) ≥ ε2k̄,

and

‖u−
k̄−1

‖L∞(B1) < ε2k̄−1.

Also,

U0(x · νk̄−1 − εk̄−1) ≤ u+
k̄−1

(x) ≤ U0(x · νk̄−1 + εk̄−1) in B1.

As argued several times (see for example (4.14)), we can then conclude from the
comparison principle that

u−
k̄−1

≤M |xn − εk̄−1|ε
2
k̄−1 in B19/20,

for a universal constant M > 0. Thus, by rescaling we get that

‖u−
k̄
‖L∞(B2) < C̄ε2k̄

with C̄ universal (depending on the fixed r̄). We obtain that uk̄ satisfies all the
assumptions of Lemma 6.1 and hence the rescaling

v(x) = ε
−1/2

k̄
uk̄(ε

1/2

k̄
x)

satisfies in B1

Uβ′(xn − C′ε
1/2

k̄
) ≤ v(x) ≤ Uβ′(xn + C′ε

1/2

k̄
)

with β′ ∼ ε2
k̄
. Call η = C̄ε

1/2

k̄
. Then v satisfies our free boundary problem in B1

with right hand side

g(x) = ε
1/2

k̄
fk̄(ε

1/2

k̄
x)



and the flatness assumption

Uβ′(xn − η) ≤ v(x) ≤ Uβ′(xn + η)

Since β′ ∼ ε2
k̄
with a universal constant,

‖g‖L∞(B1) ≤ ε
1/2

k̄
ε4k̄ ≤ η2β′

as long as ε̃ ≤ C′′ depending on C̄. In conclusion choosing ε̃ ≤ ε0(r̄)
4

2C̄4
, v falls under

the assumptions of the (non-degenerate) improvement of flatness Lemma 5.1 and
we can use an iteration argument as in Case 1.

6.2. Proof of Theorem 1.2. Although not strictly necessary, we use the following
Liouville type result for global viscosity solutions to a two-phase homogeneous free
boundary problem, that could be of independent interest.

Lemma 6.2. Let U be a global viscosity solution to

(6.11)





∆U = 0, in {U > 0} ∪ {U ≤ 0}0,

(U+
ν )2 − (U−

ν )2 = 1, on F (U) := ∂{U > 0}.

Assume that F (U) = {xn = g(x′), x′ ∈ R
n−1} with Lip(g) ≤ M . Then g is linear

and U(x) = Uβ(x) for some β ≥ 0.

Proof. Assume for simplicity, 0 ∈ F (U). Also, balls (of radius ρ and centered at 0)
in R

n−1 are denoted by Bρ.
By the regularity theory in [C1] , since U is a solution in B2, the free boundary

F (U) is C1,γ in B1 with a bound depending only on n and on M . Thus,

|g(x′)− g(0)−∇g(0) · x′| ≤ C|x′|1+α, x′ ∈ B1

with C depending only on n,M.Moreover, since U is a global solution, the rescaling

gR(x
′) =

1

R
g(Rx′), x′ ∈ B2

which preserves the same Lipschitz constant as g, satisfies the same inequality as
above i.e.

|gR(x
′)− gR(0)−∇gR(0) · x

′| ≤ C|x′|1+α, x′ ∈ B1.

This reads,

|g(Rx′)− g(0)−∇g(0) · Rx′| ≤ CR|x′|1+α, x′ ∈ B1.

Thus,

|g(y′)− g(0)−∇g(0) · y′| ≤ C
1

Rα
|y′|1+α, y′ ∈ BR.

Passing to the limit as R→ ∞ we obtain the desired claim.

Proof of Theorem 1.2. Let ε̄ be the universal constant in Theorem 2.7. Consider
the blow-up sequence

uk(x) =
u(δk)

δk
with δk → 0 as k → ∞. Each uk solves (1.1) with right hand side

fk(x) = δkf(δkx)



and

‖fk(x)‖ ≤ δk‖f‖L∞ ≤ ε̄

for k large enough. Standard arguments (see for example [ACF]) using the uniform
Lischitz continuity of the uk’s and the nondegeneracy of their positive part u+k (see
Lemma 2.4) imply that (up to a subsequence)

uk → ũ uniformly on compacts

and

{u+k = 0} → {ũ = 0} in the Hausdorff distance.

The blow-up limit ũ solves the global homogeneous two-phase free boundary
problem

(6.12)





∆ũ = 0, in {ũ > 0} ∪ {ũ ≤ 0}0

(ũ+ν )
2 − (ũ−ν )

2 = 1, on F (ũ) := ∂{ũ > 0}.

Since F (u) is a Lipschitz graph in a neighborhood of 0, it follows from Lemma
6.2 that ũ is a two-plane solutions, ũ = Uβ for some β ≥ 0. Thus, for k large enough

‖uk − Uβ‖L∞ ≤ ε̄

and

{xn ≤ −ε̄} ⊂ B1 ∩ {u+k (x) = 0} ⊂ {xn ≤ ε̄}.

Therefore, we can apply our flatness Theorem 2.7 and conclude that F (uk) and
hence F (u) is smooth.

6.3. Flatness and ε-monotonicity. The flatness results which are present in the
literature (see, for instance [C2]), are often stated in terms of “ε- monotonicity”
along a large cone of directions Γ(θ0, e) of axis e and opening θ0. Precisely, a
function u is said to be ε-monotone (ε > 0 small) along the direction τ in the cone
Γ(θ0, e) if for every ε

′ ≥ ε,

u(x+ ε′τ) ≤ u(x).

A variant of Theorem 1.1 states the following.

Theorem 6.3. Let u be a solution to (1.1) in B1, 0 ∈ F (u). Suppose that u+ is
non-degenerate. Then there exist θ0 < π/2 and ε0 > 0 such that if u+ is ε-monotone
along every direction in Γ(θ0, en) for some ε ≤ ε0, then u+ is fully monotone in
B1/2 along any direction in Γ(θ1, en) for some θ1 depending on θ0, ε0. In particular
F (u) is the graph of a Lipschitz function.

Geometrically, the ε-monotonicity of u+ can be interpreted as ε-closeness of
F (u) to the graph of a Lipschitz function. Our flatness assumption requires ε-
closeness of F (u) to a hyperplane. While this looks like a somewhat stronger
assumption, it is indeed a natural one since it is satisfied for example by rescaling
of solutions around a “regular” point of the free boundary. Moreover, if ‖f‖∞ is
small enough, depending on ε, it is not hard to check that ε-flatness of F (u) implies
cε-monotonicity of u+ along the directions of a flat cone, for a c depending on its
opening.

The proof of Theorem 6.3 follows immediately from the following elementary
lemma:



Lemma 6.4. Let u be a solution to (1.1) in B1, 0 ∈ F (u). Suppose that u+ is
Lipschitz and non-degenerate. Assume that u+ is ε-monotone along every direction
in Γ(θ0, en) for some ε ≤ ε0, then there exist a radius r0 > 0 and δ0 > 0 depending
on ε0, θ0 such that u+ is δ0-flat in Br0 , that is

{xn ≤ −δ0} ⊂ Br0 ∩ {u+(x) = 0} ⊂ {xn ≤ δ0}.

7. More general operators and free boundary conditions

7.1. The set up. In this section we analyze the free boundary problem (1.3), that
is

(7.1)





Lu = f, in Ω+(u) ∪ Ω−(u),

u+ν = G(u−ν , x), on F (u) := ∂Ω+(u) ∩ Ω,

where f is continuous in Ω+(u) ∪ Ω−(u) with ‖f‖L∞(Ω) ≤ L, and

L =

n∑

i,j=1

aij(x)Dij + b · ∇, aij ∈ C0,γ̄(Ω),b ∈ C(Ω) ∩ L∞(Ω),

is uniformly elliptic with constants 0 < λ ≤ Λ.
We recall that our assumptions on G are:

(H1) G(η, ·) ∈ C0,γ̄(Ω) uniformly in η; G(·, x) ∈ C1,γ̄([0, L]) for every x ∈ Ω.
(H2) G′(·, x) > 0 with G(0, x) ≥ γ0 > 0 uniformly in x.
(H3) There exists N > 0 such that η−NG(η, x) is strictly decreasing in η, uni-

formly in x.

We assume that 0 ∈ F (u) and that aij(0) = δij . Also, for notational convenience
we set

G0(β) = G(β, 0).

Let Uβ be the two-plane solution to (7.1) when L = ∆, f ≡ 0 and G = G0, i.e.

Uβ(x) = αx+n − βx−n , β ≥ 0, α = G0(β).

The following definitions parallel those in Section 2.

Definition 7.1. We say that v ∈ C(Ω) is a C2 strict (comparison) subsolution

(resp. supersolution) to (7.1) in Ω, if v ∈ C2(Ω+(v))∩C2(Ω−(v)) and the following
conditions are satisfied:

(i) Lv > f (resp. < f) in Ω+(v) ∪Ω−(v);
(ii) If x0 ∈ F (v), then

v+ν (x0) > G(v−ν (x0), x0) (resp. v+ν (x0) < G(v−ν (x0), x0), v
+
ν (x0) 6= 0.)

Observe that the free boundary of a strict comparison sub/supersolution is C2.

Definition 7.2. Let u be a continuous function in Ω. We say that u is a viscosity
solution to (1.3) in Ω, if the following conditions are satisfied:

(i) Lu = f in Ω+(u) ∪Ω−(u) in the viscosity sense;
(ii) Any (strict) comparison subsolution v (resp. supersolution) cannot touch

u by below (resp. by above) at a point x0 ∈ F (v) (resp. F (u).)

From here after, most of the statements and proofs parallel those in Sections 2
to 6. Thus, we only point out the main differences as much as possible.



7.2. Compactness and localization. As for problem (1.1), we prove some basic
lemmas to reduce the statement of the flatness theorem to a proper normalized
situation. We start with the compactness Lemma 2.5 which generalizes to operators
of the form

Lk
∗ =

∑
akijDij

with akij ∈ C0,γ̄ uniformly elliptic with constants λ,Λ and free boundary conditions

given by a Gk satisfying the hypotheses (H1)-(H3).

Lemma 7.3. Let uk be a sequence of (Lipschitz) viscosity solutions to

(7.2)





|Lk
∗uk| ≤M, in Ω+(uk) ∪ Ω−(uk),

(u+k )ν = Gk((u
−

k )ν , x), on F (uk).

Assume that:

(i) akij → aij , uk → u∗ uniformly on compact sets,

(ii) Gk(η, ·) → G(η, ·) on compact sets, uniformly on 0 ≤ η ≤ L = Lip(uk),
(iii) {u+k = 0} → {(u∗)+ = 0} in the Hausdorff distance.

Then
|
∑

aijDiju
∗| ≤M, in Ω+(u∗) ∪ Ω−(u∗)

and u∗ satisfies the free boundary condition

(u∗)+ν = G((u∗)−ν , x) on F (u∗),

both in the viscosity sense.

Proof. Call

L∗ :=
∑

aijDij .

The proof that
|L∗u

∗| ≤M, in Ω+(u∗) ∪ Ω−(u∗)

is standard. We show for example that

L∗u
∗ +M ≥ 0, in Ω+(u∗).

Let v ∈ C2(Ω+(u∗)) touch u∗ by above at x̄ ∈ Ω+(u∗) and assume by contradic-
tion that

L∗v(x̄) +M < 0.

Without loss of generality we can assume that v touches u∗ strictly by above (oth-
erwise we replace v with v + η

2nΛ |x − x̄|2 and η small.) Then, since uk → u∗

uniformly in compact sets and {u+k = 0} → {(u∗)+ = 0} in the Hausdorff distance,
there exists xk → x̄ and constants ck → 0 such that v + ck touches by above uk at
xk ∈ Ω+(uk), for k large. Then, since |Lk

∗uk(xk)| ≤M we must have

Lk
∗v(xk) +M ≥ 0.

This implies, for k → ∞,
L∗v(x̄) +M ≥ 0

which is a contradiction.
We now prove that the free boundary condition holds. Let v be a strict compar-

ison super solution such that,

(7.3) L∗v +M < 0, in Ω+(v) ∪Ω−(v),



and

v+ν < G(v−ν , x), v+ν (x) 6= 0 on F (v).

Assume v touches u∗ strictly by above at a point x̄ ∈ F (u∗)∩F (v) and for notational
simplicity let ν(x̄) = en. Also, we can assume that the free boundaries F (v) and
F (u∗) touch strictly and that (7.3) holds up to F (v). Otherwise, say v+n (x̄) > 0,
we replace v with v̄(x) = v(x+ η|x′ − x̄′|2en) + η|dist(x, F (v))| − dist(x, F (v))2, (η
small). Then, for a suitable ck → 0, v(x + cken) touches by above uk at xk with
xk → x̄. Then, either for every (large) k we have xk ∈ Ω+(uk) ∪ Ω−(uk) or there
exists a subsequence, that we still call xk, such that xk ∈ F (uk) for every large k.

In the first case, we have
∑

akij(xk)Dijv(xk + cken) +M ≥ 0.

while in the second case,

v̄+νk(xk + cken) ≥ Gk(v
−

νk
(xk + cken), xk)

and we easily reach a contradiction for k large.

Lemma 2.4 on the non-degeneracy of the positive part δ-away from the free
boundary continues to hold unaltered; only choose

w(x) =
G0(0)

2γ
(1− |x|−γ).

The analogue of Lemma 2.6 is the following:

Lemma 7.4. Let u be a Lipschitz solution to (1.3) in B1, with Lip(u) ≤ L,
‖b‖∞, ‖f‖∞ ≤ L. For any ε > 0 there exist δ̄, r̄ > 0 such that if

{xn ≤ −δ} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ δ},

with 0 ≤ δ ≤ δ̄, then

(7.4) ‖u− Uβ‖L∞(Br̄) ≤ εr̄

for some 0 ≤ β ≤ L.

Proof. Given ε > 0 and r̄ depending on ε to be specified later, assume by contra-
diction that there exist a sequence δk → 0 and a sequence of solutions uk to the
problem (7.2) with M = L+ L2, such that Lip(uk) ≤ L and

(7.5) {xn ≤ −δk} ⊂ B1 ∩ {u+k (x) = 0} ⊂ {xn ≤ δk},

but the uk do not satisfy the conclusion (7.4).
Then, up to a subsequence, the uk converge uniformly on compact set to a

function u∗. In view of (7.5) and the non-degeneracy of u+k , δk-away from the
free boundary (see remark above), we can apply our compactness Lemma 7.3 and

conclude that, for some L̃ :=
∑
ãijDij and G̃ in our class,

|L̃u∗| ≤M, in B1/2 ∩ {xn 6= 0}

and

(7.6) (u∗)+n = G̃((u∗)−n , x) on F (u∗) = B1/2 ∩ {xn = 0},

in the viscosity sense, with

u∗ > 0 in Bρ0
∩ {xn > 0}.



Thus, by Lp Schauder estimates

u∗ ∈ C1,γ̃(B1/2 ∩ {xn ≥ 0}) ∩ C1,γ̃(B1/2 ∩ {xn ≤ 0})

for all γ̃ < 1 and (for any r̄ small)

‖u∗ − (αx+n − βx−n )‖L∞(Br̄) ≤ C(n, L)r̄1+γ̃

with β = (u∗)−n (0) and α = (u∗)+n (0) > 0. Thus, from (7.6), we have α = G̃0(β).
Then we reach a contradiction as in Lemma 2.6.

In view of the lemma above, after proper rescaling, Theorem 1.3 follows from
the following result.

Theorem 7.5. Let u be a Lipschitz solution to (1.3) in B1, with Lip(u) ≤ L. There
exists a universal constant ε̄ > 0 such that, if

(7.7) ‖u− Uβ‖L∞(B1) ≤ ε̄ for some 0 ≤ β ≤ L,

{xn ≤ −ε̄} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ ε̄},

and
[aij ]C0,γ̄(B1) ≤ ε̄, ‖b‖L∞(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄,

[G(η, ·)]C0,γ̄ (B1) ≤ ε̄, ∀0 ≤ η ≤ L,

then F (u) is C1,γ in B1/2.

7.3. Linearized problem. The linearized problem becomes, (α̃ > 0)

(7.8)






∆ũ = 0 in Bρ ∩ {xn 6= 0},

α̃(ũ)+n − β̃G′
0(β̃)(ũ)

−
n = 0 on Bρ ∩ {xn = 0},

with α̃ = G0(β̃).

Setting ζ2 = α̃ and ξ2 = β̃G′
0(β̃) we can write the free boundary condition as

ζ2ũ+n − ξ2ũ−n = 0.

As a consequence, all the Definitions and conclusions in Section 3 hold, in par-
ticular Theorems 3.2, 3.3 and 3.4.

8. The non-degenerate case for general free boundary problems.

In this section, we recover the improvement of flatness lemma in the non-degenerate
case, that is when the solution is trapped between parallel two-plane solutions Uβ

at ε distance, with β > 0. First we need the Harnack inequality.

8.1. Harnack inequality. As in Section 4, Harnack inequality follows from the
following basic lemma.

Lemma 8.1. Let u be a viscosity solution to (7.1). There exists a universal constant
ε̄ > 0 such that if u satisfies

u(x) ≥ Uβ(x), in B1

for 0 < β ≤ L and for 0 ≤ ε ≤ ε̄,

(8.1) ‖f‖L∞(B1) ≤ ε2 min{G0(β), β}, ‖b‖L∞(B1) ≤ ε2,

(8.2) ‖G(η, x)−G0(η)‖L∞(B1) ≤ ε2, ∀0 ≤ η ≤ L,



then, if at x̄ =
1

5
en

(8.3) u(x̄) ≥ Uβ(x̄n + ε),

then

(8.4) u(x) ≥ Uβ(xn + cε) in B1/2,

for some 0 < c < 1 universal. Analogously, if

u(x) ≤ Uβ(x) in B1

and

u(x̄) ≤ Uβ(x̄n − ε)

then

u(x) ≤ Uβ(xn − cε) in B1/2.

Proof. We argue as in the proof of Lemma 4.3 and we only point out the main
differences.

By our assumptions, in B1/10(x̄) ⊂ B+
1 (u), u− Uβ ≥ 0 solves

L(u − Uβ) = f − αbn.

Recall that α = G0(β). By Harnack inequality, we obtain in B1/20(x̄)

u(x)− Uβ(x) ≥ c(u(x̄)− Uβ(x̄))− C‖f − αbn‖L∞

≥ c(u(x̄)− Uβ(x̄))− C(‖f‖L∞ + α‖b‖L∞).

From (8.1), (8.3) and the inequality above we conclude that for ε small enough,

(8.5) u− Uβ ≥ αcε− αCε2 ≥ c0αε in B1/20(x̄).

From (8.5) and the comparison principle it follows that for c1 small universal

(8.6) u− αxn ≥ αc1εxn, x ∈ {xn > 0} ∩B19/20.

To prove this claim, let φ solve

Lφ = 0 in R := (B1 ∩ {xn > 0}) \B1/20(x̄)

with boundary data

φ = 0 on ∂(B1 ∩ {xn > 0}), φ = 1 on ∂B1/20(x̄).

Then, by boundary Harnack

φ ≥ cxn in R̄ ∩B19/20.

We now compare u − αxn with 1
2αc0φε − 8αε2xn + 4αε2x2n in the domain R to

obtain the desired conclusion.
We now proceed similarly as in Lemma 4.3, with w the function defined in (4.5).

We compute
∑

aijDijw(x)

= γ(γ + 2) | x− x̄ |−γ−4 Tr(A(x− x̄)⊗ (x− x̄))− γ | x− x̄ |−γ−2 Tr(A)

≥ γ(γ + 2) | x− x̄ |−γ−2 nλ− γ | x− x̄ |−γ−2 nΛ

= γ | x− x̄ |−γ−2 n ((γ + 2)λ− Λ) .



Then

Lw ≥ γ | x− x̄ |−γ−2 n ((γ + 2)λ− Λ)− γ || b ||L∞ | x− x̄ |−γ−1

= γ | x− x̄ |−γ−2 (n ((γ + 2)λ− Λ)− || b ||L∞ | x− x̄ |)

≥ γ | x− x̄ |−γ−2 (n ((γ + 2)λ− Λ)− || b ||L∞) ≡ k0(γ, c0, n, λ,Λ) > 0,

as long as γ satisfies

n ((γ + 2)λ− Λ)− || b ||L∞> 0.

Now set ψ = 1− w and for x ∈ B3/4(x̄) define

vt(x) = α(1 + c1ε)(xn − εc0δψ(x) + tε)+ − β(xn − εc0δψ(x) + tε)−,

with δ > 0 small to be made precise later, and c1 the constant in (8.6).
Then, for t = −c1 one can easily verify that

v−c1 ≤ Uβ ≤ u, x ∈ B3/4(x̄).

Let t̄ be the largest t ≥ −c1 such that

vt(x) ≤ u(x) in B3/4(x̄),

and let x̃ be the first touching point. To guarantee that x̃ cannot belong to ∂B3/4

when t̄ < c0δ we use (8.6). Indeed if x ∈ ∂B3/4 and vt̄(x) ≥ 0 then xn > 0 and in
view of (8.6)

vt̄(x) = α(1 + c1ε)(xn − εc0δ + t̄ε) < α(1 + c1ε)xn ≤ u(x).

If vt̄(x) < 0 we use that u ≥ Uβ to reach again the conclusion that vt̄(x) < u(x).
To proceed as in Lemma 4.3 we now need to show that for t̄ < c0δ, vt̄ is a strict
subsolution in the annulus A.

Indeed, in A+(vt̄) in view of the assumption (8.1) and the computation above
for Lw, we have

Lvt̄ ≥ α(εc0δk0 + bn) ≥ ε2min{α, β} ≥ ‖f‖∞.

A similar estimate holds in A−(vt̄). Thus

Lvt̄ ≥ f in A+(vt̄) ∪ A
−(vt̄)

for ε small enough.
Also, since ψn < −c on F (vt̄) ∩ A, for ε small, we have

κ ≡ |en − εc0∇ψ| = (1− 2εc0δψn + ε2c20δ
2|∇ψ|2)1/2 = 1 + k̃δε,

with k̃ between two universal constants.
Then, on F (vt̄) ∩ A, using (8.2), we can write, as long as ε is sufficiently small,

(v+t̄ )ν −G((v−t̄ )ν , x) = α(1 + c1ε)κ−G(βκ, x) ≥ α(1 + c1ε)κ−G0(βκ)− ǫ2

> (1 + c1ε)G0(β) −G0(β)κ
N − ǫ2

≥ εG0(β)(
c1
2

−Nk̃δ) > 0

if δ < c1/(2Nκ̃). We used that G0(β) ≥ G0(0) > 0 and that G0(βκ) < G0(β)κ
N ,

since η−NG0(η) is strictly decreasing.
Thus, vt̄ is a strict subsolution to (1.1) in A as desired. Hence t̄ ≥ c0δ and we

conclude as in the Laplacian case.



With Lemma 8.1 at hand, Harnack Inequality and its Corollary follow as in
Section 4. We only state the Corollary, since it is indeed the tool used in the proof
of the improvement of flatness lemma in the next subsection.

Corollary 8.2. Let u satisfies at some point x0 ∈ B2

(8.7) Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + b0) in B1(x0) ⊂ B2,

for some 0 < β ≤ L, with
b0 − a0 ≤ ε,

and let (8.1)-(8.2) hold, for ε ≤ ε̄, ε̄ universal. Then in B1(x0), (α = G0(β))

ũε(x) =





u(x)− αxn
αε

in B+
2 (u) ∪ F (u)

u(x)− βxn
βε

in B−

2 (u)

has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e for all
x ∈ B1(x0), with |x− x0| ≥ ε/ε̄

|ũε(x)− ũε(x0)| ≤ C|x − x0|
γ .

8.2. Improvement of flatness. We now extend the basic induction step towards
C1,γ regularity at 0. We argue as in the proof of Lemma 5.1.

Lemma 8.3. Let u be solution of (1.3) and suppose that

(8.8) Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1,

with 0 < β ≤ L,

‖aij − δij‖L∞(B1) ≤ ε, ‖f‖L∞(B1) ≤ ε2 min{G0(β), β)}, ‖b‖L∞(B1) ≤ ε2,

and
‖G(η, ·)−G0(η)‖L∞(B1) ≤ ε2, ∀0 ≤ η ≤ L.

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r, then

(8.9) Uβ′(x · ν1 − r
ε

2
) ≤ u(x) ≤ Uβ′(x · ν1 + r

ε

2
) in Br,

with |ν1| = 1, |ν1 − en| ≤ C̃ε, and |β − β′| ≤ C̃βε for a universal constant C̃.

Proof. We divide the proof in 3 steps.

Step 1 – Compactness. We keep the same notation of Lemma 5.1. In this

case, the sequence uk is a solution of problem (1.3) for operators

Lk =
∑

ij

aij
kDij + bk · ∇

with (αk = Gk(βk, 0))

‖akij − δij‖L∞ ≤ εk, ‖fk‖L∞ ≤ ε2k min{αk, βk}, ‖bk‖L∞ ≤ ε2k,

and

(8.10) ‖Gk(η, ·)−Gk(η, 0)‖∞ ≤ ε2k, ∀0 ≤ η ≤ L.

The normalized functions ũk are defined by the same formula. Up to a subse-
quence, Gk(·, 0) converges, locally uniformly, to some C1-function G̃0, while βk → β̃



so that αk → α̃ = G̃0(β̃). Moreover, by Corollary 8.2 the graphs of ũk converge in
the Hausdorff distance to a Hölder continuous ũ.

Step 2 – Limiting Solution. We show that ũ solves

(8.11)





∆ũ = 0 in B1/2 ∩ {xn 6= 0},

α̃ũ+n − β̃G̃′
0(β̃)ũ

−
n = 0 on B1/2 ∩ {xn = 0}.

We can write, say in Ω+(uk), (in Ω−(uk) replace αk with βk)
∑

akijDij ũk =
1

αkεk

∑
akijDijuk =

1

αkεk
(−αkb

k · ∇uk + fk) ≡ F k,

where |F k| ≤ Cεk.
Thus

∆ũk =

n∑

i,j=1

(δij − akij)Dij ũk + F k.

Hence recalling that ‖akij − δij‖∞ ≤ εk, and from interior Lp Schauder estimates
for second derivatives, we conclude that, for instance, ∆ũk → 0 in Lp on every
compact set contained in Ω+(ũk) or in Ω−(ũk). This shows that ũ is harmonic in
B1/2 ∩ {xn 6= 0}.

Next, we prove that ũ satisfies the transmission condition in (8.11) in the viscosity
sense.

Again we argue by contradiction. Let φ̃ be a function of the form

φ̃(x) = A+ px+n − qx−n +BQ(x− y)

with

Q(x) =
1

2
[(n− 1)x2n − |x′|2], y = (y′, 0), A ∈, B > 0

and
α̃p− β̃G̃′

0(β̃)q > 0,

and assume that φ̃ touches u strictly from below at a point x0 = (x′0, 0) ∈ B1/2. As
in Lemma 5.1, let

φk = akΓ
+
k (x)− bkΓ

−

k (x) + αk(d
+
k (x))

2ε
3/2
k + βk(d

−

k (x))
2ε

3/2
k ,

where, we recall,
ak = αk(1 + εkp), bk = βk(1 + εkq)

and dk(x) is the signed distance from x to ∂B 1

Bεk

(y + en(
1

Bεk
−Aεk)). Moreover,

ψk(x) = φk(x+ εkcken)

touches uk from below at xk, with ck → 0, xk → x0.
We get a contradiction if we prove that ψk is a strict subsolution to our free

boundary problem, that is





Lkψk > fk, in B+
1 (ψk) ∪B

−

1 (ψk),

(ψ+
k )ν −Gk((ψ

−

k )ν , x) > 0, on F (ψk).

We have
|∇Γk| ≤ C, |DijΓk| ≤ Cεk



and |aij − δij | ≤ εk. We can write, k large enough, say, in the positive phase of ψk,

Lkψk = (Lk −∆)ψk +∆ψk ≥ −Cαkε
2
k + αkε

3/2
k Lkd2k(x+ εcken)

≥ cmin{αk, βk}ε
3/2
k ≥ ‖fk‖L∞

and the first condition is satisfied. An analogous estimate holds in the negative
phase.

Finally, since on the zero level set |∇Γk| = 1 and |∇d2k| = 0 the free boundary
condition reduces to showing that

ak −Gk(bk, x) > 0.

Using the definition of ak, bk we need to check that

αk(1 + εkp)−Gk(βk(1 + εkq), x) > 0.

From (8.10), it suffices to check that

αk(1 + εkp)−Gk(βk(1 + εkq), 0)− ε2k > 0.

This inequality holds for k large in view of the fact that

α̃p− β̃G̃′

0(β̃)q > 0.

Thus ũ is a viscosity solution to the linearized problem.

Step 3 – Contradiction. According to estimate (3.2), since ũ(0) = 0 we obtain
that

|ũ− (x′ · ν′ + px+n − qx−n )| ≤ Cr2, x ∈ Br,

with
α̃p− β̃G̃′

0(β̃)q = 0, |ν′| = |∇x′ ũ(0)| ≤ C.

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get that

|ũk − (x′ · ν′ + px+n − qx−n )| ≤ Cr2, x ∈ Br.

Now set,

β′

k = βk(1 + εkq), νk =
1√

1 + ε2k|ν
′|2

(en + εk(ν
′, 0)).

Then,

α′

k = Gk(βk(1 + εkq), 0) = Gk(βk, 0) + βkG
′

k(βk, 0)εkq +O(ε2k)

= αk(1 + βk
G′

k(βk, 0)

αk
qεk) +O(ε2k) = αk(1 + εkp) +O(ε2k)

since from the identity α̃p− β̃G̃′
0(β̃)q = 0 we derive that

βk
G′

k(βk, 0)

αk
q = p+O(εk).

Moreover
νk = en + εk(ν

′, 0) + ε2kτ, |τ | ≤ C.

With these choices it follows as in Lemma 5.1 that (for k large and r ≤ r0)

Ũβ′

k
(x · νk − εk

r

2
) ≤ ũk(x) ≤ Ũβ′

k
(x · νk + εk

r

2
), in Br

which leads to a contradiction.



9. The degenerate case for general free boundary problems.

In this section, we recover the improvement of flatness lemma in the degenerate
case, that is when the negative part of u is negligible and the positive part is close to
a one-plane solution (i.e. β = 0, α = G0(0)). First we need the Harnack inequality.

9.1. Harnack inequality. As in Section 4, Harnack inequality in the degenerate
case follows from the following basic lemma.

Lemma 9.1. There exists a universal constant ε̄ > 0 such that if u satisfies

u+(x) ≥ U0(x), in B1

with

(9.1) ‖u−‖L∞ ≤ ε2, ‖b‖L∞ ≤ ε2 ‖f‖L∞ ≤ ε4,

(9.2) ‖G(η, ·)−G0(η)‖ ≤ ε2, 0 ≤ η ≤ Cε2

then if at x̄ =
1

5
en

(9.3) u+(x̄) ≥ U0(x̄n + ε),

then

(9.4) u+(x) ≥ U0(xn + cε) in B1/2,

for some 0 < c < 1 universal. Analogously, if

u+(x) ≤ U0(x) in B1

and

u+(x̄) ≤ U0(x̄n − ε)

then

u+(x) ≤ U0(xn − cε) in B1/2.

Proof. The proof is the same as for the model case in Lemma 4.6. To prove that

vt̄(x) = G0(0)(xn − εc0ψ + t̄ε)+ − ε2C1(xn − εc0ψ(x) + t̄ε)−, x ∈ B3/4(x̄)

is a subsolution in the annulus A we use the following computation

Lvt̄ ≥ c0C1ε
3Lw − C1ε

2|bn| ≥ ε3K(n, λ,Λ) > ε4 ≥ ‖f‖∞, in A+(vt̄) ∪A
−(vt̄)

for ε small enough. Here we have used as in Lemma 8.1 that Lw ≥ k0 > 0.
Moreover, on F (vt̄) ∩ A we have

(v+t̄ )ν−G((v
−

t̄ )ν) = G0(0)|en−εc0∇ψ|−G(ε
2C1|en−εc0∇ψ|, x) ≥ Cε|ψn|+O(ε

2) > 0

as long as ε is small enough.

We state here the Corollary that can be deduced by the degenerate Harnack
Inequality.

Corollary 9.2. Let u satisfies at some point x0 ∈ B2

(9.5) U0(xn + a0) ≤ u(x) ≤ U0(xn + b0) in B1(x0) ⊂ B2,

with

b0 − a0 ≤ ε,



and let (9.1)-(9.2) hold for ε ≤ ε̄, ε̄ universal. Then in B1(x0)

ũε :=
u+(x) −G0(0)xn

εG0(0)

has a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e for all
x ∈ B1(x0), with |x− x0| ≥ ε/ε̄

|ũε(x)− ũε(x0)| ≤ C|x − x0|
γ .

9.2. Improvement of flatness. We prove here the improvement of flatness in the
degenerate setting. Recall that in this case one improves the flatness of u+ only.

Lemma 9.3. Let u satisfy

(9.6) U0(xn − ε) ≤ u+(x) ≤ U0(xn + ε) in B1, 0 ∈ F (u),

with

‖aij − δij‖ ≤ ε, ‖f‖L∞(B1) ≤ ε4, ‖b‖L∞(B1) ≤ ε2,

‖G(η, ·)−G0(η)‖L∞ ≤ ε2, 0 ≤ η ≤ Cε2,

and

‖u−‖L∞(B1) ≤ ε2.

If 0 < r ≤ r1 for r1 universal, and 0 < ε ≤ ε1 for some ε1 depending on r, then

(9.7) U0(x · ν1 − r
ε

2
) ≤ u+(x) ≤ U0(x · ν1 + r

ε

2
) in Br,

with |ν1| = 1, |ν1 − en| ≤ Cε for a universal constant C.

Proof. Step 1 – Compactness. As in Lemma 5.2, it follows from Corollary 9.2
that as εk → 0 the graphs of the

ũk(x) =
uk(x) −Gk(0, 0)xn

Gk(0, 0)εk
, x ∈ B+

1 (uk) ∪ F (uk)

converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder
continuous function ũ over B1/2 ∩ {xn ≥ 0}. Here the uk solve our free boundary

problem (1.3) with coefficients akij ,b
k, right-hand-side fk and free boundary con-

dition Gk satisfying the assumptions of the lemma for a sequence of εk’s going to
0.

Step 2 – Limiting Solution. One shows that ũ solves the following Neumann
problem

(9.8)






∆ũ = 0 in B1/2 ∩ {xn > 0},

ũn = 0 on B1/2 ∩ {xn = 0}.

We can easily adapt the proof of Lemma 5.2, choosing

φk(x) = akΓ
+
k (x) + (d+k (x))

2ε
3/2
k , ak = Gk(0, 0)(1 + εkp).

and

(9.9) Ψk(x) =





φk(x+ ckεken) in B

cε2k(3d(x, ∂B) + d2(x, ∂B)) outside of B,



with

B := B 1

Bεk

(y + en(
1

Bεk
−Aεk − εkck)).

To check the subsolution condition at the free boundary for the function Ψk(x), we
need that

(Ψ+
k )ν > Gk((Ψ

−

k )ν , x), on F (Ψk).

This is equivalent to show that, for k large,

Gk(0, 0)(1 + εkp)−Gk(cε
2
k, x) > 0.

Since p > 0, this follows immediately from the assumptions on Gk.

Step 3 – Contradiction. In this step we can argue as in the final step of the
proof of Lemma 4.1 in [D]. �

10. Proofs of the main theorems for general free boundary problems

The proof of Theorem 1.3 and Theorem 1.4 follow the same scheme of the model
case. In particular, for Theorem 1.3, we take care of choosing r̄γ̄ < 1/16, say,
while the other assumptions on r̄ remain the same. Also, ε̃ may have to be smaller,
depending on γ0. The dichotomy degenerate/nondegenerate is handled through
Lemma 6.1 which extends to the variable coefficients case, with minor changes in
the proof.

In the proof of Theorem 1.4, the blow-up limit ũ solves the following global
homogeneous two-phase free boundary problem

(10.1)





∆ũ = 0, in {ũ > 0} ∪ {ũ ≤ 0}0

ũ+ν = G0(ũ
−
ν ), on F (ũ) := ∂{ũ > 0},

Now, Lemma 6.2 holds with identical proof for the free boundary condition
U+
ν = G0(U

−
ν ), so that the proof of Theorem 1.4 does not present any further

difficulty.
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