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Abstract. Multiscale methods based on coupled partial di↵erential equations defined on bulk

and embedded manifolds are still poorly explored from the theoretical standpoint, although they

are successfully used in applications, such as microcirculation and flow in perforated subsurface

reservoirs. This work aims at shedding light on some theoretical aspects of a multiscale method

consisting of coupled partial di↵erential equations defined on one-dimensional domains embedded

into three-dimensional ones. Mathematical issues arise because the dimensionality gap between the

bulk and the inclusions is larger than one, that is the high dimensionality gap case. First, we show

that such model derives from a system of fully three-dimensional equations, by the application of

a topological model reduction approach. Secondly, we rigorously analyze the problem, showing

that the averaging operators applied for the model reduction introduce a regularization e↵ect that

resolves the issues due to the singularity of solutions and to the ill-posedness of restriction operators.

Then, we exploit the structure of the model reduction technique to analyze the modeling error. This

study confirms that for infinitesimally small inclusions, the modeling error vanishes. Finally, we

discretize the problem by means of the finite element method and we analyze the approximation

and the model error by means of numerical experiments.
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1. Introduction

The topological (or geometrical) model reduction techniques play an essential role in the simulation of
multiscale, multiphysics, multimodel systems. For example, small inclusions of a continuum can be described
as zero-dimensional (0D) or one-dimensional (1D) concentrated sources in order to reduce the computational
cost of simulations. Many problems in this area are not well investigated yet, such as the coupling of three-
dimensional (3D) continua with embedded (1D) networks, although it arises in applications of paramount
importance. For example, such models have been introduced since three decades (at least), for modeling
wells in subsurface reservoirs in [35,36] and for modeling microcirculation in [5,17,18,42]. A similar approach
has been recently used to model soil/root interactions [23]. However, these application-driven seminal ideas
were not followed by a systematic theory and rigorous mathematical analysis.
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Seminal works featuring the formulation and analysis of bulk 3D with embedded 1D PDEs, due to
D’Angelo and co-workers [12–14, 30], have appeared much later than their applications. From the point
of view of numerical approximation and analysis of such problems, besides the works by D’Angelo, we men-
tion [4, 6, 24–28, 33]. More precisely, in [4, 24, 25] optimal a-priori error estimates for the finite element
approximation of elliptic equations in with Dirac sources are addressed. The solution of 1D di↵erential
equations embedded in 2D is studied in [27], recently extended to 3D-1D in [28]. The consistent derivation
of numerical approximations schemes for PDEs in mixed dimension is addressed in [6], while [33] focuses on
the approximation of 3D-1D coupled problems with mixed finite elements. Relevant topics related to the
3D-1D coupling have also been addressed in [21,44], where regularization of singularities is studied for PDEs
with singular source terms.

We believe that these studies do not cover the many facets of a comprehensive theory of coupled PDEs
on embedded manifolds with heterogeneous dimensionality. The main issues consist in the poor regularity
of solutions of (second order, elliptic) PDEs with singular forcing terms, combined with the ill-posedness
of restriction operators (such as the trace operator) applied on manifolds with co-dimension larger than
one. We envision di↵erent ways to overcome this theoretical obstacle. One is the application of weighted
Sobolev spaces to handle singular functions, already adopted in [13,14]. The other one is the introduction of
regularizing operators. This work explores the latter path, with the main purpose to extend the work of [26]
to the more challenging case of 3D-1D coupled equations.

We start from a system of fully 3D second order elliptic equations, coupled by means of Robin type (or
mixed type) interface conditions that mimic the flux type interface conditions that are typically used in the
applications cited above. This represents an idealized problem of transport/flow through a network of small
inclusions embedded into a bulk domain. We identify three general assumptions that allow us to transform
the original problem into a simpler one, by means of a topological model reduction technique based on local
averaging. The resulting equations consist of 3D-1D coupled elliptic equations. Since the mathematical
tools used for the derivation of the reduced model are related to the geometric multiscale method, see for
example [39] for a recent review, but are applied here to model small inclusions embedded into a bulk, we
call this new approach the geometric embedded multiscale method.

We show that the averaging operators introduce in the problem a regularizing e↵ect, such that the
weak solution exists in classical Hilbert spaces. As a consequence, the reduced problem can be naturally
approximated by means of finite elements and, thanks to some additional regularity results, the convergence of
the approximation method can be proved and the corresponding rates are observed in numerical experiments.
We notice that if the small inclusions are shaped as a network, the 1D subproblem consists of a quantum
graph, see [3] for details, and its finite element approximation can be addressed with the tools recently
developed in [2]. Furthermore, the systematic derivation of the reduced model reveals the structure of the
modeling error, allowing us to perform a rigorous analysis of it. This analysis ends up with the conclusion
that for infinitesimally small inclusions, the reduced model is equivalent to the fully 3D one.

We believe that building sound mathematical foundations for the 3D-1D approach to model embedded
inclusions will benefit to the theoretical knowledge and it will also improve the reliability of the method for
relevant applications, as for example the ones already addressed by the authors and co-workers in [9, 10,31,
32,37,38], see Figure 1 (right panel) for an illustration of these results.

2. Problem setting

We address here the geometrical configuration of the domain and we set up a problem based on Robin-
Neumann coupling conditions. Figure 1 (left panel) shows a qualitative sketch of the problem setting. Then,
we present the formal derivation of the reduced problem, consisting of 3D-1D coupled equations. A rigorous
analysis of it will be considered in Section 3.

2.1. Geometrical setting

The domain is denoted as ⌦ and composed by two parts, ⌃ and ⌦� := ⌦ \ ⌃. We assume ⌦ is convex
and ⌃ is completely embedded into ⌦, such that the distance between @⌦ and @⌃ is strictly positive.

Let ⌃ be a generalized cylinder, that is the swept volume of a two dimensional set moved along a curve in
the three-dimensional space, see for example [19]. More precisely, let �(s) = [⇠(s), ⌧(s), ⇣(s)], s 2 (0, S) be a
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Figure 1. The left panel shows a qualitative sketch of the geometrical setting of the prob-
lem. The right panel illustrates three significant applications for which the geometric em-

bedded multiscale method has been already successfully used: case (A) represents micro-
circulation, addressed in [9, 10, 31, 32, 37, 38]; case (B) shows a preliminary study of the
interaction of soil and roots pursued in [40]; case (C) represents a prototype simulation for
the interaction of reservoirs and wells performed with the approach described in [11].

C2-regular curve in the three-dimensional space. Let ⇤ = {�(s), s 2 (0, S)} be the centerline of the cylinder.
For simplicity, let us assume that k�0(s)k = 1 such that the arc-length and the coordinate s coincide. Let
T ,N ,B be the Frenet frame related to the curve.

Let D(s) = [x(r, t), y(r, t)] : (0, R(s)) ⇥ (0, T (s)) ! R2 be a parametrization of the cross section. Let us
assume that D(s) is convex for any s 2 (0, S). The cross section can change size along ⇤ but not shape. Let us
also parametrize the boundary of the cross section as @D(s) = [@x(r, t), @y(r, t)] : (0, R(s))⇥ (0, T (s))! R2,
and let us assume that @D(s) is a piecewise C2-regular curve. Then, the generalized cylinder ⌃ can be defined
as follows

⌃ = {�(s) + x(r, t)N(s) + y(r, t)B(s), r 2 (0, R(s)), s 2 (0, S), t 2 (0, T (s))} ,
and the lateral boundary of it, denoted with �, is

� = {�(s) + @x(r, t)N(s) + @y(r, t)B(s), r 2 (0, R(s)), s 2 (0, S), t 2 (0, T (s))} .

Let | · | denote the Lebesgue measure of a set. If |D(0)|, |D(S)| > 0 then ⌃ has top and bottom boundaries,
which are @⌃ \� = {�(0) +D(0)}[ {�(S) +D(S)}. For simplicity of notation we write �

0

= {�(0) +D(0)}
and �S = {�(S) +D(S)}.

Thanks to the geometrical structure of the generalized cylinder, we decompose integrals as follows, for
any su�ciently regular function w,

Z

⌃

wd! =

Z

⇤

Z

D(s)

wd�ds =

Z

⇤

|D(s)|w(s)ds , where w(s) = |D(s)|�1

Z

D(s)

wd� ,

Z

@⌃

wd� =

Z

⇤

Z

@D(s)

wd�ds =

Z

⇤

|@D(s)|w(s)ds , where w(s) = |@D(s)|�1

Z

@D(s)

wd� ,

being d!, d�, d� the generic volume, surface and curvilinear Lebesgue measures.
With little abuse of notation, for a straight cylinder we identify the function w(s) : ⇤ ! R with the

function on ⌃ obtained by extending the mean value to each cross section D(s). The same extension can be
also applied to �, namely w(s) can be either regarded as a function on ⇤ or on �.

Let us now formulate a fundamental assumption (A0) on the proportions of ⌃.
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A0: We assume that the transversal diameter of ⌃ is small compared to the diameter of ⌦. The small
parameter (defined below) is denoted with the symbol ✏.

Let D = maxs2(0,S)

diam(D(s)) be the largest diameter of the cross sections of ⌃, that is the transversal
diameter of ⌃. The central assumption of this work is that D ⌧ diam(⌦). Let us now scale the domains ⌦
and ⌃. Let �

⌦

(x) = x/diam(⌦) be a scaling function and let be ⌦� = �
⌦

(⌦), ⌃� = �
⌦

(⌃) be the scaled
domains. The previous assumption implies that for the scaled domains ✏ = D� = D/diam(⌦) is such that
0 < ✏⌧ 1. For simplicity of notation, and without loss of generality, form now on we will implicitly refer to
the scaled domains dropping the subindex �.

2.2. Fully 3D coupled problem formulation

We describe here a version of the problem arising from Robin-Neumann conditions. After straightforwardly
rearranging the Robin-Neumann conditions as Robin-Robin ones, the problem consists to find u�, u (where
�, denote the exterior and the interior of ⌃, respectively) such as:

��u� = f in ⌦�, (1a)

��u = g in ⌃, (1b)

�ru� · n� =  (u� � u ) on �, (1c)

�ru · n =  (u � u�) on �, (1d)

�ru� · n� = 0 on �
0

[ �S , (1e)

�ru · n = 0 on �
0

[ �S , (1f)

u� = 0 on @⌦ . (1g)

It is assumed that the interface of ⌃ is permeable, namely it is crossed by a normal flux proportional to
 (u� � u ). The coe�cient  plays the role of permeability or transfer coe�cient and it assumes a uniform
value on each cross section @D(s). As a result of that,  is only a (regular) function of the arc-length s.
For the boundary conditions on the top and bottom faces of the cylinder, we make the assumption that
|D(0)|, |D(S)| > 0. In applications, the domain ⌃ consists of many cylinders, representing channels carrying
flow, fibers or inclusions. The numerical approximation of PDEs on such domain may thus become very
demanding, due to its complex shape. The main disadvantage is that it requires the resolution of the full
geometry of the inclusions, which in many real applications can be di�cult to handle. For this reason, we
aim to apply topological model reduction techniques, based on averaging, in order to transform the problem
on ⌃ into a simpler one.

The objective of this work is to consider a simplified version of problem (1), where the domain ⌃ shrinks to
its centerline ⇤ and the corresponding partial di↵erential equation is averaged on the cylinder cross section,
namely D. This new problem setting will be called the reduced problem. From the mathematical standpoint
it is more challenging than (1), because it involves the coupling of 3D/1D elliptic problems.

2.3. Topological model reduction of the problem on ⌃

We apply the averaging technique to equation (1b). In particular, we consider an arbitrary portion P of
the cylinder, with lateral surface �P and bounded by two perpendicular sections to ⇤, namely D(s

1

), D(s
2

)
with s

1

< s
2

. We have,
Z

P
�u d! =

Z

@P
ru · n d� = �

Z

D(s1)

@su d� +

Z

D(s2)

@su d� +

Z

�P

ru · n d� .

By the fundamental theorem of integral calculus combined with the Reynolds transport Theorem, we have

�
Z

D(s1)

@su d� +

Z

D(s2)

@su d� =

Z s2

s1

ds

Z

D(s)

@su d�ds

=

Z s2

s1

d2ss

Z

D(s)

u d� ds�
Z s2

s1

ds

 Z

@D(s)

⌫u d�

!
ds ,
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where ⌫ denotes the normal deformation of the boundary along (0, S). More precisely, we observe that ⌫ is
uniform on @D(s), because we assume that D(s) can not change shape. Then, the following identity holds
true,

ds(|D(s)|) =
Z

@D(s)

⌫ d� = |@D(s)|⌫. (2)

Substituting in the previous equality, we obtain

Z s2

s1

d2ss

Z

D(s)

u d� ds�
Z s2

s1

ds

 Z

@D(s)

⌫u d�

!
ds =

Z s2

s1

⇥
d2ss(|D(s)|u )� ds(⌫|@D(s)|u )

⇤
ds

=

Z s2

s1

⇥
d2ss(|D(s)|u )� ds (ds(|D(s)|)u )

⇤
ds.

By means of (1d) we obtain,

Z

�P

ru · n d� = �
Z

�P

(u � u�) d� = �
Z s2

s1

Z

@D(s)

(u � u�)d� ds = �
Z s2

s1

|@D(s)|(u � u�) ds .

From the combination of all the above terms with the right hand side, we obtain that the solution u of (1)
satisfies,

Z s2

s1

⇥�d2ss(|D(s)|u ) + ds (ds(|D(s)|)u ) + |@D(s)|(u � u�)
⇤
ds =

Z s2

s1

|D(s)|g ds .

Since the choice of the points s
1

, s
2

is arbitrary, we conclude that the following equation holds true,

�d2ss(|D(s)|u ) + ds (ds(|D(s)|)u ) + |@D(s)|(u � u�) = |D(s)|g on ⇤ , (3)

which is complemented by the following conditions at the boundary of ⇤,

|D(s)|dsu = 0, ds|D(s)| = 0, on s = 0, S. (4)

Then, we consider the variational formulation of the averaged equation (3). After multiplication by a test
function V 2 H1(⇤), integration on ⇤ and suitable application of integration by parts, we obtain,

Z

⇤

ds(|D(s)|u )dsV ds� ds(|D(s)|u )V |s=S
s=0

�
Z

⇤

(ds|D(s)|)u dsV ds+ (ds|D(s)|)u V |s=S
s=0

+

Z

⇤

|@D(s)|(u � u�)V ds =

Z

⇤

|D(s)|gV ds .

Using boundary conditions, the identity ds(|D(s)|u ) = |D(s)|dsu + ds(|D(s)|)u and reminding that
ds|D(s)|)/|@D(s)| = ⌫, we obtain,

(dsu , dsV )
⇤,|D| + (⌫(u � u ), dsV )

⇤,|@D| + ((u � u�), V )
⇤,|@D| = (g, V )

⇤,|D| . (5)

where we have introduced the following weighted inner product notation,

(U, V )
⇤,w =

Z S

0

w(s)U(s)V (s)ds .

Let us now formulate the modelling assumption that allows us to reduce equation (5) to a solvable one-
dimensional (1D) model. More precisely, we assume that:

A1: the function u has a uniform profile on each cross section D(s), namely u (r, s, t) = U(s).
5



Therefore, observing that U = U = U , problem (5) consists to find U 2 H1(⇤) such that

(dsU, dsV )
⇤,|D| + (U, V )

⇤,|@D| = (u�, V )
⇤,|@D| + (g, V )

⇤,|D| 8V 2 H1(⇤) . (6)

Remark 2.1. By formally writing the strong formulation of equation (6) we obtain,

�d2ssU +
|@D|
|D| U =

|@D|
|D| u� + g, on ⇤ .

We observe that the relative magnitude of the flux terms, that are (|@D|/|D|)(U�u�), scales as (|@D|/|D|)
with respect to the volumetric terms, namely d2ssU + g. This sheds light on the behavior of the model when
✏! 0. More precisely, for a bounded , what matters is the limit of |@D|/|D|. Assuming that @D is rectifiable
and the cross section D is characterized by two axes, of length ✏ and ✏↵ respectively (where the parameter
↵ controls the aspect ratio of the cross section), we have lim✏!0

|@D|/|D| ' ✏�↵ + ✏�1 ' ✏�max(↵,1). Unless
↵ > 1, the scaling of |@D|/|D| is ✏�1. Going back to the strong formulation of (6), this entails that the flux
terms diverge when ✏ ! 0. This observation explains, from an heuristic yet physical standpoint, why the
coupling between the 3D and the 1D models becomes ill posed when the radius of the 1D inclusion vanishes.

2.4. Topological model reduction of the problem on ⌦�

We focus here on the subproblem of (1) related to ⌦�, that is

��u� = f in ⌦�, (7a)

�ru� · n� =  (u� � u ) on �, (7b)

u� = 0 on @⌦ . (7c)

First, we multiply both sides of (7a) for a test function v 2 H1

0

(⌦),

�
Z

⌦�

�u�v d! =

Z

⌦�

fv d!.

Integrating by parts and using boundary and interface conditions, we obtain:
Z

⌦�

fv d! = �
Z

⌦�

�u�v d! =

Z

⌦�

ru� ·rv d! �
Z

@⌦�

ru� · n�v d�

=

Z

⌦�

ru� ·rv d⌦+

Z

�

(u� � u )v d� .

Now, we apply a topological model reduction of the interface conditions, namely we go from a 3D-3D to
a 3D-1D formulation. To this purpose, let us write the solution and the test functions on every cross section
@D(s) as their average plus some fluctuation,

u� = u� + ũ�, u = u + ũ , v = v + ṽ, on @D(s) ,

where ũ� = ũ = ṽ = 0. Therefore, using the coordinates system (r, s, t) on �, for ⇤ = �, we have,
Z

�

u⇤v d� =

Z

⇤



Z

@D(s)

(u⇤ + ũ⇤)(v + ṽ)d�ds =

Z

⇤

|@D(s)|u⇤v ds+
Z

⇤



Z

@D(s)

ũ⇤ṽd�ds .

Then, we make the following modelling assumptions:

A2: we identify the domain ⌦� with the entire ⌦, and we correspondingly omit the subscript � to the
functions defined on ⌦�, namely

Z

⌦�

u� d! '
Z

⌦

u d! .
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A3: we assume that the product of fluctuations is small, namely

Z

@D(s)

ũ⇤ṽd� ' 0 .

By means of the previous deductions, reminding that for assumption A1 we have that u = U and putting
together the terms of the weak form of (7), we obtain that u solves the following problem,

(ru,rv)
⌦

+ (u, v)
⇤,|@D| = (U, v)

⇤,|@D| + (f, v)
⌦

, 8v 2 H1

0

(⌦) . (8)

2.5. Extension of the 1D problem to a metric graph

The embedded domain ⌃ was defined starting from its centerline, namely the curve ⇤. We now discuss
the generalization to the case where ⇤ is a network. In our case, the edges of the network are curves
�i(si) = [⇠i(si), ⌧i(si), ⇣i(si)], si 2 (0, Si), i = 1, . . . , N that are connected at a number M of vertices,

yj = �i(0) = �ı̂(Sı̂), i, ı̂ 2 {1, . . . , N}, j = 1, . . . ,M.

The set of vertices is denoted with Y = {yj 2 Rd, j = 1, . . . ,M}, while Kj , represent all the indices

i that are connected with the vertex j. Furthermore, Kj can be decomposed into K�j and K+

j , where

K�j = {i 2 {1, . . . , N} : yj = �i(0)} are the branches originating in the j�th vertex, according to their

orientation. The complementary is K+

j denoting the branches that end into the same vertex. We denote with
i 2 B the indices of segments with a dead-end, which can be similarly split into B+, B�. Obviously, each
edge has an arc-coordinate si and a length Si, under the assumption k�0ik = 1. With these two properties,
the network is also a metric graph. In this more general setting the embedded domain ⌃ is defined as the
union of all the generalized cylinders generated by swiping suitable sections @D(si) along the centerlines

⇤i = {�i(si), si 2 (0, Si)}, namely ⌃ =
SN

i=1

⌃i.
We observe that the topological model reduction approach can still be applied branch by branch indi-

vidually, but it can not be adapted to the entire ⌃ at once, because in proximity of the junctions ⌃ is no
longer a generalized cylinder. For this reason we define the reduced problem directly from the di↵erential
formulation of a single branch. Equation (3) applies to each edge ⇤i and it must be complemented with
suitable matching conditions at the vertices, which correspond to the application of (4) at the endpoints of
each ⇤i. Such conditions turn out to be the Kirchho↵ ones that for the j-th vertex can be written as,

X

i2K+
j

|D(Si)|dsiUi(Si)�
X

i2K�
j

|D(0)|dsiUi(0) = 0 ,

Ui(0) = Uı̂(Sı̂) , 8i 2 K�j , ı̂ 2 K+

j ,

dsi |D(0)| = dsi |D(Si)| = 0 , 8i 2 Kj .

The first conditions corresponds to balance of current or fluxes, while the second states that the solution on
each edge must be continuous at the vertices. The third condition is just an assumption on the shape of
each branch at the endpoints. The reduced problem on the network consists to find a collection of functions
Ui, i = 1, . . . , N such that
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�d2ss(|D(si)|Ui) + dsi(dsi |D(si)|Ui) + |@D(si)|iUi (9a)

=|@D(si)|iu� + |D(si)|g , on ⇤i, 8i = 1, . . . , N ,

dsi |D(0)| = dsi |D(Si)| = 0 , 8i 2 Kj , 8j = 1, . . . ,M , (9b)
X

i2K+
j

|D(Si)|dsiUi(Si)�
X

i2K�
j

|D(0)|dsiUi(0) = 0 , 8j = 1, . . . ,M , (9c)

Ui(0) = Uı̂(Sı̂) , 8i 2 K�j , 8ı̂ 2 K+

j , 8j = 1, . . . ,M , (9d)

|D(0)|dsiUi(0) = 0 , dsi |D(0)| = 0 , 8 i 2 B� , (9e)

|D(Si)|dsiUi(Si) = 0 , dsi |D(Si)| = 0 , 8 i 2 B+ . (9f)

For the definition of the variational formulation of problem (9) we introduce Sobolev spaces defined on
a metric graph, see for example [2, 43] and references therein. In particular H1(⇤) =

L
⇤i

H1(⇤i) \ C0(⇤),
namely the space of all continuous functions V : ⇤ ! R, such that their restriction Vi to each edge
⇤i, i = 1, . . . , N belongs to H1(⇤i), where H1(⇤i) denotes the usual H1 space defined on the manifold ⇤i.

The norm of H1(⇤) is naturally defined as, kV k2H1
(⇤)

=
PN

i=1

kVik2H1
(⇤i)

.

Let us now take U, V 2 H1(⇤) and derive the variational formulation of (9). From (9a), we obtain,

NX

i=1

⇥
(dsiUi, dsVi)

⇤i,|D| � dsi(|D(si)|Ui)Vi|si=Si
si=0

+ dsi(|D(si)|)UiVi|si=Si
si=0

+ (iUi, Vi)
⇤i,|@D|

⇤

=
NX

i=1

(iu�, Vi)
⇤i,|@D| + (g, V )

⇤,|D| .

After using (9b) and reordering the terms at the endpoints of each edge we have,

NX

i=1

⇥|D(Si)|dsiUi(Si)Vi(Si)� |D(0)|dsiUi(0)Vi(0)
⇤

=
MX

j=1

"
X

i2K+
j

|D(Si)|dsiUi(Si)Vi(Si)�
X

i2K�
j

|D(0)|dsiUi(0)Vi(0)

#

+
X

i2B+

|D(Si)|dsiUi(Si)Vi(Si)�
X

i2B�

|D(0)|dsiUi(0)Vi(0) .

Since the test functions are continuous on ⇤, they can be factorized and all the terms on Kj and B disappear
owing to (9c)-(9e)-(9f). Finally, conditions (9d) are stongly enforced through the definition of H1(⇤). As
a result of that, the variational formulation of the reduced problem on the network consists of finding
U 2 H1(⇤) such that

NX

i=1

⇥
(dsiUi, dsVi)

⇤i,|D| + (iUi, Vi)
⇤i,|@D|

⇤
=

NX

i=1

(iu�, Vi)
⇤i,|@D| + (g, V )

⇤,|D| . (10)

Endowed with problem (10) the metric graph ⇤ becomes a quantum graph, namely a metric graph equipped
with a di↵erential operator on the edges complemented with vertex conditions, see for example [3]. In the
simple case of constant cross sections, namely ds|@D(s)| = 0, the di↵erential operator on ⇤ is L(U) =
|D|d2ssU + |@D|U (also called as a Schrodinger-type or Hamiltonian operator) and the vertex conditions are
the Kirchho↵ equations reported above.
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3. Mathematical analysis and numerical approximation of the problem

We study the existence, uniqueness, stability and regularity of solutions of problem (6)-(8). The main
focus of this section is to show how the formal derivation of the 3D-1D coupled problem actually provides a
mathematically sound definition of the coupling operators from a 3D domain, ⌦, to a 1D manifold, ⇤, and
vice versa. This is a non trivial result, because the standard trace operator form a domain ⌦ to a subset ⇤
is not well posed if ⇤ is a manifold of co-dimension two of ⌦.

3.1. Coupled problems with hybrid dimensionality

Let us now introduce the following bilinear forms:

a
⌦

(w, v) = (rw,rv)
⌦

,

a
⇤

(w, v) = (dsw, dsv)
⇤,|D|,

b✏
⇤

(w, v) = (w, v)
⇤,|@D|.

After averaging of the equation on ⌦ and of the interface conditions, for any f 2 L2(⌦), g 2 L2(⇤), the
weak formulation of the reduced problem consists to find u 2 H1

0

(⌦), U 2 H1(⇤) such that

a
⌦

(u, v) + b✏
⇤

(u, v) = b✏
⇤

(U, v) + (f, v)
⌦

8v 2 H1

0

(⌦) , (11a)

a
⇤

(U, V ) + b✏
⇤

(U, V ) = b✏
⇤

(u, V ) + (g, V )
⇤,|D| 8V 2 H1(⇤) . (11b)

This problem is an extension to 3D of the one considered in [26] for two space dimensions.
For what follows, it is convenient to introduce a compact formulation for problem (11). In particular, we

define V = [v, V ] a generic function of the space V = H1

0

(⌦)⇥H1(⇤) and we name U = [u, U ] the couple of
unknowns of problem (11). Any function V 2 V is endowed with the norm |||V|||2 = kvk2H1

(⌦)

+ kV k2H1
(⇤),|D|.

Then, we introduce the following bilinear form in V⇥ V,

A(U ,V) = a
⌦

(u, v) + a
⇤

(U, V ) + b✏
⇤

(u� U, v � V ) ,

and the linear functional in V, F(V) = (f, v)
⌦

+(g, V )
⇤,|D|. Then, the compact form of problem (11) consists

of finding U 2 V such that
A(U ,V) = F(V), 8V 2 V . (12)

3.2. Well-posedness analysis

The mathematical properties of problem (12) are studied below. Before proceeding, we list the main
assumptions on the domain and on the coe�cients, at the basis of the existence of a solution (E1-E3). From
now on, the dependence of D and @D from the arclength s will be omitted in the notation.

E1: ⇤ ⇢⇢ ⌦ are bounded and domains in Rd�2 and Rd respectively, with d = 3.
E2: The domain ⌃ is a generalized cylinder with strictly positive minimal diameter mins |D(s)| > 0 for any

s 2 (0, S). As a consequence ⌃ has planar faces |D(0)|, |D(S)| > 0 at the endpoints of ⇤.
E3: There exist positive constants CD, C@D independent of s, such that

|D| = CD (diam(D))2, |@D| = C@D diam(D) . (13)

E4: The parameter  2 L1(⇤) is strictly positive and lower bounded by min > 0.

Remark 3.1. Assumption E2 prevents that the generalized cylinder ⌃ pinches at any interior or extremal
location of the centerline ⇤, i.e. the cross section of the cylinder can not collapse. In particular, this entails
that the cylinder must have blunt (planar) tips. This is an essential requirement in the analysis, because
the boundedness of the bilinear form depends of the minimal radius of the cylinder, as shown in Lemma
3.7. This is due to the fact that, if a cross section collapses, then the coupling between the 3D and the 1D
problem becomes ill posed. This is equivalent to observe that, if |D|! 0, then we loose control of U in the
weighted norm |||U|||.
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Remark 3.2. Assumption E3, namely that CD and C@D are independent of s means that the cross section
of ⌃ can not change its shape, but it can be subject to a homothetic map and rotation.

Theorem 3.3. Under the assumptions E1-E4, problem (12) has a unique solution U 2 V satisfying the

following stability estimate,

|||U|||  CS1

�kfkL2
(⌦)

+ kgkL2
(⇤),|D|

�
(14)

with

CS1

=
2
q

1 + (1 + CP (⌦))
2

C̄2

T kk2L1

min
�
C̄T kkL1 , 2(1 + (1 + CP (⌦)) C̄T kkL1), C@D/CDmin

� ,

where the meaning of constants will be clarified in what follows.

Before addressing the central result, we present some auxiliary tools that will be useful in the analysis.

Lemma 3.4. If v 2 H1(⌦) or alternatively v 2 L2(�), then v 2 L2(⇤) and the following inequality holds

kvk2L2
(⇤),|@D|  kvk2L2

(�)

 CT (�,⌦)kvk2H1
(⌦)

, (15)

being CT (�,⌦) the (positive) constant of the trace inequality from L2(�) to H1(⌦). Moreover, CT (�,⌦) =

O(✏1�
1

2�� ), for � > 0 su�ciently small, therefore it tends to 0 when ✏ tends to 0.

Proof. If the inequality (15) holds, it follows immediately that v 2 L2(⇤), since v 2 H1(⌦), or alternatively
v 2 L2(�). Therefore, we consider

kvk2L2
(⇤),|@D| =

Z

⇤

|@D|v2 ds =
Z

⇤

1

|@D|
✓Z

@D
v d�

◆
2

ds. (16)

Using Jensen’s inequality, we obtain

Z

⇤

1

|@D|
✓Z

@D
v d�

◆
2

ds 
Z

⇤

Z

@D
v2 d� ds (17)

and consequently

kvk2L2
(⇤),|@D| 

Z

⇤

Z

@D
v2 d� ds = kvk2L2

(�)

 CT (�,⌦)kvk2H1
(⌦)

. (18)

We now prove that the constant CT (�,⌦) tends to 0 when ✏ tends to 0 analyzing the behaviour of the trace
constrant C(�,⌦�) from L2(�) to H1(⌦�) and exploiting the fact that for any function v 2 H1(⌦) we have

kvk2L2
(�)

 CT (�,⌦�)kvk2H1
(⌦�)

 CT (�,⌦�)kvk2H1
(⌦)

.

Therefore, let v 2 H1(⌦�), then the trace of v on � is in H
1
2 (�) and by Sobolev embedding theorem we

have that H
1
2 (�) is embedded in Lp(�) for p  4. Using Hölder inequality with positive exponents 2� � and

2��
1�� , for � > 0 su�ciently small,

kvk2L2
(�)

=

Z

�

v2d� 
✓Z

�

1
2��
1�� d�

◆
1� 1

2��
✓Z

�

v4�2�

◆ 1
2��

 |�|1� 1
2�� kvk2L4�2�

(�)

 |�|1� 1
2��CT (@⌦�,⌦�)kvk2H1

(⌦�)

,

where CT (@⌦�,⌦�) is bounded as ✏ ! 0. Indeed, the problem of studying the asymptotic behaviour
of the constant in the trace inequality from L4�2�(@⌦�) to H1(⌦�) as ✏ ! 0 can be reformulated as the
problem of studying the behaviour of the trace constant as the external boundary @⌦ expands (we recall that
@⌦ = @⌦� \ �). Then, from [16, Theorem 1.3, item 2], taking p = 2, q = 4� 2�, we have that CT (@⌦�,⌦�)
is uniformly bounded with respect to the size of the domain and the relative size of the boundary. Therefore
CT (�,⌦�)  |�|1� 1

2��CT (@⌦�,⌦�) = O(✏1�
1

2�� ) when ✏! 0, because the surface area of � is proportional
to ✏. ⇤
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Lemma 3.5 (Poincaré inequality). For any v 2 H1

0

(⌦), there exists a positive constant, CP (⌦), s.t.

kvk2L2
(⌦)

 CP (⌦)krvk2L2
(⌦)

.

We now address the well-posedness of problem (12) on the basis of the theory for linear variational
problems in Banach spaces. More precisely we use Theorem 2.6 of [15] (also named the Banach-Necas-
Babuska Theorem), which for the sake of clarity is adapted here to the notation used for (12).

Theorem 3.6. Let V be a reflexive Banach space; let A(·, ·) be a bounded bilinear form on V⇥ V; let F be

a bounded linear functional on V, i.e. F 2 V0. Problem (12) is well-posed if and only if:

9↵ > 0 : inf
W2V

sup
V2V

A(W,V)
|||W||| |||V||| � ↵ , (BNB1)

8V 2 V :
�A(W,V) = 0 8W 2 V

�) V = 0 . (BNB2)

We first analyze the boundedness of the bilinear form and of the functional.

Lemma 3.7. Under the assumptions E1-E4, the bilinear form A is bounded with respect to the norm |||·|||,

A(U ,V)  |||A||| |||U||| |||V||| , 8U ,V 2 V ,

by the constant

|||A||| = 2 + kkL1

 
p

CT (�,⌦) +

s
C@D

CD mins (diam(D))

!
2

.

The functional F is bounded in V owing to the inequality,

F(V)  �kfkL2
(⌦)

+ kgkL2
(⇤),|D|

� |||V|||.

Proof. We start by recalling the definition of the global bilinear form,

A(U ,V) = a
⌦

(u, v) + a
⇤

(U, V ) + b✏
⇤

(u� U, v � V ).

For the first and the second terms it easily follows that

a
⌦

(u, v)  |||U||||||V||| , a
⇤

(U, V )  |||U||||||V||| .

For the last term we have

b✏
⇤

(u� U, v � V ) = ((u� U), v � V )
⇤,|@D|  kkL1ku� UkL2

(⇤),|@D|kv � V kL2
(⇤),|@D|

 kkL1
�kukL2

(⇤),|@D| + kUkL2
(⇤),|@D|

� �kvkL2
(⇤),|@D| + kV kL2

(⇤),|@D|
�
.

We notice that, using (13), 8V 2 H1(⇤)

kV k2L2
(⇤),|@D| =

Z

⇤

|@D|
|D| |D|V 2 ds =

C@D
CD

Z

⇤

1

diam(D)
|D|V 2 ds

 C@D
CD mins (diam(D))

kV k2L2
(⇤),|D| 

C@D
CD mins (diam(D))

kV k2H1
(⇤),|D|.

(19)

Consequently, using Lemma 3.4,

kvkL2
(⇤),|@D| + kV kL2

(⇤),|@D| 
p
CT (�,⌦)kvkH1

(⌦)

+

s
C@D

CD mins (diam(D))
kV kH1

(⇤),|D|


 
p

CT (�,⌦) +

s
C@D

CD mins (diam(D))

!
|||V||| .

(20)
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Therefore we have,

b✏
⇤

(u� U, v � V )  kkL1

 
p

CT (�,⌦) +

s
C@D

CD mins (diam(D))

!
2

|||U||||||V|||.

The boundedness of F is easily shown owing to Cauchy-Schwarz inequality,

F(V) = (f, v)
⌦

+(g, V )
⇤,|D|  kfkL2

(⌦)

kvkL2
(⌦)

+kgkL2
(⇤),|D|kV kL2

(⇤),|D| 
�kfkL2

(⌦)

+ kgkL2
(⇤),|D|

� |||V|||.

⇤

Lemma 3.8. Under the assumptions E1-E4, the operator A satisfies (BNB1)-(BNB2) with a constant ↵
independent of ✏.

Proof. In order to prove that the bilinear form A satisfies (BNB1) it is su�cient to prove that there exists
a positive constant ↵ such that 8W 2 V we can find V 2 V satisfying

A(W,V)
|||W||| |||V||| � ↵.

We subdivide the proof in the following steps. We prove that:

(i) 9m
1

, m
2

, m
3

> 0 :

A(V,V) � m
1

kvk2H1
(⌦)

+m
2

|V |2H1
(⇤),|D| +m

3

kv � V k2L2
(⇤),|@D| , 8V 2 V. (21)

(ii) 8W 2 V, 9V 2 V and ↵
1

> 0 :

A(W,V) � ↵
1

|||W|||2 (22)

(iii) and 9↵
2

> 0 :

|||W||| � ↵
2

|||V|||.
From the last two inequalities we obtain that (BNB1) holds for ↵ = ↵

1

↵
2

. In details:
(i) By definition of A,

A(V,V) = a
⌦

(v, v) + a
⇤

(V, V ) + b✏
⇤

(v � V, v � V )

and for the first term we have

a
⌦

(v, v) = (rv,rv)
⌦

� (1 + CP (⌦))
�1kvk2H1

(⌦)

,

where CP (⌦) is the Poincaré constant. For the second term we have,

a
⇤

(V, V ) = |V |2H1
(⇤),|D| . (23)

Finally, for the last one we have

b✏
⇤

(v � V, v � V ) = ((v � V ), v � V )
⇤,|@D| � minkv � V k2L2

(⇤),@D.

Therefore (21) holds and m
1

= (1 + CP (⌦))�1, m
2

= 1, m
3

= min.
12



(ii) For any W = [w,W ], we choose V = W + �[0,W ] and from (i) we have

A(W,W + �[0,W ]) =A(W,W) + �A(W, [0,W ])

�m
1

kwk2H1
(⌦)

+m
2

|W |2H1
(⇤),|D| +m

3

kw �Wk2L2
(⇤),|@D|

+ � (a
⌦

(w, 0) + a
⇤

(W,W ) + b✏
⇤

(w �W,�W ))

�m
1

kwk2H1
(⌦)

+m
2

|W |2H1
(⇤),|D|

+ �
⇣
|W |2H1

(⇤),|D| + ((w �W ),�W )
⇤,|@D|

⌘

�m
1

kwk2H1
(⌦)

+ (m
2

+ �)|W |2H1
(⇤),|D|

� �
�
(w,W )

⇤,|@D| � (W,W )
⇤,|@D|

�
.

(24)

We notice that using Young inequality and Lemma 3.4 we obtain

(w,W )
⇤,|@D| =

Z

⇤

|@D|wW ds  1

2

✓Z

⇤

|@D|w2 ds+

Z

⇤

|@D|W 2 ds

◆

1

2

⇣
kkL1kwk2L2

(⇤),|@D| + (W,W )
⇤,|@D|

⌘

1

2

⇣
CT (�,⌦)kkL1kwk2H1

(⌦)

+ (W,W )
⇤,|@D|

⌘
.

As a consequence of Lemma (3.4), there exists an upper bound C̄T for the trace constant CT (�,⌦) indepen-
dent of ✏. Therefore, we have

(w,W )
⇤,|@D|  1

2

⇣
C̄T kkL1kwk2H1

(⌦)

+ (W,W )
⇤,|@D|

⌘
.

Substituting in (24) we have,

A(W,W + �[0,W ]) �
✓
m

1

� �

2
C̄T kkL1

◆
kwk2H1

(⌦)

+ (m
2

+ �)|W |2H1
(⇤),|D| +

�

2
(W,W )

⇤,|@D|

and we choose � = m1
¯CT kkL1

so that m
1

� �
2

C̄T kkL1 = m1
2

and it is positive. Using assumption (13) and

reminding that diam(D)  1, we have,

(W,W )
⇤,|@D| � min

Z

⇤

|@D|W 2 ds = min

Z

⇤

C@D
CD diam(D)

|D|W 2 ds � C@D
CD

minkWk2L2
(⇤),|D|. (25)

Therefore

A(W ,W + �[0,W ]) �m
1

2
kwk2H1

(⌦)

+ (m
2

+ �)|W |2H1
(⇤),|D| +

�

2

C@D
CD

minkWk2L2
(⇤),|D|

�m
1

2
kwk2H1

(⌦)

+min

✓
m

2

+ �,
�

2

C@D
CD

min

◆
kWk2H1

(⇤),|D|

�↵
1

|||W|||2

with ↵
1

= min
⇣

m1
2

, m
2

+ �, �
2

C@D
CD

min

⌘
= min

⇣
1

2(1+CP (⌦))

, 1 + 1

(1+CP (⌦))

¯CT kkL1
, 1

2

C@Dmin

CD(1+CP (⌦))

¯CT kkL1

⌘
.

(iii) We show that there exists a constant ↵
2

such that

|||W||| � ↵
2

|||W + �[0,W ]|||. (26)
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The inequality above can be proved as follows:

|||W + �[0,W ]|||2  |||W|||2 + �2|||[0,W ]|||2 = kwk2H1
(⌦)

+ (1 + �2)kWk2H1
(⇤),|D|  (1 + �2)|||W|||2.

Therefore (26) holds with ↵
2

= (
p
1 + �2)�1 =

 r
1 +

⇣
1

(1+CP (⌦))

¯CT kkL1

⌘
2

!�1

. Being ↵
1

and ↵
2

inde-

pendent of ✏, it follows that also ↵ is independent of ✏.
For the proof of (BNB2) we choose W = V and being A(V,V) = 0, from (i) we have

m
1

kvk2H1
(⌦)

+m
2

|V |2H1
(⇤),|D| +m

3

kv � V k2L2
(⇤),|@D| = 0,

and consequently

kvkH1
(⌦)

= 0, |V |H1
(⇤),|D| = 0, kv � V kL2

(⇤),|@D| = 0. (27)

Then, v = 0 and |V |H1
(⇤),|D| = 0 with kV k2L2

(⇤),|@D| = 0 imply V = 0. ⇤

Combining Lemma 3.8 and Theorem 3.6, we obtain the well-posedness of (12). In order complete the
proof of Theorem 3.3, it remains to show that the stability estimate (14) holds. Hence,

|||U|||  1

↵
sup
V2V

A(U ,V)
|||V||| =

1

↵
sup
V2V

F(V)
|||V||| 

1

↵

�kfkL2
(⌦)

+ kgkL2
(⇤),|D|

�

where the last inequality follows from Lemma 3.7.

3.3. Additional regularity of the solution of the problem in ⌦

We observe that the weak formulation (11a) could have been formally written in strong form as

��u = f � E
�

(u� U) �
�

in ⌦, u = 0 on @⌦, (28)

where �
�

is the Dirac measure of the surface � and E
�

denotes an extension operator from ⇤ to �. More
precisely, given a continuous function ' 2 C0(⇤), for any s 2 (0, S) the extension operator is such that

E
�

'(r, t; s) = '(s) 8r 2 (0, R), t 2 (0, T ),

namely, the extension operator spans the point-wise value '(s) on {�(s)+ @D(s)}, preserving the regularity
of the function. It is straightforward to show that (E

�

(u� U) �
�

, v)
⌦

becomes b✏
⇤

(u�U, v) in the variational
formulation, as follows

Z

⌦

E
�

(u� U) v�
�

d⌦ =

Z

�

E
�

(u� U)v d� =

Z

⇤

(u� U)

Z

@D(s)

v d� ds =

Z

⇤

|@D|(u� U)v ds.

Due to the presence of the Dirac source �
�

, global H2-regularity can not be recovered and the question
arises to which interspace X with H2(⌦) ⇢ X ⇢ H1

0

(⌦) the solution u belongs to. This property will be
addressed in Theorem 3.11. Our analysis is based on the following regularity properties of elliptic equations
studied in [22]. More precisely, we introduce two auxiliary Lemmas, which in turn require some additional
assumption on the regularity of domains, listed below.

Lemma 3.9. Let ⌦ be a generic bounded, convex domain in Rd
. Let � ⇢ ⌦ be a C2

-surface such that the

distance between � and @⌦ is positive and � ⇢ @D for some three-dimensional C2

-domain D ⇢⇢ ⌦. Consider
the following problem (

��y = ��� in ⌦

y = 0 on @⌦,
(29)
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with �� being the Dirac measure of � and �(x) 2 L2(�). Problem (29) has a unique solution y and y 2
H

3
2�⌘(⌦) \H1

0

(⌦) for each ⌘ > 0. Furthermore the function y, suitably extended to Rd
, can be decomposed

as

y = z + w with z 2 H2(⌦), w 2 H
3
2�⌘(Rd)

respectively solutions of

(
��z = �y�(1� F )� 2r(1� F )ry in ⌦,

z = 0 on @⌦,

��w = �y�F � 2rFry + ��� in Rd,

where F is a regular function such that �y�(1�F )�2r(1�F )ry 2 L2(⌦) and �y�F �2rFry 2 L2(Rd).

Proof. For the proof see [22, Theorem 2.1, case (iii)]. ⇤

Lemma 3.10. Under the assumptions of Lemma 3.9 and the additional assumption that ⌦ has a C2

boundary

@⌦, problem (29) satisfies the following stability estimate in H
3
2�⌘(⌦): there exists a positive constant CR

such that

kyk
H

3
2
�⌘

(⌦)

 CRk���k
H� 1

2
�⌘

(⌦)

. (30)

Proof. From the decomposition of Lemma 3.9 we have

kyk
H

3
2
�⌘

(⌦)

 kzkH2
(⌦)

+ kwk
H

3
2
�⌘

(Rd
)

.

For the sake of simplicity, we will denote the positive constants appearing in the following inequalities
always with the simbol CR, even if they might have di↵erent meanings and values. Being @⌦ of class C2,
since z 2 H1

0

(⌦), from [20, Theorem 8.12] we obtain that there exists a constant CR such that

kzkH2
(⌦)

 CR

�kzkL2
(⌦)

+ ky�(1� F ) + 2r(1� F )rykL2
(⌦)

�
.

Then, owing to the standard H1-stability of the Poisson problem with right-hand side in L2(⌦), we obtain

kzkH2
(⌦)

 CRky�(1� F ) + 2r(1� F )rykL2
(⌦)

 CRkykH1
(⌦)

.

Still exploiting the H1-stability of the Poisson problem with H�1(⌦) right-hand side, reminding that ��� 2
H� 1

2�⌘(⌦) ⇢ H�1(⌦), we obtain
kykH1

(⌦)

 CRk���k
H� 1

2
�⌘

(Rd
)

and consequently
kzkH2

(⌦)

 CRk���k
H� 1

2
�⌘

(Rd
)

.

Concerning the upper bound of the function w, we exploit the theory of pseudo-di↵erential operators. More
precisely, we use the generalization of the Garding inequality to fractional Sobolev spaces, see in particular
Proposition 5.4 of [1] and its consequences, to show that there exists a constant CR such that

kwk
H

3
2
�⌘

(Rd
)

 CR

⇣
k�wk

H� 1
2
�⌘

(Rd
)

+ kwkH1
(Rd

)

⌘
.

Then we have

k�wk
H� 1

2
�⌘

(Rd
)

 ky�F + 2rFrykL2
(⌦)

+ k���k
H� 1

2
�⌘

(Rd
)

 CRkykH1
(⌦)

+ k���k
H� 1

2
�⌘

(Rd
)

and for the stability of the Poisson problem in H1(Rd) we obtain

kwkH1
(Rd

)

 CR

⇣
kykH1

(⌦)

+ k���k
H� 1

2
�⌘

(Rd
)

⌘
.
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Therefore,

kwk
H

3
2
�⌘

(Rd
)

 CR

⇣
kykH1

(⌦)

+ k���k
H� 1

2
�⌘

(Rd
)

⌘

 CRk���k
H� 1

2
�⌘

(Rd
)

Putting together all the previous estimates, we obtain (30).
⇤

In order to apply Lemma 3.9 to our case, we require that the domains ⌦ and ⌃ satisfy the following
regularity assumptions (R1-R3):

R1: ⌦ is a convex domain in Rd with C2-regular boundary @⌦.
R2: ⌃ 2 Rd has a C2-regular boundary @⌃.
R3: ⌃ is completely embedded into ⌦, such that the distance between @⌦ and @⌃ is strictly positive.

Theorem 3.11. Under the assumptions R1-R3, in addition to those of Theorem 3.3, the sub-problem on ⌦
enjoys additional regularity u 2 H

3
2�⌘(⌦) for any ⌘ > 0 and the following estimate is satisfied,

kuk
H

3
2
�⌘

(⌦)

 CS2

�kfkL2
(⌦)

+ kgkL2
(⇤),|D|

�
(31)

where

CS2

:= CR

(
1 + 2max

 q
CT (�,⌦)C 0T (�,⌦),

s
C 0T (�,⌦)C@D

CD mins (diam(D))

!
CS1

)
.

Proof. The proof of Theorem 3.11 is a direct consequence of Lemmas 3.9 and 3.10. Owing to Theorem 3.3
we have �E

�

(u� U) 2 L2(�), so that Lemma 3.9 can be directly applied to equation (28). For the upper
bound, inequality (30) implies that

kuk
H

3
2
�⌘

(⌦)

 CR

⇣
kfkL2

(⌦)

+ kE
�

u�
�

k
H� 1

2
�⌘

(⌦)

+ kE
�

U�
�

k
H� 1

2
�⌘

(⌦)

⌘
. (32)

From the definition of k · k
H� 1

2
�⌘

(⌦)

, we have

kE
�

u�
�

k
H� 1

2
�⌘

(⌦)

= sup
w2H

1
2
+⌘

(⌦)

w 6=0

(E
�

u,w)
�

kwk
H

1
2
+⌘

(⌦)

.

Then, we apply trace inequalities to derive the following upper bound,

(E
�

u,w)
�

 kukL2
(⇤),|@D|kwkL2

(�)


q
CT (�,⌦)C 0T (�,⌦)kukH1

(⌦)

kwk
H

1
2
+⌘

(⌦)

,

where C 0T (�,⌦) is the constant in the trace inequality from L2(�) to H
1
2+⌘(⌦). Reasoning as in Lemma 3.4

for CT (�,⌦), we observe that C 0T (�,⌦) is (at least) upper bounded when ✏ tends to 0. Proceeding similarly
for the last term of (32) and using (19) we obtain,

kE
�

U�
�

k
H� 1

2
�⌘

(⌦)


q
C 0T (�,⌦)kUkL2

(⇤),|@D| 
s

C 0T (�,⌦)C@D

CD mins (diam(D))
kUkH1

(⇤),|D|

Putting together the previous inequalities we obtain,

kuk
H

3
2
�⌘

(⌦)

 CR

(
kfkL2

(⌦)

+ 2max

"q
CT (�,⌦)C 0T (�,⌦),

s
C 0T (�,⌦)C@D

CD mins (diam(D))

#
|||U|||

)
,

that combined with (14) gives the desired result. ⇤
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4. Model error analysis

We study the error introduced by replacing the model (1) with (11). We recall the a posteriori analysis
of modeling error developed in [7] for general abstract problems and we apply it here to the particular case
of topological model reduction for small cylindrical inclusions. The main objective is to characterize the
dependence of the modeling error on the radius of the inclusion, namely ✏. To this purpose, we split the
modeling error in three components, corresponding the assumptions A1, A2, A3 described in Section 2. Each
component will be analyzed in one of the following subsections.

Before proceeding, we recall the abstract theory developed in [7], for the particular case of linear elliptic
problems. Let u be the solution of the reduced problem and let u

ref

be the one of the reference problem,
which are respectively defined as follows:

find u
ref

2 X : a
ref

(u
ref

, v) = F
ref

(v), 8v 2 X, (33)

find u 2 X : a(u, v) = F(v), 8v 2 X, (34)

where X is a suitable Hilbert space, X 0 its dual space and a
ref

and a are the bilinear forms that characterize
the reference and reduced problem respectively. We assume that a

ref

and Fref can be expressed as a
modification of the form a and the functional F as follows

a
ref

(u, v) = a(u, v) + d(u, v), 8u, v 2 X ,

F
ref

(v) = F(v) + l(v), 8v 2 X ,

As a result, the modeling error e = u
ref

� u 2 X satisfies the following equation,

a(e, v) + d(u
ref

, v) = l(v), 8v 2 X .

Let j(·) : X ! R be a linear functional. We aim to estimate the modeling error measured by j(e) using the
dual weighted residual approach. We define the dual problem with respect to (33),

find z
ref

2 X : a
ref

(v, z
ref

) = j(v), 8v 2 X .

Following the approach presented in [7], under the assumptions stated above, we obtain that the error output
functional is represented as follows,

j(e) = a
ref

(e, z
ref

) = a(e, z
ref

) + d(u
ref

� u, z
ref

) = l(z
ref

)� d(u, z
ref

) . (35)

The aim of this section is to analytically characterize the asymptotic behavior of the error when the small
parameter ✏ ! 0+. We introduce two fundamental properties that will be analyzed case by case later on.
One is that the bilinear form d and the functional l are bounded in suitable norms k ·k? and k ·k�. The second
property concerns stability estimates for the solutions of the reduced primal and reference dual problems.

Property 4.1. There exist constants kdk?�, klk� such that

d(u, z
ref

)  kdk?�kuk? kzrefk�, l(z
ref

)  klk�kzrefk� . (36)

Furthermore, the constants kdk?� and klk� asymptotically vanish with ✏! 0.

Property 4.2. There exist constants kak? and ka
ref

k�, uniformly bounded with ✏, such that

kuk?  kak?kFkX0 , kz
ref

k�  karefk�kjkX0 . (37)

Combining Properties 4.1 and 4.2 we obtain the characterization of the asymptotic behavior of the mod-
eling error with respect to ✏. We are particularly interested in the case j(v) = (e, v)L2 , because it allows us
to derive the following bound,

kek2L2 = j(e) = l(z
ref

)�d(u, z
ref

)  klk�kzrefk�+kdk?�kuk?kzrefk�  (klk� + kdk?�kak?kFkX0) ka
ref

k�kekL2 ,
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which directly entails the L2 control of the modeling error.
We will pursue this analysis for the three sources of error, corresponding to assumptions A1, A2, A3. As a

result, we will study three di↵erent operators d(k)(·, ·) and l(k)(·) with k = 1, 2, 3, each one corresponding to
a di↵erent source of error. Before proceeding, we introduce some results that will be useful in what follows.

Lemma 4.1 (Steklo↵ inequality [29]). Let @D be an ellipse or a rhombus. There exists a positive constant

C such that for any function v 2 H1(D) satisfying

Z

@D
vd� = 0 , (38)

the following inequality holds

Z

@D
v2d�  C

Z

D
(rv)2d� .

More precisely if @D is an ellipse (x
1

/a
1

)2 + (x
2

/a
2

)2 = 1 then C  max[a
1

, a
2

]. If @D is a rhombus

|x
1

/a
1

|+ |x
2

/a
2

| = 1, then C  (a2
1

+ a2
2

)
1
2 /min[a

1

/a
2

, a
2

/a
1

].

From the previous lemma combined with assumption A0, we conclude that there exists CS , independent
of ✏, such that for any v 2 Hk(⌃), with k � 3

2

, satisfying (38), we have

Z

�

v2d�  CS✏

Z

⌃

(rv)2d! . (39)

Lemma 4.2 (Poincaré-Wirtinger inequality [34]). Let D 2 R2

be a convex domain of diameter D. For any

function v 2 H1(D) such that

Z

D
vd� = 0 ,

we have,

Z

D
v2d�  D2

⇡2

Z

D
(rv)2d� . (40)

Lemma 4.3 (Extension theorem for domains having small geometric details [41]). Let s be a nonnegative

integer. There exists an extension operator E
⌃

from Hs(⌦�) to Hs(⌃) such that

kE
⌃

vkHs
(⌃)

 CEkvkHs
(⌦�)

8v 2 Hs(⌦�)

where the constant CE is independent of ⌃ = ⌦ \ ⌦�.

Lemma 4.4 (Poincaré-Friedrichs inequality [8, 34]). There exists a positive constant CPF (⌃) such that for

any v 2 H1(⌃) it holds,

kvk2L2
(⌃)

 CPF (⌃)
⇣
krvk2L2

(⌃)

+ kvk2L2
(�)

⌘
(41)

and CPF (⌃) tends to 0 for ✏! 0.

Proof. Integrating by parts we have:

kvk2L2
(⌃)

=
1

2

2X

i=1

Z

⇤

Z

D
v2 · 1 d� ds = �1

2

2X

i=1

Z

⇤

Z

D
2v

@v

@xi
xi d� ds+

1

2

2X

i=1

Z

⇤

Z

@D
v2xini d� ds,
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where x
1

, x
2

is a generic system of coordinates for D and ni is the i�th component of the outward unit
surface normal to D. Then, using Schwarz and Young inequalities we obtain

kvk2L2
(⌃)

 1

2

2X

i=1

2✏kvkL2
(⌃)

����
@v

@xi

����
L2

(⌃)

+
1

2

2X

i=1

✏kvk2L2
(�)

 1

2
kvk2L2

(⌃)

+
1

2

2X

i=1

2✏2
����
@v

@xi

����
2

L2
(⌃)

+ ✏kvk2L2
(�)

 1

2
kvk2L2

(⌃)

+ ✏2krvk2L2
(⌃)

+ ✏kvk2L2
(�)

from which it follows that

kvk2L2
(⌃)

 max
�
2✏2, 2✏

� ⇣krvk2L2
(⌃)

+ kvk2L2
(�)

⌘
.

Thus, CPF (⌃) = max
�
2✏2, 2✏

�
and it tends to 0 when ✏ tends to 0. ⇤

4.1. Analysis of the modeling error of the one dimensional problem (assumption A1)

We aim to study the modeling error of replacing the equation (1b) with (6). Since this analysis refer
to the assumption A1, we will endow the general operators of the previous section with the apex (1). The
reduced problem (reported here for the sake of clarity) is to find U 2 H1(⇤) such that

(dsU, dsV )
⇤,|D| + (U, V )

⇤,|@D| = (u�, V )
⇤,|@D| + (g, V )

⇤,|D| 8V 2 H1(⇤) .

where u� is the weak solution of (1) and it belongs to the space of functions of H1(⌦�) with null trace on
@⌦, denoted as H1

@⌦(⌦�). The reference problem in the weak form consists of finding u 2 H1(⌃) such that

(ru ,rv)
⌃

+ (u , v)� = (u�, v)� + (g, v)
⌃

, 8v 2 H1(⌃) .

We define the modeling error e(1) as the di↵erence between u and U . To this purpose, we exploit the
cylindrical configuration of the domain ⌃ and its local coordinate system. In particular, we uniformly extend
U(s) on every cross section D(s) of the cylinder and with abuse of notation we still denote the extended
function with U . Thanks to the regularity of U on ⇤, we have that the extension on ⌃ belongs to H1(⌃).
Referring to the general notation introduced in the previous section we have that the solutions of the reference

and reduced models are u
(1)

ref

= u and u(1) = U both in the space X(1) = H1(⌃). As a result, the modeling

error is e(1) = u
(1)

ref

� u(1) = u � U 2 H1(⌃). The bilinear forms of the reference and reduced problems are

a
(1)

ref

(u, v) = (ru,rv)
⌃

+ (u, v)
�

,

a(1)(u, v) = (dsu, @sv)
⇤,|D| + (⌫(u� u), @sv)

⇤,|@D| + (u, v)
⇤,|@D| ,

= (dsu, @sv)⌃ + (⌫(u� u), @sv)� + (u, v)
�

,

where a(1)(u, v) is a generalization of the bilinear form of the reduced problem that can be applied to any
function u, v 2 H1(⌃). More precisely, it is the generalization to any test function v 2 H1(⌃) of (5).
When applied to U, V 2 H1(⇤) the bilinear form a(1)(U, V ) coincides with (6). We aim to quantify the

di↵erence a
(1)

ref

(u, v) � a(1)(u, v). Using the expression of the gradient in cylindrical coordinates r(·) =
[@s(·), @r(·), r�1@✓(·)]0, the di↵erence operator d(1)(·, ·) becomes

d(1)(u, v) = a
(1)

ref

(u, v)� a(1)(u, v)

= (@su� dsu, @sv)⌃ � (⌫(u� u), @sv)� + ((u� u), v)
�

+ (@ru, @rv)⌃ + (r�1@✓u, r
�1@✓v)⌃ .

(42)
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Similarly, the di↵erence l(1)(·) of the right hand sides is

l(1)(v) = ((I � (·))g, v)
⌃

+ ((I � (·))u�, v)� . (43)

We now aim to prove properties 36 and 37 for the operators d(1), l(1) and a(1), a
(1)

ref

respectively.

Lemma 4.5. The operator d(1)(·, ·) satisfies Property 4.1 with kd(1)k?� = 0.

Proof. Let U 2 H1(⌃) be the extension to ⌃ of the reduced problem on ⇤. We observe that d(U, v) = 0 for

any v 2 H1(⌃), because @rU = @✓U = 0 and U = U = U . ⇤
Lemma 4.6. Under the assumption that g 2 H

3
2 (⌃) and u� 2 H1

@⌦(⌦�) \ H2(⌦�), the operator l(1)(·)
satisfies Property 4.1 with the norm k · k2� = k · k2L2

(⌃)

+ k · k2L2
(�)

and with the constant

kl(1)k� = ✏

⇡
kgkH1

(⌃)

+ kkL1CE

p
CS✏ku�kH1

(⌦�)

.

Proof. For the upper bound of the right hand side, we observe that g 2 H
3
2 (⌃) implies that g|D 2 H1(D).

Then, (I � (·))g satisfies the assumptions of the Poincaré-Wirtinger inequality, which allows us to conclude
that

((I � (·))g, v)
⌃


⇣Z

⌃

((I � (·))g)2
⌘ 1

2
⇣Z

⌃

v2
⌘ 1

2
=
⇣Z

⇤

Z

D
((I � (·))g)2d�ds

⌘ 1
2 kvkL2

(⌃)


⇣Z

⇤

(diam(D))2

⇡2

Z

D
(rDg)

2d�ds
⌘ 1

2 kvkL2
(⌃)

 ✏

⇡
kgkH1

(⌃)

kvk� ,

where, from now on rD(·) = [@r(·), r�1@✓(·)]0 denotes the gradient in a local coordinate system of D.
For the second term of l(1) we use the Steklo↵ inequality,

((I � (·))u�, v)�  kkL1

⇣Z

�

(I � (·))u�)2
⌘ 1

2
⇣Z

�

v2
⌘ 1

2

 kkL1
p
CS✏

⇣Z

⇤

Z

D
(rDE⌃u�)2d�ds

⌘ 1
2 kvkL2

(�)

 kkL1
p
CS✏kE⌃u�kH1

(⌃)

kvkL2
(�)

 kkL1CE

p
CS✏ku�kH1

(⌦�)

kvk� ,

where E
⌃

denotes the extension operator of Lemma 4.3. The previous inequalities show that (36) is verified
for this component of the modeling error with the constant,

kl(1)k� = ✏

⇡
kgkH1

(⌃)

+ kkL1CE

p
CS✏ku�kH1

(⌦�)

.

⇤
Lemma 4.7. The dual problem, that is to find z

(1)

ref

2 H1(⌃) such that

(rv,rz
(1)

ref

)
⌃

+ (v, z(1)
ref

)
�

= j(1)(v), 8v 2 H1(⌃) , (44)

with j(1)(v) = (e, v)
⌃

, satisfies the following stability estimate with the norm k · k� = k · kL2
(⌃)

+ k · kL2
(�)

kz(1)
ref

k�  2

min
�
2C�1

PF (⌃), C
�1

PF (⌃)min, min

�kekL2
(⌃)

.

As a result, Property 4.2 is satisfied with the following constant, which is bounded for ✏! 0,

ka(1)
ref

k� = 2

min
�
2C�1

PF (⌃), C
�1

PF (⌃)min, min

� .
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Proof. Owing to Poincaré -Friedrichs inequality (41) we have,

a
ref

(v, v) = (rv,rv)
⌃

+ (v, v)
�

� min

✓
1,

1

2
min

◆
C�1

PF (⌃)kvk2L2
(⌃)

+
1

2
minkvk2L2

(�)

,

� 1

2
min

�
2C�1

PF (⌃), C
�1

PF (⌃)min, min

� kvk2�, 8v 2 H1(⌃) .

As a result of that we obtain,

1

2
min

�
2C�1

PF (⌃), C
�1

PF (⌃)min, min

� kz(1)
ref

k2�  a
ref

(z(1)
ref

, z
(1)

ref

) = (e, z(1)
ref

)
⌃

 kekL2
(⌃)

kz(1)
ref

kL2
(⌃)

 kekL2
(⌃)

kz(1)
ref

k� ,

from which it follows that

ka(1)
ref

k� = 2

min
�
2C�1

PF (⌃), C
�1

PF (⌃)min, min

�

and for Lemma 4.4 the constant ka(1)
ref

k� is bounded for ✏! 0. ⇤

4.2. Analysis of the modeling error relative to the domain (assumption A2)

This component of the modeling error arises because we identify the domain ⌦� of (1) with the entire
domain ⌦. Let us assume for simplicity that f 2 H1(⌦�) and let us denote by E

⌃

f its extension to H1(⌃).
In this case the reference and reduced models are respectively

find u� 2 H1

@⌦(⌦�) : (ru�,rv)
⌦� + (u�, v)� = (f, v)

⌦� + (U, v)
�

, 8v 2 H1

@⌦(⌦�), (45)

find u(2) 2 H1

0

(⌦) : (ru(2),rv)
⌦

+ (u(2), v)
�

= ((I
⌦� + E

⌃

)f, v)
⌦

+ (U, v)
�

, 8v 2 H1

0

(⌦) . (46)

We extend the solution of (45) from ⌦� to ⌦, with the extension operator E
⌃

which takes the function u�
on ⌦� and extends it to the interior of the domain. Then, the reference solution relative to assumption A2 is

u
(2)

ref

= (I
⌦� +E

⌃

)u� 2 H1

0

(⌦). The solution of the reduced problem is instead u(2) 2 H1

0

(⌦). The functional

space where we set the modeling error is X(2) = H1

0

(⌦) and error is e(2) = u
(2)

ref

�u(2) = (I
⌦�+E

⌃

)u��u(2) 2
H1

0

(⌦). Then, subtracting (46) from (45), it is straightforward to determine the expression of the di↵erence
operators d(2)(u, v) and l(2)(v),

d(2)(u, v) = �(ru,rv)
⌃

, l(2)(v) = �(E
⌃

f, v)
⌃

8u, v 2 H1

0

(⌦) . (47)

Lemma 4.8. The operators d(2)(·, ·) and l(2)(·) satisfy Property 4.1 with the norms k · k? = k · k
H

3
2
�⌘

(⌦)

,

fora any ⌘ > 0, and k · k� = k · kH1
(⌦�)

and inequality (36) is satisfied with constants

kd(2)k?� = CE(SCD)
1�2⌘

6 ✏
1�2⌘

3 C(1/2� ⌘, 3/(1 + ⌘),⌦) , kl(2)k� = (1 + CE)CE(SCD)
1
2 ✏kfkH1

(⌦�)

.

Proof. Let us start with the upper bound for d(2)(u, v), that is d(2)(u, v)  krukL2
(⌃)

krvkL2
(⌃)

. Let us
assume that u 2 Hk(⌦) with 1 < k  2, then ru 2 Hk�1(⌦) and for Sobolev embedding theorem we have
ru 2 Lp⇤

(⌦) with p⇤ = 6/(5� 2k). Then we apply Hölder inequality and (13) as follows,

krukL2
(⌃)

=
⇣Z

⌃

(ru)2d!
⌘ 1

2 
⇣Z

⌃

1 d!
⌘ 1

2q
⇣Z

⌃

(ru)2r d!
⌘ 1

2r

 |⌃| 1
2q krukL2r

(⌃)

 (SCD)
1
2q ✏

1
q krukL2r

(⌃)

where q, r must satisfy 1/q + 1/r = 1. The maximum exponent for which the previous inequality holds true
is p⇤ = 2r = 6/(5 � 2k). Then, r = 3/(5 � 2k) and 1/q = 2(k � 1)/3. Denoting with C(k � 1, p⇤,⌦) the
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constant of the Sobolev inequality of the embedding Hk�1(⌦) ⇢ Lp⇤
(⌦), we have

krukL2
(⌃)

 (SCD)
1
2q ✏

1
q krukLp⇤

(⌃)

 (SCD)
1
2q ✏

1
q krukLp⇤

(⌦)

 (SCD)
1
2q ✏

1
q C(k � 1, p⇤,⌦)krukHk�1

(⌦)

 (SCD)
1
2q ✏

1
q C(k � 1, p⇤,⌦)kukHk

(⌦)

.

Being u(2) 2 H
3
2�⌘(⌦) and z

(2)

ref

2 H1

@⌦(⌦�), we obtain,

d(u(2), (I
⌦� + E

⌃

)z
ref

)  CE(SCD)
1�2⌘

6 ✏
1�2⌘

3 C (1/2� ⌘, 3/(1 + ⌘),⌦) ku(2)k
H

3
2
�⌘

(⌦)

kz
ref

kH1
(⌦�)

.

Proceeding similarly, using the minimal regularity requirement E
⌃

f 2 H1(⌃) combined with Hölder
inequality and Sobolev embeddings, namely H1(⌃) ⇢ L6(⌃), we have

l((I
⌦� + E

⌃

)z
ref

) = �(E
⌃

f, (I
⌦� + E

⌃

)z
ref

)
⌃

 CEkE⌃fkL2
(⌃)

kz
ref

kH1
(⌦�)

 CE(SCD)
1
3 ✏

2
3 kE

⌃

fkL6
(⌃)

kz
ref

kH1
(⌦�)

 CE(SCD)
1
3 ✏

2
3 k(I

⌦� + E
⌃

)fkL6
(⌦)

kz
ref

kH1
(⌦�)

 CE(1 + CE)(SCD)
1
3 ✏

2
3C(1, 6,⌦)kfkH1

(⌦�)

kz
ref

kH1
(⌦�)

,

being C(1, 6,⌦) the constant in the Sobolev embedding of H1(⌦) in L6(⌦). ⇤
Lemma 4.9. The solution of the reduced problem u(2)

satisfies the Property 4.2 with the norm k · k? =
k · k

H
3
2
�⌘

(⌦)

, for any ⌘ > 0 and the inequality (37) is satisfied with the positive constant, uniformly upper

bounded for ✏,

ka(2)k? = 2CR max
h
(1 + CE), (1 + CP (⌦))(1 + CE)

p
CT (�,⌦) , kkL1

p
CT (�,⌦) , kkL1

p
C 0T (�,⌦�)

i
.

Proof. We notice that (46) in the strong form reads as

��u(2) =
�I

⌦� + E
⌃

�
f � 

⇣
u(2) � U

⌘
�
�

in ⌦, u(2) = 0 on @⌦.

Then, owing to Theorem 3.11, u(2) 2 H
3
2�⌘(⌦)\H1

0

(⌦) and using (30) we obtain the following upper bound,

ku(2)k
H

3
2
�⌘

(⌦)

 CRk
�I

⌦� + E
⌃

�
f � 

⇣
u(2) � U

⌘
�
�

k
H� 1

2
�⌘

(⌦)

. (48)

By the Sobolev embedding H1(⌦) ⇢ H� 1
2�⌘(⌦) we have,

k �I
⌦� + E

⌃

�
fk

H� 1
2
�⌘

(⌦)

 (1 + CE)kfkH1
(⌦�)

.

From the definition of k · k
H� 1

2
�⌘

(⌦)

, we have

kU�
�

k
H� 1

2
�⌘

(⌦)

= sup
w2H

1
2
+⌘

(⌦)

w 6=0

(U�
�

, w)
⌦

kwk
H

1
2
+⌘

(⌦)

.

Then the following upper bound holds,

(U�
�

, w)
⌦

= (U,w)
�

 kkL1kUkL2
(�)

kwkL2
(�)

 kkL1

q
C 0T (�,⌦)kUkL2

(⇤),|@D|kwkH 1
2
+⌘

(⌦)

,

where C 0T (�,⌦) is the constant in the trace inequality from L2(�) to H
1
2+⌘(⌦). Proceeding similarly, we

obtain the following estimate,

ku(2)�
�

k
H� 1

2
�⌘

(⌦)

 kkL1
(�)

q
C 0T (�,⌦)ku(2)kL2

(�)

 kkL1
(�)

q
CT (�,⌦)C 0T (�,⌦)ku(2)kH1

(⌦)

.
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Then, we notice that problem (46) satisfies the following stability property in H1(⌦),

(1 + CP (⌦))
�1ku(2)k2H1

(⌦)

 (ru(2),ru(2))
⌦

+ (u(2), u(2))
�

 ((I
⌦� + E

⌃

)f, u(2))
⌦

+ (U, u(2))
�

 (1 + CE)kfkH1
(⌦�)

ku(2)kH1
(⌦)

+ kkL1
(�)

p
CT (�,⌦)kUkL2

(⇤),|@D|ku(2)kH1
(⌦)

,

that is,

ku(2)kH1
(⌦)

 (1 + CP (⌦))max
⇣
(1 + CE), kkL1

(�)

p
CT (�,⌦)

⌘ �kfkH1
(⌦�)

+ kUkL2
(⇤),|@D|

�
.

Combining the upper bounds for each term on the right hand side of (48) we obtain the desired result,

ku(2)k?  2CR max

✓
(1 + CE), kkL1

q
C 0T (�,⌦�), kkL1

q
CT (�,⌦)C 0T (�,⌦�)(1 + CP )(1 + CE),

kk2L1CT (�,⌦)
q
C 0T (�,⌦�)

◆�kfkH1
(⌦�)

+ kUkL2
(⇤),|@D|

�
. (49)

⇤
Lemma 4.10. The solution of the reference dual problem, that is to find z

(2)

ref

2 H1

@⌦(⌦�) such that

(rv,rz
(2)

ref

)
⌦� + (v, z(2)

ref

)
�

= j(2)(v), 8v 2 H1

@⌦(⌦�), (50)

with j(2)(v) = (e(2), (I
⌦� + E

⌃

)v)
⌦

, satisfies the following inequality,

(1 + CP (⌦�))
�1kz(2)

ref

k2
⌦�  (rz

(2)

ref

,rz
(2)

ref

)
⌦� + (z(2)

ref

, z
(2)

ref

)
�

= (e(2), (I
⌦� + E

⌃

)z(2)
ref

)
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 (1 + CE)ke(2)kL2
(⌦)

kz(2)
ref

kH1
(⌦�)

.

As a result, Property 4.2 is satisfied with the norm k · k� = k · kH1
(⌦�)

and with the constant,

ka(2)
ref

k� = (1 + CP (⌦�))(1 + CE).

4.3. Analysis of the modeling error of the transmission conditions (assumption A3)

The interface conditions between ⌃ and ⌦� must be adapted to the topological model reduction of the
problem on ⌃. This is achieved by averaging the solution u� on cross sections of the interface @D(s) before
enforcing the interface condition between u� and U . The error that arises in this process corresponds to
neglect the fluctuations of u� at the interface, as stated in assumption A3. In this case, the reference problem

is (46), with solution u
(3)

ref

= u(2), while the reduced problem is (8) so that u(3) = u, being u the solution
of the final reduced model on ⌦. For the sake of clarity, as was done in the previous cases, we report the
reference and the reduced problems here:

find u(2) 2 H1

0

(⌦) : (ru(2),rv)
⌦

+ (u(2), v)
�

= ((I
⌦� + E

⌃

)f, v)
⌦

+ (U, v)
�

, 8v 2 H1

0

(⌦) , (51)

find u 2 H1

0

(⌦) : (ru,rv)
⌦

+ (u, v)
⇤,|@D| = ((I

⌦� + E
⌃

)f, v)
⌦

+ (U, v)
⇤,|@D| , 8v 2 H1

0

(⌦) . (52)

The modeling error is easily defined as e(3) = u
(3)

ref

� u(3) = u(2) � u 2 H1

0

(⌦) for any u, v 2 H1

0

(⌦).
Provided that U is uniformly extended from H1(⇤) to H1(⌃) the di↵erence operator between (51) and (52)
is

d(3)(u, v) = (u, v)
�

� (u, v)
⇤,|@D| = ((I � (·))u, v)

�

, (53)

l(3)(v) = (U, v)
�

� (U, v)
⇤,|@D| = 0 . (54)
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Lemma 4.11. Under the assumption that u 2 H1

0

(⌦) \ H
3
2 (⌃), the operators d(3)(·, ·) and l(3)(·) satisfy

Property 4.1 with the norms k · k? = k · k� = k · kH1
(⌦)

and with constants

kd(3)k?� = kkL1
p

CT (�,⌦)
p
CS✏ , kl(3)k� = 0 .

In particular, if we take into account the dependence of CT (�,⌦) on ✏, using Lemma 3.4, we obtain that

kd(3)k?� = O
⇣
✏1�

1
2(2��)

⌘
.

Proof. Since u 2 H
3
2 (⌃), we have that u|D(s) 2 H1(D(s)) for any s 2 (0, S). Then we can apply Steklo↵

inequality on any cross section of ⌃. Combining it it with Cauchy-Schwarz and trace inequalities, we obtain,
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ref
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(rDu)
2 d� ds
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p
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p
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p
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kz
ref

kH1
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.

⇤
Lemma 4.12. The solution u(3)

of problem (52) satisfies the following inequality

ku(3)kH1
(⌦)

 (1 + CP (⌦))max
⇣
(1 + CE), kkL1

p
CT (�,⌦)

⌘ �kfkH1
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�
.

As result, Property 4.2 is satisfied with the norm k · k? = k · kH1
(⌦)

and with the constant

ka(3)k? = (1 + CP (⌦))max
⇣
(1 + CE), kkL1

p
CT (�,⌦)

⌘
.

Proof. From problem (52) we obtain,

(1 + CP (⌦))
�1 ku(3)k2H1
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,

from which it follows that
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p
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⌘ �kfkH1
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+ kUkL2
(⇤),|@D|

�
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Consequently,

ka(3)k? = (1 + CP (⌦))max
⇣
1 + CE , kkL1

p
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⇤
Lemma 4.13. The solution of the reference dual problem, that is to find z
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2 H1
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(rv,rz
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)
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+ (v, z(3)
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with j(3)(v) = (e(3), v)
⌦

, satisfies the following inequality

kz(3)
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kH1
(⌦)

 (1 + CP (⌦))ke(3)kL2
(⌦)

.

As result, Property 4.2 is satisfied with the norm k · k� = k · kH1
(⌦)

and the constant

ka(3)
ref

k� = 1 + CP (⌦).
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4.4. Conclusions of the model error analysis

In the previous sections we have analyzed three di↵erent components of the model error. In particular,
we recall that

e(1) = u
(1)

ref

� u(1) = u � U 2 H1(⌃)

e(2) = u
(2)

ref

� u(2) = (I
⌦� + E

⌃

)u� � u(2) 2 H1

0

(⌦)

e(3) = u
(3)

ref

� u(3) = u(2) � u 2 H1

0

(⌦)

As a result, the total model error, on ⌃ and ⌦ respectively can be straightforwardly decomposed as

e
⌃

+ e
⌦

= (u � U) + ((I
⌦� + E

⌃

)u� � u) = e(1) + e(2) + e(3) ,

with e
⌃

= e(1) 2 H1(⌃) and e
⌦

= e(2) + e(3) 2 H1

0

(⌦). Then, for a suitable choice of the model error output
functionals used in the reference dual problems, if Properties (4.1) and (4.2) are satisfied, the following
inequality holds true,

j(k)(e) = ke(k)kL2 
⇣
kl(k)k� + kd(k)k?�ka(k)k?kFkX0

⌘
ka(k)

ref

k�, k = 1, 2, 3.

For e
⌃

, if u� 2 H1

@⌦(⌦�) \H2(⌦�), we have

ke(1)kL2
(⌃)


⇣
kl(1)k� + kd(1)k?�ka(1)k?kFkX0

⌘
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ref

k� = kl(1)k�ka(1)
ref

k� = O(✏
1
2 ) , (56)

because kl(1)k� = O(✏
1
2 ) for Lemma 4.6, kd(1)k?� = 0 for Lemma 4.5 and ka(1)

ref

k� is uniformly bounded with

respect to ✏. For e
⌦

, if u 2 H1

0

(⌦) \H
3
2 (⌃), from Lemmas 4.8, 4.9, 4.10 we obtain

ke(2)kL2
(⌦)


⇣
kl(2)k� + kd(2)k?�ka(2)k?

�kfkH1
(⌦�)

+ kUkL2
(⇤),|@D|

�⌘ ka(2)
ref

k� = O(✏
1�2⌘

3 ) , (57)

and from Lemmas 4.11, 4.12, 4.13 we have

ke(3)kL2
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 kd(3)k?�ka(3)k?
�kfkH1

(⌦�)

+ kUkL2
(⇤),|@D|

� ka(3)
ref

k� = O(✏
1
2 ) . (58)

By combining the previous upper bounds for ke(2)kL2
(⌦)

and ke(3)kL2
(⌦)

we obtain the following estimate
for ke

⌦

kL2
(⌦)

ke
⌦

kL2  kl(2)k�ka(2)
ref

k� +
⇣
kd(2)k?�ka(2)k?ka(2)

ref

k� + kd(3)k?�ka(3)k?ka(3)
ref

k�
⌘ �kfkH1

(⌦�)

+ kUkL2
(⇤),|@D|

�

which entails that ke
⌦

kL2
(⌦)

= O(✏
1�2⌘

3 ) as ✏! 0.

Remark 4.14. The model error analysis relies on two additional regularity assumptions, u� 2 H2(⌦�) and
u 2 H

3
2 (⌃). These are technical assumptions required to use the Steklo↵ inequality (39). The former one is

more restrictive because E
⌃

u� 2 H
3
2 (⌦�) requires u� 2 H2(⌦�) since Lemma 4.3 works for Sobolev spaces

with integer index. We remark that none of the constants appearing in (56), (57) and (58) involve neither
ku�kH2

(⌦�)

nor kukH3/2
(⌃)

.
Furthermore, we observe that these regularity assumptions are local regularity properties on subregions

of ⌦ that do not cross the surface �. As a consequence, these properties can be justified with classical
regularity results for elliptic equations with regular coe�cients and on domains with smooth boundary, see
for example Theorem 3.10 of [15] and references therein. We report below a sketch of the proofs, although
we do not claim to be fully rigorous.

For the former assumption, we consider problem (1) and we fix u 2 H1(⌃). Then u� solves a Poisson
problem with Robin boundary conditions on the inner boundary of ⌦� and homogeneous Dirichlet conditions
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on the outer boundary, which are disjoint. Given a C2 regular domain, a right hand side f 2 L2(⌦�) and a
forcing term of the Robin condition that is g = u 2 H

1
2 (�), we conclude that u� 2 H2(⌦�).

For the latter assumption, we observe from equation (8) that the restriction of u to ⌃ solves the following
problem in the weak sense, 8

><

>:

��u = f in ⌃,

�ru · n = E
�

(u� U) on �,

�ru · n = 0 on @⌃ \ �.
Given the standard H1-regularity of Theorem 3.3 we have E

�

(u � U) 2 H
1
2 (�). If this function smoothly

vanishes approaching @⌃\�, then this problem is a Neumann problem withH
1
2 -regular data on the boundary.

As a result, standard H2-regularity also apply to the restriction of u on ⌃ .

5. Numerical experiments

The purpose of this section is twofold. First we introduce the basic aspects of the numerical approximation
of the problem by means of finite elements. In this context, we validate the numerical solver on a simple
problem for which the solution is available explicitly. Second, we use the numerical method to calculate
a local error estimator of the modeling error. This is a preliminary attempt of a posteriori model error
analysis, that is used here for a qualitative investigation of the spatial distribution of the model error.

5.1. Finite element approximation

Let us consider a quasi-uniform partition T h
⌦

of ⌦ and an admissible partition T h
⇤

of ⇤ with comparable
characteristic size, denoted by h, and let Vh = V ⌦

h ⇥ V ⇤

h ⇢ V be continuous k
1

, k
2

-order Lagrangian finite
element spaces defined on T h

⌦

, T h
⇤

respectively. The numerical approximation of the variational formulation
(12) consists of finding Uh 2 Vh solution of

A(Uh,Vh) = F(Vh) 8Vh 2 Vh. (59)

We notice that in problem (59) it is implicitly assumed that numerical integration is performed exactly.
In practice, the average operator (·) is approximated by means of numerical quadrature. The e↵ect of the
latter approximation shall be analyzed in a future development of this work. Owing to this assumption, the
discretization method is consistent and conformal with (12).

For the numerical discretization, we first address the discrete counterparts of (BNB1)-(BNB2), namely,

9↵h > 0 : inf
Wh2Vh

sup
Vh2Vh

A(Wh,Vh)

|||Wh||| |||Vh||| � ↵ , (BNB1h)

8Vh 2 Vh :
�A(Wh,Vh) = 0 8Wh 2 Vh

�) Vh = 0 , (BNB2h)

which are not necessarily implied by the corresponding continuous properties. As shown in Proposition 2.21
of [15], if the test and the search space of (59) are the same, namely Wh ⌘ Vh then (BNB1h) is equivalent to
(BNB2h). As a consequence of that, we can verify either (BNB1h) or (BNB2h). We prove the latter using
(21) that holds true because of the consistency and the conformity of the method. Owing to this property,
A(Vh,Vh) = 0 implies that

kvhkH1
(⌦)

= 0, |Vh|H1
(⇤),|D| = 0, kvh � VhkL2

(⇤),|@D| = 0,

which is equivalent to vh = 0 and |Vh|H1
(⇤),|D| = 0 with kVhk2L2

(⇤),|@D| = 0, that is Vh = 0.

We exploit the consistency and conformity of the discretization method combined with (BNB1h) and
Lemma 3.7, in order to prove that Uh satisfies a Ceá-type inequality ( [15] [Lemma 2.28]),

|||U � Uh||| 
✓
1 +

|||A|||
↵

◆
inf

vh2V ⌦
h ,Vh2V ⇤

h

�ku� vhkH1
(⌦)

+ kU � VhkH1
(⇤),|D|

�
. (60)
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The convergence of the finite element method follows from (60) combined with approximation properties
of the finite element spaces. For the latter property, we exploit the additional regularity of the solution
in ⌦ proved in Theorem 3.11 and the fact that the solution U on ⇤ is in H2(⇤). The regularity of U
descends from the standard properties of elliptic operators in one space dimension, as the right hand side
of equation (11b) belongs to L2(⇤). From now on, let a . b be equivalent to the inequality a  Cb where
C is a generic constant, possibly dependent on ⌦, ⇤ but independent of the parameters of the problem.
Concerning the solution u in ⌦, let ⇡h be the Scott-Zhang interpolation operator from W l,q(⌦) \H1

0

(⌦) to
V ⌦

h with 1  q  1 and 0  l  k
1

+ 1, with the additional constraint l � 1/q when q > 1. Then, the
following interpolation estimate holds true in the norm of W t,q(⌦) with t  l (see for example [15, Lemma
1.130])

kv � ⇡hvkW t,q
(⌦)

. hl�t|v|W l,q
(⌦)

.

The estimate above applies to the problem at hand, knowing that u 2 H
3
2�⌘(⌦) \ H1

0

(⌦), with t = 1,
l = 3

2

� ✏, q = 2, k
1

= 1, obtaining

inf
vh2V ⌦

h

ku� vhkH1
(⌦)

. h
1
2�⌘kuk

H
3
2
�⌘

(⌦)

.

For the solution U on ⇤ and k
2

= 1, the standard finite element approximation estimate ensures that

inf
Vh2V ⇤

h

kU � VhkH1
(⇤)

. hkUkH2
(⇤)

.

Therefore, combining (60) and the previous inequalities for piecewise a�ne approximation, we obtain

|||U � Uh||| . h
1
2�⌘kuk

H
3
2
�⌘

(⌦)

+ hkUkH2
(⇤)

.

We have tested the previous convergence results by means of numerical experiments based on a problem
for which the analytical solution is known. Precisely, we consider ⌦ = (�1, 1)3 ⇢ R3 and ⌃ is the cylinder
with constant circular cross section of radius R = 0.25 and centerline ⇤ = {(x, 0, 0), x 2 (�1, 1)}. We assume
U = 1, therefore the problem reduces to find only the solution u in ⌦. Concerning the other parameters, we
choose f = 0 and  = 0.1. With appropriate boundary conditions, the exact solution ue of the problem can
be obtained by uniform extension along the x-coordinate the 2D solution given in [26], which is

u2D
e (y, z) =

(
U 

1+

�
1�R ln r

R (y, z),
�

r(y, z) > R,

U 
1+ , r(y, z)  R,

where r(y, z) is the Euclidean distance from the origin. In particular in our case ue(x, y, z) = u2D
e (y, z).

Starting from a quasi-uniform triangulation of ⌦ and applying di↵erent uniform subdivisions along the y
and z axes (denoted as # sub.), we calculate the discretization error eh = ue�uh and the rate of convergence
with respect to the H1- norm. The numerical results reported in Figure 2 agree with the theoretical estimate.

5.2. A posteriori model error analysis

Starting from the definitions of the di↵erence operators d(k)(·, ·) and l(k)(·) k = 1, 2, 3, defined in Sections
4.1, 4.2 and 4.3, we compute a given model error output functional, through the error representation formula
(35). In particular, we localize the error on the elements of the triangulation T h

⌦

of ⌦. To perform this task,
we interpret (35) as the sum of residuals weighed with the dual solution.

First, we introduce the local error estimator using the abstract setting defined at the beginning of Section
4. Let Xh ⇢ X be a suitable finite element space of dimension N . We denote with uh and zh,ref the discrete
solutions of the reduced problem and reference dual problem, respectively. Considering the Lagrangian nodal
basis {�i} ⇢ Xh, we define the vector of residuals, ⇢ = {⇢i}Ni=1

, with ⇢i = l (�i) � d (uh) (�i). According
to (35) the local weights, !i, correspond to the degrees of freedom of the discrete dual solution, namely

zh =
PN

i=1

!i�i. Let h·, ·i be the Euclidean scalar product in RN . The model error output functional is then
j(e) = h⇢,!i and the components of the local error estimator ⌘ 2 RN are ⌘i = ⇢i!i. The vector ⌘ can be
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# sub. kehkH1
(⌦)

Rate

8 1.77839e-02 -
16 1.21790e-02 0.54618
32 8.63759e-03 0.49569
64 6.10750e-03 0.50005

Figure 2. On the top we show a visualization of the exact solution ue and the numerical
solution uh, superposed to the quasi-uniform mesh used for the convergence test. On the
bottom we report the approximation error and the corresponding convergence rate.

represented on ⌦ as a finite element function ⌘h =
PN

i=1

⌘i�i. Each nodal component of ⌘ represents the
localization of the error on T h

⌦

.
Using this general approach we explicitly calculate the estimators ⌘

1

, ⌘
2

, ⌘
3

of the model error of Sections
4.1, 4.2 and 4.3. To this aim, we must compute the residuals ⇢(k) and the weights !(k) for k = 1, 2, 3. For

the weights, we recall that z
(1)

ref

2 H1(⌃), z(2)
ref

2 H1

@⌦(⌦�), z
(3)

ref

2 H1

0

(⌦). Then, we introduce V ⌃

h , V ⌦�
h ,

V ⌦

h the finite element spaces over ⌃, ⌦�, ⌦, respectively. Furthermore, we assume that the following direct

sum decomposition holds V ⌦

h = V ⌃

h

L
V

⌦�
h . In practice, we consider the particular case of a mesh T h

⌦

that

nodally conforms with the interface � and we assign all the nodes on the interface to V
⌦�
h . According to

this notation the discrete reference dual solutions are z
(1)

h,ref 2 V ⌃

h , z(2)h,ref 2 V
⌦�
h , z(3)h,ref 2 V ⌦

h . However, for

computational convenience, we define the all the weight functions on the finite element space V ⌦

h ⇢ H1

0

(⌦).

Let N⌦

h = dim
�
V ⌦

h

�
be the degrees of freedom of such space and let {�i}N

⌦
h

i=1

be the corresponding finite

element basis. As a result, all the vectors of weights and residuals belong to RN⌦
h . Such weights are obtained

from the dual solutions by means of the following extensions,

!
(1)

i =

(
zi : z

(1)

h,ref =
PN⌃

h
i=1

zi�i i = 1, . . . , N⌃

h

0 i = N⌃

h + 1, . . . , N⌦

h

(61a)

!
(2)

i =

(
0 i = 1, . . . , N⌃

h

zi : z
(2)

h,ref =
PN

⌦�
h

i=1

zi�i i = N⌃

h + 1, . . . , N⌦

h

(61b)

!
(3)

i = zi : z
(3)

h,ref =
PN⌦

h
i=1

zi�i i = 1, . . . , N⌦

h . (61c)
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We then build the residuals ⇢

(k) for k = 1, 2, 3, depending on the discrete reduced solutions uh and Uh,
computed by means of (59). Using the definitions of (43), (47), (53), for i = 1, . . . , N⌦

h the nodal components
of the residuals are,

⇢
(1)

i = l(1)(�i)� d(1)(Uh,�i) =((I � (·))g,�i)⌃ + ((I � (·))uh,�i)�, (62a)

⇢
(2)

i = l(2)(�i)� d(2)(uh,�i) =(ruh,r�i)⌃ � (E
⌃

f,�i)⌃, (62b)

⇢
(3)

i = l(3)(�i)� d(3)(uh,�i) =� ((I � (·))uh,�i)�, (62c)

Finally, we combine the weights and the residuals in order to compute the local estimators,

⌘
(1)

i = !
(1)

i ⇢
(1)

i =!
(1)

i

h
((I � (·))g,�i)⌃ + ((I � (·))uh,�i)�

i
, (63a)

⌘
(2)

i = !
(2)

i ⇢
(2)

i =!
(2)

i [(ruh,r�i)⌃ � (E
⌃

f,�i)⌃] , (63b)

⌘
(3)

i = !
(3)

i ⇢
(3)

i =!
(3)

i

h
�((I � (·))uh,�i)�

i
. (63c)

Remark 5.1. We observe that when the mesh nodally conforms with �, the advantage in terms of compu-
tational cost of the reduced versus the full (reference) problem almost vanishes. However, we remark that
this is a particular case specifically designed to simplify the computations presented below and practically
feasible only when the radius of ⌃, R, is comparable with the diameter of ⌦.

For the computation of the local model error estimator, we consider the 3D domain ⌦ = (�1, 1)2 ⇥
(�0.51, 0.51) and the 1D segment ⇤ from (�0.51, 0, 0) to (0.51, 0, 0). We define on ⌦ a a quasi-uniform
regular mesh, with characteristic length h = 1/32, for a total of 354’753 tetrahedra. The 1D domain is
discretized with 1281 points. The parameters of the problem are chosen for simplicity as R = 0.25, k = 1,
f = 1 and g = 1.

The discrete solutions uh and Uh are computed using piecewise linear finite elements. We calculate the
residuals ⇢(k) by means of (62). We then address the discretization of the reference dual problems (44), (50),
(55). To obtain computable solutions, the model error output functionals must not depend on the error
itself. We use instead the following definitions,

j(1)(v) =

Z

⌃

vd⌃ , j(2)(v) =

Z

⌦

�I
⌦� + E

⌃

�
vd⌦ , j(3)(v) =

Z

⌦

vd⌦ . (64)

These output functionals provide the mean value of the error components over ⌃ and ⌦, respectively. Given
the mesh T h

⌦

that is nodally conforming with the surface �, we define the spaces V ⌃

h , V
⌦�
h , V ⌦

h using
piecewise linear elements, we solve the problems (44), (50), (55) and we compute the weights w(k) using
(61). According to (63) the nodal values of the local estimators are the combination of residual and weights.
We represent them as piecewise linear finite element functions on ⌦.

In what follows, all the results refer to 3D functions in ⌦, but the meaningful data are strictly inside the
domain, because of the homogeneous Dirichlet condition on his boundary. Therefore, in order to successfully
represent the information of the plots, we show only a 2D slice embedded in the 3D domain. The bounding
box of ⌦ is also shown in the plots.

For the discussion of Figure 3 we start from the residual ⇢(1), in particular ((I � (·))g,�i)⌃. This term
measures the error due to the average on the cross section D of the forcing term. Since in the simulation of
Figure 3, we have used g = 1 this residual should vanish. A di↵erent test using g = 1 + 3y is addressed in
Figure 4 (left column). The comparison among the two cases conforms that, g is variable on D, the residual
reproduces the variation of g.

Similar considerations apply to the residual ⇢(2). It represents the model error due to extending the 3D
problem into ⌃. However, even though the magnitude of this residual is the largest among all ⇢(k), k = 1, 2, 3,
we notice that it is combined with !

(2), which according to (61b) vanishes in the interior of ⌃. As a result,
the estimator ⌘(2) turns out to be rather small and localized in the neighborhood of the interface.

We also discuss terms on the interface ((I � (·))u,�i)� that appear in ⇢

(1) and ⇢

(3). These residuals
depend on the function f . Precisely, if f is constant, then also the solution u does not vary along @D and
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⇢
(1)

h ⇢
(2)

h ⇢
(3)

h

!
(1)

h !
(2)

h !
(3)

h

⌘
(1)

h ⌘
(2)

h ⌘
(3)

h

Figure 3. Analysis of the residuals ⇢
(k)
h , the weights !

(k)
h and the local estimators ⌘

(k)
h ,

represented as piecewise linear functions on the mesh T h
⌦

.

u(s) = u(s). Therefore, the residuals ⇢(1) and ⇢

(3) become relevant especially when f is not constant around
the inclusion. The comparison of these residuals in the case f = 1 and f = 1 + y, shown in Figure 4 (right
column), confirms the expected behavior.
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Case g = 1 Case f = 1

((I � (·))g,�i)⌃ ((I � (·))u,�i)�

Case g = 1 + 3y Case f = 1 + y

((I � (·))g,�i)⌃ ((I � (·))u,�i)�

Figure 4. On the left column we show the comparison of (g,�i)⌃ and ((·))g,�i)⌃ in the
case g = 1 and g = 1+3y. On the right, we analyze the comparison of (u,�i)� and (u,�i)�
in the case f = 1 and f = 1 + y.

Finally, we consider a test case with a thinner inclusion, namely a cylinder with radius R = 0.1. The
domains ⌦ and ⇤ as well as the parameters k, f and g are the same as in the previous case shown in Figure
3. The computational mesh has been slightly refined in the neighborhood of the cylinder, to comply with
its size. The visual analysis of the error estimator (not shown here) confirms that the spatial distribution of
the error is the same as the one of Figure 3. In Table 1 we show a quantitative comparison of the two cases.
As expected, the results confirm that the model error decreases with the size of the inclusion.

6. Conclusions

This work illustrates the foundations of a multiscale method for solving partial di↵erential equations
on bulk domains with embedded network-shaped cylindrical inclusions. The method consists of applying
a model reduction technique first, aiming at transforming the original problem into a simpler one. Such
problem features equations in a bulk domain coupled with a collection of one-dimensional problems. After
showing the well posedness of the reduced problem, we have approximated it by means of finite elements and
proved the convergence of the discretization scheme. Finally, we have pursued the analysis of the modeling
error, namely the di↵erence between the solutions of the original problem and the simplified one. We have
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j(1)(e) =
P

i ⌘
(1)

i j(2)(e) =
P

i ⌘
(2)

i j(3)(e) =
P

i ⌘
(3)

i

R = 0.25 2e-04 -1e-02 -1e-05
R = 0.1 9e-07 -3e-05 -1e-06

⌘

(1)

⌘

(2)

⌘

(3)

mini maxi mini maxi mini maxi

R = 0.25 -8e-21 4e-08 -1e-05 9e-07 -1e-25 3e-08
R = 0.1 -1e-11 4e-10 -8e-09 1e-07 -3e-11 8e-10

Table 1. Variation of the error output functionals j(k)(e) and of the error estimators ⌘(k)

when the radius of the inclusion ⌃ decreases from R = 0.25 to R = 0.1.

shown that for infinitesimally narrow inclusions, representing for example a bulk material perfused by narrow
channels, the reduced model converges to the original one. Although realistic applications require to address
more complicated equations, which have not been fully analyzed yet in this context, we believe that the
sound mathematical properties proved here strengthen the significance of this approach to applications.
However, there are still many open questions to be addressed. For example, this work should be extended
to other types of interface conditions among the bulk and the inclusions, addressing for example Dirichlet
type constraints. In the same spirit, we are studying the method for partial di↵erential equations in mixed
form, in order to better model flow problems. Important and pressing questions also arise at the level
of numerical discretization and solvers. For example, the role of quadrature in the approximation of the
averaging operators on the global accuracy of the approach is still unexplored. At the level of numerical
solver, e�cient solution methods and preconditioners for coupled partial di↵erential equations on embedded
domains must be investigated.
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[24] T. Köppl, E. Vidotto, and B. Wohlmuth. A local error estimate for the Poisson equation with a line source term. In
Numerical Mathematics and Advanced Applications ENUMATH 2015, pages 421–429. Springer, 2016.
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