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1. Introduction

LetΩ ⊂ R3 be either the whole space or a bounded domain with smooth boundary ∂Ω. For an arbitrarily fixed T  > 0, we consider the dimensionless form of the Navier–Stokes equations in the space-time cylinderΩ T =Ω × (0, T )
{
ut − ∆u+ u ·∇u+∇Π = φ,div u = 0. (1)

The unknowns u = u(x, t) and Π = Π(x, t) represent the velocity vector and the pressure of a homogeneous incompressiblefluid, respectively, while φ = φ(x, t) is the density of force per unit volume. The system is complemented with the nonslipboundary condition
u(x, t)|x∈∂Ω = 0,and the initial condition
u(x, 0) = u0(x),for some given divergence-free function u0 vanishing on ∂Ω.
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1.1. Functional setting

For p ∈ [1, ∞] and k ∈ N, the symbols Lp and Hk will stand for the usual Lebesgue and Sobolev spaces of real, vector or tensor valued functions onΩ . The Lp-norm of a tensor valued function w = {wı}ı=ij... is given by
‖w‖p = (∫Ω |w(x)|pdx

)1/p
, where |w| = ∑

ı
w2

ı

)1/2
.

Calling D = {
u ∈ C∞cpt(Ω,R3) : div u = 0}, we consider the usual Hilbert spaces associated with the Navier–Stokesequations

H = closure of D in L2, V = closure of D in H1, W = H2 ∩ V.

1.2. Regular solutions

In what follows, we assume the initial datum u0 ∈ V and the external force φ ∈ L2(0, T ; L2). We begin with the classical definition (see e.g. [22]).
Definition 1.1.A function

u ∈ H1(0, T ;H) ∩ C([0, T ],V) ∩ L2(0, T ;W)
is called a regular solution when equation (1) holds almost everywhere and u(0) = u0.
Since the works of Leray [11] and Hopf [10], it is well known that for any u0 ∈ H (in particular, for any u0 ∈ V) thereexists at least a weak solution, nowadays called a Leray–Hopf solution to (1). This is a function

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V)
which satisfies the equation in the distributional sense, and u(t) ⇀ u 0 weakly in H  as t  → 0 . At the same t ime, for any given u0 ∈ V there exists

T? = T?(u0, φ) ∈ (0, ∞]
such that (1) admits a unique regular solution u, provided that T < T?. Accordingly, the main problem in connectionwith Navier–Stokes equations is establishing the regularity of a Leray–Hopf solution u with initial data in V up to the (arbitrary) time T . Equivalently, the goal is finding sufficient conditions in order for u to be regular as well.
1.3. Earlier results

The question above was addressed in the fundamental works of Prodi [14] and Serrin [15] (see also [9, 17]), where u is shown to be regular if
u ∈ Lq(0, T ; Lp) (2)

for some pair (p, q), where p ∈ (3,∞] and q ∈ [2,∞) fulfill the condition 3/p+ 2/q ≤ 1.Various improvements have been subsequently obtained by several authors (see e.g. [1, 3, 6, 7, 12, 13, 16, 20] andreferences therein). Here, we are mainly interested in the results of [13], where the following improvement in time of (2)is provided.



Theorem 1.2.
If there exist α ≥ 0 and a pair (p, q) with 3/p + 2/q = 1 for which

lim inf
ε→0 ε

∫ T−e−1/ε
0 ‖u(t)‖q(1−αε)

p dt < c

for a suitable c = c(Ω, p, q, α) > 0, then u is the unique regular solution on [0, T ].
As we will see in the appendix, improving the sufficient condition of Theorem 1.2 in space is also possible, by replacingthe p-norm with the p(1−αε)-norm.Similar regularity criteria involving the gradient pressure∇Π have been proposed by many authors, after the qualitativeprediction in [4] that weak solutions to (1) are regular provided that

∇Π ∈ Ls(0, T ; Lr) (3)
for a pair (r, s) satisfying 3/r + 2/s ≤ 3. The proof of this fact has been established in [2] under the restriction s ∈ (1, 3], later removed when the domain is the whole space and φ = 0 (see [18, 23, 24]). Weaker conditional results have beenobtained in [5, 8] for the case Ω = R3, in terms of pressure in Lorentz, Morrey or Besov spaces. More recently, the paper [19] improves (3) on bounded domains and for initial data u0 ∈ L∞, involving Lorentz spaces1 also in the time variable. The sufficient condition there reads

‖∇Π‖Lsw(0,T ;Lrw(Ω)) ≤ ε∗

for a suitable ε∗ = ε∗(s) > 0, with s ∈ (1, 5/3).
2. Main result

The purpose of this article is to establish a novel regularity criterion in terms of the pressure gradient, valid either whenΩ is bounded orΩ = R3, and in presence of an external force φ ∈ L2(0, T ; L2). This is done in the spirit of Theorem 1.2, yielding an improved (in time) version of (3).
Definition 2.1.A pair (r, s) with s ∈ (1, 3] is called admissible if 3/r + 2/s = 3.
Given a Leray–Hopf solution u to (1) on [0, T ] with initial datum u0 ∈ V, denoting Tε = T − e−1/ε, ε > 0, our main theorem reads as follows.
Theorem 2.2.
Assume that the limit lim inf

ε→0 ε(s−1)/2 ∫ Tε

0 ‖∇Π(t)‖s(1−ε)r dt = 0 (4)
holds for some admissible pair (r, s). Then u is the unique regular solution on [0, T ].
1 A function v defined on Q ⊂ RN belongs to the Lorentz space Lp(Q)-weak, denoted by Lpw(Q), ifsup

r>0 r
[
m{z ∈ Q : |v(z)| > r}

]1/p
is finite, where m stands for the Lebesgue measure in RN .



Some remarks are in order:
• With respect to the earlier literature, with particular reference to [19], we note that there exist functions satisfyinglimits of form (4), but which do not belong to Lsw(0, T ; Lrw). See [13] for an example.
• Analogously to the case of Theorem 1.2, extending the sufficient condition (4) in space is also possible, replacingthe r-norm with the r(1−ε)-norm. This can be easily done by recasting with minor changes the arguments ofSection 4.
• A closer look at the proof shows that the conclusion of the theorem still holds if

lim inf
ε→0 ε(s−1)/2 ∫ Tε

0 ‖∇Π(t)‖s(1−ε)r dt < K,

for some constant K = K (Ω, r, s) > 0. In principle, such K can be explicitly estimated.
• Although we work in dimension 3, our techniques apply in any dimension (by suitably rewriting the dimension-dependent inequalities).

The rest of the paper is devoted to the proof of Theorem 2.2.
3. Preliminary facts

3.1. Tools and notations

In the computations of the next sections, we will exploit the Sobolev embedding2
‖u‖6 ≤ π‖∇u‖2, u ∈ V.

For an arbitrarily fixed τ  ∈ (0, T ) , let us denoteΩτ  =Ω× (0, τ ). Then we have the elementary interpolation
‖v‖Lγ (Ωτ ) ≤ ‖v‖σLa(Ωτ )‖v‖1−σLb(Ωτ ), (5)

for all 1 ≤ a ≤ b ≤ ∞ and a ≤ γ ≤ b such that 1/γ = σ/a + (1 − σ )/b. We shall also make use of the embedding
L∞(0, τ; L2)∩L2(0, τ; L6) ⊂ Lb(0, τ; La), valid (in dimension 3) for all 2 ≤ a ≤ 6 and 2 ≤ b ≤ ∞ satisfying 3/a+2/b = 3/2.In particular, the corresponding interpolation estimate reads

‖v‖a,b ≤ ‖v‖1−σ2,∞‖v‖σ6,2 with σ = 2
b , (6)

where, here and in the sequel, we write for short
‖v‖a,b =


(∫ τ

0 ‖v(t)‖badt
)1/b if b <∞,

ess sup
t∈[0,τ] ‖v(t)‖a if b =∞.

An elementary remark will be needed.
2 According to [21], we have π = (2/π)2/3/√3.



Lemma 3.1.
Let xε ∈ R satisfy lim infε→0 εxaε = 0 for some a > 0. Then, for every fixed η > 0, lim inf

ε→0 εxa+ηε
ε = 0.

Proof. By assumption, there is εn → 0 such that εnxεan → 0. Thus, for n large, log xεn ≤ −(1/a) log εn. Accordingly,
εnxa+ηεn

εn = εnxaεneηεn log xεn ≤ εnxaεne−(ηεn/a) log εn → 0,
proving the claim.
The next well-known identity can be verified by direct computations.
Lemma 3.2.
Let u :Ω → R3 be a vector field satisfying div u = 0  and u|∂Ω= 0 . Then

−
∫

Ω ∆u · u|u|β−2dx = ∫
Ω |u|β−2 |∇u|2 + 4(β − 2)

β2
∫

Ω
∣∣∇|u|β/2∣∣2dx

for all 
 ≥ 2.

3.2. From ∇Π-estimates to u-estimates

Throughout the paper, we agree to denote
Φ = (∫ T

0 ‖φ(t)‖22dt)1/2
<∞.

Let u be a Leray–Hopf solution to (1) on [0, T ] with u0 ∈ V, and let τ ∈ (0, T ) be arbitrarily fixed.
Proposition 3.3.
Let θ ∈ [5/2, 6] be given3, and let (r, s) be any pair satisfying

3
r + 2

s = 2 + 3
θ with s ∈ (1, θ]. (7)

Then, for the pair (p, q) given by

p = r(θ − 1)
r − 1 , q = s(θ − 1)

s− 1
we have the estimate ∫ τ

0 ‖u(t)‖qpdt ≤ C‖u0‖qθ + CΦq + C
(∫ τ

0 ‖∇Π(t)‖sr dt)q/s.
Here, C > 0 is independent of τ and θ.

3 The lower bound 5/2 is assumed in order to have constants independent of θ.



Proof. Following the argument in [18], we multiply equation (1) by u|u|θ−2. Exploiting Lemma 3.2 we obtain
1
θ

ddt ‖u‖θθ + ∫Ω |∇u|2|u|θ−2dx + 4(θ − 2)
θ2

∫
Ω
∣∣∇|u|θ/2∣∣2dx = ∫

Ω φu|u|θ−2dx + I,

having set
I = − ∫Ω u ·∇Π|u|θ−2dx.

Calling v = |u|θ/2, the latter identity turns into
1
θ

ddt ‖v‖22 + 4(θ − 2)
θ2 ‖∇v‖22 = ∫

Ω φu|u|θ−2dx + I,

and an integration on (0, τ ′) with τ ′ ≤ τ yields
1
θ ‖v‖

22,∞ + 4(θ − 2)
θ2 ‖∇v‖22,2 ≤ 1

θ ‖v(0)‖22 + ∫ τ

0
∫

Ω φu|u|θ−2dx dt + ∫ τ

0 I dt. (8)
We observe that ∫ τ

0
∫

Ω φu|u|θ−2dx dt ≤ Φ‖u‖θ−12(θ−1),2(θ−1) ≤ Φ‖v‖2(θ−1)/θ4(θ−1)/θ,4(θ−1)/θ.
The norm of v appearing in the inequality can be estimated in terms of ‖v‖2,∞ and ‖∇v‖2,2. Indeed, applying (5) with
γ = 4(θ − 1)/θ, a = 2 and b = 10/3, we obtain

‖v‖4(θ−1)/θ,4(θ−1)/θ ≤ ‖v‖(6−θ)/4(θ−1)2,2 ‖v‖5(θ−2)/4(θ−1)10/3,10/3 .

Since from (6) with a = b = 10/3, ‖v‖10/3,10/3 ≤ ‖v‖2/52,∞‖v‖3/56,2 , exploiting the elementary control ‖v‖2,2 ≤ τ1/2‖v‖2,∞ ≤
T 1/2‖v‖2,∞, we draw the following chain of inequalities:

‖v‖4(θ−1)/θ,4(θ−1)/θ ≤ ‖v‖(6−θ)/4(θ−1)2,2 ‖v‖5(θ−2)/4(θ−1)10/3,10/3 ≤ T (6−θ)/8(θ−1)‖v‖(θ+2)/4(θ−1)2,∞ ‖v‖3(θ−2)/4(θ−1)6,2 .

By the Sobolev embedding and a suitable use of the Young inequality, we arrive at∫ τ

0
∫

Ω φu|u|θ−2dx dt ≤ CTΦθ + 12θ ‖v‖22,∞ + 2(θ − 2)
θ2 ‖∇v‖22,2,

where CT > 0 is a positive constant independent of τ and θ. In light of the estimates above, we deduce from (8)
12θ ‖v‖22,∞ + 2(θ − 2)

θ2 ‖∇v‖22,2 ≤ 1
θ ‖v(0)‖22 + CTΦθ + ∫ τ

0 I dt. (9)
In order to bound the term containing I, we proceed as follows:∫ τ

0 I dt ≤ ∫ τ

0
∫

Ω |∇Π||u|θ−1dx dt ≤ ‖∇Π‖r,s‖u‖θ−1(θ−1)r∗,(θ−1)s∗ ≤ ‖∇Π‖r,s‖v‖2(θ−1)/θ2p/θ,2q/θ,
where r∗ = r/(r−1) and s∗ = s/(s−1) are the Hölder conjugates of r and s, respectively, and p = (θ−1)r∗, q = (θ−1)s∗.We now note that 2 < 2p/θ ≤ 6, 2 ≤ 2q/θ <∞, and, recalling (7),

32p/θ + 22q/θ = 32 .



Therefore, we are in the position to apply (6), to get
‖v‖22p/θ,2q/θ ≤ ‖v‖2(1−σ )2,∞ ‖v‖2σ6,2,

where σ = θ/q. Hence, the Sobolev embedding and the Young inequality for the conjugate exponents 1/(1 − σ ), 1/σyield
κ‖v‖22p/θ,2q/θ ≤ κ(1− σ )c1/(1−σ )‖v‖22,∞ + κσc−1/σπ2‖∇v‖22,2for all κ > 0 and c > 0. By fixing in a proper way κ and c, we get

κ‖v‖22p/θ,2q/θ ≤ 12θ ‖v‖22,∞ + 2(θ − 2)
θ2 ‖∇v‖22,2,

and, in light of (9), we draw the conclusion
κ‖v‖22p/θ,2q/θ ≤ 1

θ ‖v(0)‖22 + CTΦθ + ‖∇Π‖r,s‖v‖2(θ−1)/θ2p/θ,2q/θ.
By a further use of the Young inequality,

‖∇Π‖r,s‖v‖2(θ−1)/θ2p/θ,2q/θ ≤ κ2 ‖v‖22p/θ,2q/θ + Cκ‖∇Π‖θr,s,
for some Cκ > 0, yielding the final relation

κ2 ‖v‖22p/θ,2q/θ ≤ 1
θ ‖v(0)‖22 + CTΦθ + Cκ‖∇Π‖θr,s.

Written in terms of u, this is
κ2 ‖u‖θp,q ≤ 1

θ ‖u0‖θθ + CTΦθ + Cκ‖∇Π‖θr,s,
as claimed.
4. Proof of main result

Let τ ∈ (0, T ) be arbitrarily fixed, a nd l et ε  >  0  b e s ufficiently s mall. A long t he p roof, c  >  0  w ill d enote a  generic constant, independent of τ and ε, which may change even from line to line. Let (r, s) be an admissible pair for which (4) holds true. Defining s ε = (1 − ε )s, the couple (r, sε) i s easily seen to satisfy the relation
3
r + 2

sε
= 2 + 3

θε
, where θε = 3(1− ε)s(1− ε)s+ 2ε .

Since θε↑3 as ε→ 0, up to choosing ε > 0 sufficiently small,
s ∈ (1, 3] =⇒ sε ∈ (1, θε ].

Therefore, we can apply Proposition 3.3 with θ = θε and the pair (r, sε). This entails
∫ τ

0 ‖u‖qεpε dt ≤ C ‖u0‖qεθε + CΦqε + C
(∫ τ

0 ‖∇Π‖sεr dt)qε/sε, (10)



where pε = (θε − 1)r∗, qε = (θε − 1)s∗ε , again, the star is the Hölder conjugate. It is worth noting that the pair (p, q)given by p = 2r∗, q = 2s∗, fulfills the identity 3
p + 2

q = 1. (11)
Since by assumption s ∈ (1, 3], it is readily seen that

p > 3. (12)
We rewrite pε in the form

pε = (θε − 1)r∗ = p(1− αεε) with αε = 3(1− ε)s+ 2ε .
Analogous computations provide

qε = q(1− αεε)(1 + ε
s(1− ε)− 1

)
.

We are now ready to conclude the proof of Theorem 2.2. Indeed, setting
α = 32 lim

ε→0 αε = 92s
in order to ensure 2 < p(1− αε) < pε , we use the interpolation estimate

‖u‖p(1−αε) ≤ ‖u‖1−σε2 ‖u‖σεpε ,

valid for a suitable σε ∈ (0, 1). Since q(1−αε)σε < qε , a standard application of the Young inequality gives∫ τ

0 ‖u‖
q(1−αε)
p(1−αε)dt ≤ ∫ τ

0 ‖u‖
q(1−αε)(1−σε )2 ‖u‖q(1−αε)σε

pε dt ≤ R0 + ∫ τ

0 ‖u‖qεpε dt, (13)
for some positive constant R0 depending explicitly (besides on T ) on the quantity ‖u‖2,∞, which is known to be bounded,with a bound depending on the initial datum u0.At this point, we make the choice τ = Tε . Then, collecting (10) and (13), we are led to

lim inf
ε→0 ε

∫ Tε

0 ‖u‖
q(1−αε)
p(1−αε)dt ≤ c lim inf

ε→0 ε
∫ Tε

0 ‖u‖qεpε dt
≤ c lim inf

ε→0 ε
[
‖u0‖qεθε + Φqε + (∫ Tε

0 ‖∇Π‖sεr dt)qε/sε] = c lim inf
ε→0 ε

(∫ Tε

0 ‖∇Π‖sεr dt)qε/sε.
It is easily seen that 2

s− 1 ≤ qε
sε
≤ 2
s− 1 + ηε

for some finite η > 0, depending only on s. Hence, exploiting Lemma 3.1 jointly with (4), we have
lim inf
ε→0 ε

(∫ Tε

0 ‖∇Π‖sεr dt)qε/sε= lim inf
ε→0 ε

(∫ Tε

0 ‖∇Π‖sεr dt)2/(s−1)= 0.
In light of the above computations we conclude that

lim inf
ε→0 ε

∫ Tε

0 ‖u‖
q(1−αε)
p(1−αε)dt = 0

for α > 0 and the pair (p, q) above, which meets the requirements of Theorem A.1, see (11)–(12). As a consequence ofits application, we eventually learn that u is the (unique) regular solution on [0, T ]. This finishes the proof.



Appendix

We extend the main Theorem 5.1 from [13], providing a Prodi–Serrin type criterion requiring a weaker condition in space for the norm of u. We first introduce some n otation. We introduce the Stokes operator A = −P∆ with domain W , where 
P : L2 → H is the Leray–Helmholtz orthogonal projection, and we denote by κ = κ(Ω) > 0 the best constant such that4

‖∇u‖6 ≤ κ‖Au‖, u ∈W.

In what follows, let u be a fixed Leray–Hopf solution to (1) with u(0) = u0 ∈ V. Besides, let (p, q) denote a pair,
p ∈ (3,∞], q ∈ [2,∞), subject to the condition 3

p + 2
q = 1. (A.1)

Defining the function of the variable ω ≥ 0
H(ω) =

1− e−ω
ω if ω > 0,1 if ω = 0

and the positive constant
Cq = qq4κq−2(q− 1)q−1 ,

the result reads as follows (recall that Tε = T − e−1/ε).
Theorem A.1.
If there exist α ≥ 0 and a pair (p, q) for which

lim inf
ε→0 ε

∫ Tε

0 ‖u(t)‖q(1−αε)
p(1−αε)dt < H(qα)Cq, (A.2)

then u is the unique regular solution on [0, T ].
The proof of Theorem A.1 is carried out along the lines of [13]. The key ingredient is a refined v ersion o f Lemma 9.3 therein.
Lemma A.2.
Let f = Pφ ∈ L2(0, T ; H), and let (p, q) and δ ∈ (0, 1) be fixed. For every σ  > 0  sufficiently small, we have

ddt ‖∇u‖2 ≤ µ(σ )2(1− δ)q−1Cq ‖u‖q(1−σ )
p(1−σ )‖∇u‖2+2qσ + 12δ ‖f‖2, (A.3)

for some nonnegative function µ (depending on p, q, δ,Ω) satisfying lim
σ→0 µ(σ ) = 1.

4 For the case Ω = R3 we have the explicit value κ = (2/π)2/3/√3 (see [13, Appendix]).



Proof. According to [13, Lemma 9.2], for every pair (p, q) and every δ  ∈ (0, 1), we have the inequality
ddt ‖∇u‖2 ≤ 12(1− δ)q−1Cq ‖u‖qp‖∇u‖2 + 12δ ‖f‖2. (A.4)

We now consider (A.4) with (p, q) replaced by the pair (pσ , qσ ) given by
pσ = 3p(1 + σ )3 + σp , qσ = q(1 + σ ).

Calling θ = 2σ/(1 + σ ), we obtain by interpolation
‖u‖qσpσ ≤ ‖u‖

(1−θ)qσ
p(1−σ ) ‖u‖θqσ6 = ‖u‖q(1−σ )

p(1−σ )‖u‖2qσ6 ≤ cσ‖u‖q(1−σ )
p(1−σ )‖∇u‖2qσ

for some c = c(Ω) > 0. Therefore,
12(1− δ)qσ−1Cqσ ‖u‖qσpσ ‖∇u‖2 ≤

µ(σ )2(1− δ)q−1Cq ‖u‖q(1−σ )
p(1−σ )‖∇u‖2+2qσ ,

where the function
µ(σ ) = cσCq(1− δ)qσCqσis easily seen to fulfill the required limit.

Denoting now
L = lim inf

ε→0 ε
∫ Tε

0 ‖u(t)‖q(1−αε)
p(1−αε) dt,

we know by assumption that L < H(qα)Cq. Calling for short φ = ‖∇u‖2 and fixing δ = δ(q) > 0 small enough in orderto satisfy
β = L2(1− δ)q−1Cq <

12 H(qα),
we deduce from (A.3) the differential inequality

φ′ ≤ βµ(σ )
L ‖u‖q(1−σ )

p(1−σ )φ1+qσ + 12δ ‖f‖2,valid for any σ > 0 small. At this point, assuming ε sufficiently small, we choose σ = αε. Then, introducing the familyof functions
λε(t) = βµ(αε)

L ‖u(t)‖q(1−αε)
p(1−αε),the inequality above reads

φ′ ≤ λεφ1+qαε + 12δ ‖f‖2.Integrating on [τ, t], we obtain
φ(t) ≤ φ(τ) + ∫ t

τ
λε(s)[φ(s)]1+qαε ds+ 12δ

∫ t

τ
‖f(s)‖2ds,

with lim inf
ε→0 ε

∫ Tε

0 λε(t) dt = β < 12 H(qα).
Then, by applying [13, Lemma 9.1], we deduce the limit

lim inf
t→T

√
T − tφ(t) = 0.

This is incompatible with the blow-up of ‖∇u‖ at T (cf. [13, Lemma 9.4]). The proof of Theorem A.1 is finished.
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